RESUMEN
Atopic dermatitis is the most common inflammatory skin condition with a severe negative impact on patients' quality of life. The etiology of AD is complex and depends on age, genetics, the immune system, environmental factors, and the skin microbiome, with a key role for pathogenic Staphylococcus aureus in the development of severe AD. However, the composition of the skin microbiome in mild AD is understudied. Here, using metagenomic shallow shotgun sequencing, we showed that mild AD lesions did not show a significant difference in the diversity of the skin microbiome compared to samples from non-AD patients and that the relative abundance of S. aureus did not differ in these mild AD lesions. However, when we assessed other taxa, Mycobacterium ostraviense, Pedobacter panaciterrae_A and four Streptomyces species were identified with higher abundances in mild AD lesions and species of 15 genera were decreased in abundance. The highest fold decreases were observed for Paracoccus marcusii, Microbacterium lacticum, Micrococcus luteus, and Moraxella sp002478835. These microbiome compositional insights are a first step towards novel microbiome-based diagnostics and therapeutics for early intervention at the stage of mild AD and provide a path forward for the functional study of species involved in this often-overlooked patient population.
Asunto(s)
Dermatitis Atópica , Microbiota , Piel , Dermatitis Atópica/microbiología , Humanos , Piel/microbiología , Piel/patología , Femenino , Adulto , Masculino , Staphylococcus aureus/genética , Staphylococcus aureus/aislamiento & purificación , Staphylococcus aureus/patogenicidad , Bacterias/clasificación , Bacterias/genética , Persona de Mediana Edad , Metagenómica/métodosRESUMEN
Riboflavin (vitamin B2) is an essential water-soluble vitamin that serves as a precursor of flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD). FMN and FAD are coenzymes involved in key enzymatic reactions in energy metabolism, biosynthesis, detoxification and electron scavenging pathways. Riboflavin deficiency is prevalent worldwide and impacts women's health due to riboflavin demands linked to urogenital and reproductive health, hormonal fluctuations during the menstrual cycle, pregnancy, and breastfeeding. Innovative functional foods and nutraceuticals are increasingly developed to meet women's riboflavin needs to supplement dietary sources. An emerging and particularly promising strategy is the administration of riboflavin-producing lactic acid bacteria, combining the health benefits of riboflavin with those of probiotics and in situ riboflavin production. Specific taxa of lactobacilli are of particular interest for women, because of the crucial role of Lactobacillus species in the vagina and the documented health effects of other Lactobacillaceae taxa in the gut and on the skin. In this narrative review, we synthesize the underlying molecular mechanisms and clinical benefits of riboflavin intake for women's health, and evaluate the synergistic potential of riboflavin-producing lactobacilli and other microbiota.
Asunto(s)
Microbiota , Probióticos , Riboflavina , Salud de la Mujer , Riboflavina/biosíntesis , Riboflavina/metabolismo , Humanos , Femenino , Lactobacillus/metabolismo , Vagina/microbiología , Suplementos Dietéticos , Deficiencia de RiboflavinaRESUMEN
BACKGROUND: Prematurity remains one of the main causes of neonatal morbidity and mortality. Approximately two thirds of preterm births are spontaneous, i.e. secondary to preterm labour, preterm prelabour rupture of membranes (PPROM) or cervical insufficiency. Etiologically, the vaginal microbiome plays an important role in spontaneous preterm birth (sPTB). Vaginal dysbiosis and bacterial vaginosis are well-known risk factors for ascending lower genital tract infections and sPTB, while a Lactobacillus crispatus-dominated vaginal microbiome is associated with term deliveries. Synbiotics may help to achieve and/or maintain a normal, Lactobacillus-dominated vaginal microbiome. METHODS: We will perform a multi-centre, double-blind, randomised, placebo-controlled trial. Women aged 18 years or older with a singleton pregnancy are eligible for inclusion at 80/7-106/7 weeks gestational age if they have one or more of the following risk factors for sPTB: previous sPTB at 240/7-356/7 weeks, prior PPROM before 360/7 weeks, or spontaneous pregnancy loss at 140/7-236/7 weeks of gestation. Exclusion criteria are multiple gestation, cervix conisation, inflammatory bowel disease, uterine anomaly, and the use of pro-/pre-/synbiotics. Patients will be randomised to oral synbiotics or placebo, starting before 11 weeks of gestation until delivery. The oral synbiotic consists of eight Lactobacillus species (including L. crispatus) and prebiotics. The primary outcome is the gestational age at delivery. Vaginal microbiome analysis once per trimester (at approximately 9, 20, and 30 weeks) and delivery will be performed using metataxonomic sequencing (16S rRNA gene) and microbial culture. Secondary outcomes include PPROM, the use of antibiotics, antenatal admission information, and neonatal outcomes. DISCUSSION: This study will evaluate the effect of oral synbiotics on the vaginal microbiome during pregnancy in a high-risk population and correlate the microbial changes with the gestational age at delivery and relevant pregnancy outcomes. TRIAL REGISTRATION: ClinicalTrials.gov, NCT05966649. Registered on April 5, 2024.
Asunto(s)
Estudios Multicéntricos como Asunto , Nacimiento Prematuro , Ensayos Clínicos Controlados Aleatorios como Asunto , Simbióticos , Vagina , Humanos , Femenino , Método Doble Ciego , Embarazo , Nacimiento Prematuro/prevención & control , Simbióticos/administración & dosificación , Vagina/microbiología , Factores de Riesgo , Microbiota , Edad Gestacional , Recién Nacido , Resultado del Tratamiento , Vaginosis Bacteriana/microbiología , Vaginosis Bacteriana/diagnósticoRESUMEN
Introduction: The pathogenesis of Attention-Deficit Hyperactivity Disorder (ADHD) is thought to be multifactorial, with a potential role for the bidirectional communication between the gut microbiome and brain development and function. Since the "golden-standard" medication therapy with methylphenidate (MPH) is linked to multiple adverse effects, there is a need for alternative treatment options such as dietary polyphenols. These secondary plant metabolites exert antioxidant and anti-inflammatory effects, but much less is known about their impact on the gut microbiota. Since polyphenols are believed to modulate gut microbial composition, interventions might be advantageous in ADHD therapy. Therefore, intervention studies with polyphenols in ADHD therapy investigating the gut microbial composition are highly relevant. Methods: Besides the primary research questions addressed previously, this study explored a potential prebiotic effect of the polyphenol-rich French Maritime Pine Bark Extract (PBE) compared to MPH and a placebo in pediatric ADHD patients by studying their impact on the gut microbiota via amplicon sequencing of the full length 16S rRNA gene ribosomal subunit (V1-V9). Results: One interesting finding was the high relative abundance of Bifidobacteria among all patients in our study cohort. Moreover, our study has identified that treatment (placebo, MPH and PBE) explains 3.94% of the variation in distribution of microbial taxa (adjusted p-value of 0.011). Discussion: Our small sample size (placebo: n = 10; PBE: n = 13 and MPH: n = 14) did not allow to observe clear prebiotic effects in the patients treated with PBE. Notwithstanding this limitation, subtle changes were noticeable and some limited compositional changes could be observed. Clinical Trial Registration: doi: 10.1186/S13063-017-1879-6.
RESUMEN
Environment and lifestyle can affect the epigenome passed down from generation to generation. A mother's nutrition can impact the methylation levels of her offspring's epigenome, but it's unclear which genes may be affected by malnutrition during gestation or early development. In this study, we examined the levels of methylated GC in the promoter region of HLA-C in mothers and infants from the Kichwa community in Ecuador. To do this, we analyzed saliva samples using bisulfite DNA sequencing. While we did not observe any significant differences in the mean methylation percentages in exon 1 of HLA-C between mothers and their infants after the first two years of lactation and life, respectively, we did find that infants tended to increase their methylation level during the first two years of life, while mothers tended to decrease it after the first two years of breastfeeding. When we compared methylation levels between mothers and infants using an ANOVA/posthoc Tukey test, we found that the average methylation for the entire population was less than 3% at T1 and T2. Although there was a tendency for infants to have higher methylation levels during their first two years of life and for mothers to have lower methylation levels after the first two years of breastfeeding, the mean values were not significantly different. However, we found a significant difference when we contrasted the data using a Kruskal-Wallis test at 0.05 for T1 AND T2 (p-value: 0.0148). Specifically, mothers had an average of XÌ = 2.06% and sons had XÌ = 1.57% at T2 (p-value: 0.7227), while the average for mothers was XÌ = 1.83% and for sons XÌ =1.77%. Finally, we identified three CpG motif nucleotide positions (32-33, 43-44, and 96-97) along the 122 bp analysis of HLA-C exon one, which was found to retain methylation patterns over time and is inherited from mother to offspring. Finally, our small pilot study did not reveal significant correlations between maternal and offspring nutritional status and DNA methylation levels of HLA-C exon one.
RESUMEN
BACKGROUND: In this study we shed light on ongoing trends in contraceptive use in Flanders (Belgium). Building on the fundamental cause theory and social diffusion of innovation theory, we examine socio-economic gradients in contraceptive use and the relationship to health behaviours. METHODS: Using the unique and recently collected (2020) ISALA data, we used multinomial logistic regression to model the uptake of contraceptives and its association to educational level and health behaviour (N:4316 women). RESULTS: Higher educated women, and women with a healthy lifestyle especially, tend to use non-hormonal contraceptives or perceived lower-dosage hormonal contraceptives that are still trustworthy from a medical point of view. Moreover, we identified a potentially vulnerable group in terms of health as our results indicate that women who do not engage in preventive health behaviours are more likely to use no, or no modern, contraceptive method. DISCUSSION: The fact that higher educated women and women with a healthy lifestyle are less likely to use hormonal contraceptive methods is in line with patient empowerment, as women no longer necessarily follow recommendations by healthcare professionals, and there is a growing demand for naturalness in Western societies. CONCLUSION: The results of this study can therefore be used to inform policy makers and reproductive healthcare professionals, since up-to-date understanding of women's contraceptive choices is clearly needed in order to develop effective strategies to prevent sexually transmitted infections and unplanned pregnancies, and in which women can take control over their sexuality and fertility in a comfortable and pleasurable way.
Asunto(s)
Conducta Anticonceptiva , Conductas Relacionadas con la Salud , Humanos , Femenino , Adulto , Bélgica , Conducta Anticonceptiva/estadística & datos numéricos , Conducta Anticonceptiva/psicología , Adulto Joven , Escolaridad , Persona de Mediana Edad , Adolescente , Anticoncepción/estadística & datos numéricos , Anticoncepción/métodos , Conducta de Elección , Conocimientos, Actitudes y Práctica en SaludRESUMEN
Strategies against the opportunistic fungal pathogen Candida albicans based on probiotic microorganisms represent a promising alternative to traditional antifungals. Here, we investigated the effects of Lactobacillaceae isolates from fermented foods or the human vagina, alone or in combination with the probiotic yeast Saccharomyces cerevisiae CNCM I-3856, against C. albicans in vitro. Nine out of nineteen tested strains of Lactobacillaceae inhibited growth of C. albicans with inhibition zones of 1-3 mm in spot assays. Five out of nineteen lactobacilli tested as such or in combination with S. cerevisiae CNCM I-3856 also significantly inhibited C. albicans hyphae formation, including Limosilactobacillus fermentum LS4 and L. fermentum LS5 resulting in respectively 62% and 78% hyphae inhibition compared to the control. Thirteen of the tested nineteen lactobacilli aggregated with the yeast form of C. albicans, with Lactiplantibacillus carotarum AMBF275 showing the strongest aggregation. The aggregation was enhanced when lactobacilli were combined with S. cerevisiae CNCM I-3856. No significant antagonistic effects were observed between the tested lactobacilli and S. cerevisiae CNCM I-3856. The multifactorial activity of Lactobacillaceae strains alone or combined with the probiotic S. cerevisiae CNCM I-3856 against C. albicans without antagonistic effects between the beneficial strains, paves the way for developing consortium probiotics for in vivo applications.
Asunto(s)
Candida albicans , Lactobacillus , Probióticos , Saccharomyces cerevisiae , Candida albicans/efectos de los fármacos , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/efectos de los fármacos , Probióticos/farmacología , Lactobacillus/fisiología , Humanos , Hifa/efectos de los fármacos , Hifa/crecimiento & desarrollo , Antibiosis , Femenino , Vagina/microbiologíaRESUMEN
Frequent exposure to sea spray aerosols (SSA) containing marine microorganisms and bioactive compounds may influence human health. However, little is known about potential immunostimulation by SSA exposure. This study focuses on the effects of marine bacteria and endotoxins in SSA on several receptors and transcription factors known to play a key role in the human innate immune system. SSA samples were collected in the field (Ostend, Belgium) or generated in the lab using a marine aerosol reference tank (MART). Samples were characterized by their sodium contents, total bacterial counts, and endotoxin concentrations. Human reporter cells were exposed to SSA to investigate the activation of toll-like receptor 4 (TLR4) in HEK-Blue hTLR4 cells and TLR2/6 in HEK-Blue hTLR2/6 cells, as well as the activation of nuclear factor kappa B (NF-κB) and interferon regulatory factors (IRF) in THP1-Dual monocytes. These responses were then correlated to the total bacterial counts and endotoxin concentrations to explore dose-effect relationships. Field SSA contained from 3.0 × 103 to 6.0 × 105 bacteria/m3 air (averaging 2.0 ± 1.9 × 105 bacteria/m3 air) and an endotoxin concentration ranging from 7 to 1217 EU/m3 air (averaging 389 ± 434 EU/m3 air). In contrast, MART SSA exhibited elevated levels of total bacterial count (from 2.0 × 105 to 2.4 × 106, averaging 7.3 ± 5.5 × 105 cells/m3 air) and endotoxin concentration from 536 to 2191 (averaging 1310 ± 513 EU/m3 air). SSA samples differentially activated TLR4, TLR2/6, NF-κB and IRF. These immune responses correlated dose-dependently with the total bacterial counts, endotoxin levels, or both. This study sheds light on the immunostimulatory potential of SSA and its underlying mechanisms, highlighting the need for further research to deepen our understanding of the health implications of SSA exposure.
Asunto(s)
Aerosoles , Endotoxinas , FN-kappa B , Humanos , FN-kappa B/metabolismo , Receptor Toll-Like 4/metabolismo , Factores Reguladores del Interferón/metabolismo , Receptor Toll-Like 2/metabolismo , Bacterias , Contaminantes Atmosféricos , Bélgica , Inmunidad InnataRESUMEN
Antibiotics and cystic fibrosis transmembrane conductance regulator (CFTR) modulators play a pivotal role in cystic fibrosis (CF) treatment, but both have limitations. Antibiotics are linked to antibiotic resistance and disruption of the airway microbiome, while CFTR modulators are not widely accessible, and structural lung damage and pathogen overgrowth still occur. Complementary strategies that can beneficially modulate the airway microbiome in a preventive way are highly needed. This could be mediated via oral probiotics, which have shown some improvement of lung function and reduction of airway infections and exacerbations, as a cost-effective approach. However, recent data suggest that specific and locally administered probiotics in the respiratory tract might be a more targeted approach to prevent pathogen outgrowth in the lower airways. This review aims to summarize the current knowledge on the CF airway microbiome and possibilities of microbiome treatments to prevent bacterial and/or viral infections and position them in the context of current CF therapies.
Asunto(s)
Fibrosis Quística , Microbiota , Humanos , Fibrosis Quística/terapia , Fibrosis Quística/microbiología , Regulador de Conductancia de Transmembrana de Fibrosis Quística , Pulmón , Antibacterianos/uso terapéuticoRESUMEN
In patients with presumptive tuberculosis (TB) in whom the diagnosis of TB was excluded, understanding the bacterial etiology of lower respiratory tract infections (LRTIs) is important for optimal patient management. A secondary analysis was performed on a cohort of 250 hospitalized patients with symptoms of TB. Bacterial DNA was extracted from sputum samples for Illumina 16S rRNA sequencing to identify bacterial species based on amplicon sequence variant level. The bacterial pathogen most likely to be responsible for the patients' LRTI could only be identified in a minority (6.0%, 13/215) of cases based on 16S rRNA amplicon sequencing: Mycoplasma pneumoniae (n = 7), Bordetella pertussis (n = 2), Acinetobacter baumanii (n = 2), and Pseudomonas aeruginosa (n = 2). Other putative pathogens were present in similar proportions of Xpert Ultra-positive and Xpert Ultra-negative sputum samples. The presence of Streptococcus (pseudo)pneumoniae appeared to increase the odds of radiological abnormalities (aOR 2.5, 95% CI 1.12-6.16) and the presence of S. (pseudo)pneumoniae (aOR 5.31, 95% CI 1.29-26.6) and Moraxella catarrhalis/nonliquefaciens (aOR 12.1, 95% CI 2.67-72.8) increased the odds of 6-month mortality, suggesting that these pathogens might have clinical relevance. M. pneumoniae, B. pertussis, and A. baumanii appeared to be the possible causes of TB-like symptoms. S. (pseudo)pneumoniae and M. catarrhalis/nonliquefaciens also appeared of clinical relevance based on 16S rRNA amplicon sequencing. Further research using tools with higher discriminatory power than 16S rRNA sequencing is required to develop optimal diagnostic and treatment strategies for this population.IMPORTANCEThe objective of this study was to identify possible bacterial lower respiratory tract infection (LRTI) pathogens in hospitalized patients who were initially suspected to have TB but later tested negative using the Xpert Ultra test. Although 16S rRNA was able to identify some less common or difficult-to-culture pathogens such as Mycoplasma pneumoniae and Bordetella pertussis, one of the main findings of the study is that, in contrast to what we had hypothesized, 16S rRNA is not a method that can be used to assist in the management of patients with presumptive TB having a negative Xpert Ultra test. Even though this could be considered a negative finding, we believe it is an important finding to report as it highlights the need for further research using different approaches.
Asunto(s)
Mycobacterium tuberculosis , Infecciones del Sistema Respiratorio , Tuberculosis Pulmonar , Tuberculosis , Humanos , ARN Ribosómico 16S , Tuberculosis Pulmonar/microbiología , Mycobacterium tuberculosis/genética , Rifampin/uso terapéutico , Esputo/microbiología , Sensibilidad y Especificidad , Tuberculosis/tratamiento farmacológico , Infecciones del Sistema Respiratorio/tratamiento farmacológicoRESUMEN
Radiotherapy is a commonly employed treatment for colorectal cancer, yet its radiotoxicity-related impact on healthy tissues raises significant health concerns. This highlights the need to use radioprotective agents to mitigate these side effects. This review presents the current landscape of human translational radiobiology, outlining the limitations of existing models and proposing engineering solutions. We delve into radiotherapy principles, encompassing mechanisms of radiation-induced cell death and its influence on normal and cancerous colorectal cells. Furthermore, we explore the engineering aspects of microphysiological systems to represent radiotherapy-induced gastrointestinal toxicity and how to include the gut microbiota to study its role in treatment failure and success. This review ultimately highlights the main challenges and future pathways in translational research for pelvic radiotherapy-induced toxicity. This is achieved by developing a humanized in vitro model that mimics radiotherapy treatment conditions. An in vitro model should provide in-depth analyses of host-gut microbiota interactions and a deeper understanding of the underlying biological mechanisms of radioprotective food supplements. Additionally, it would be of great value if these models could produce high-throughput data using patient-derived samples to address the lack of human representability to complete clinical trials and improve patients' quality of life.
RESUMEN
A novel strain of the genus Lactobacillus, named AMBV1719T, was isolated from the vagina of a healthy participant in our large-scale citizen science project on the female microbiome, named Isala. Phylogenetic analysis showed that the 16S rRNA gene of AMBV1719T is most similar to that of Lactobacillus taiwanensis with a sequence similarity of 99.873â%. However, a genome-wide comparison using average nucleotide identity (ANI) revealed that isolate AMBV1719T showed the highest ANI with Lactobacillus paragasseri JCM 5343T, with a value of only 88.17â%. This low ANI value with the most closely related strains known to date indicated that AMBV1719T represents a distinct species. This strain has a limited ability to degrade carbon sources compared to Lactobacillus gasseri, indicating its adaptation to the host. Its genome has a length of 2.12 Mb with a G+C content of 34.8 mol%. We thus propose the name Lactobacillus isalae sp. nov. for this novel species, with AMBV1719T (=LMG 32886T=CECT 30756T) as the type strain.
Asunto(s)
Ácidos Grasos , Genes Bacterianos , Humanos , Femenino , Filogenia , ARN Ribosómico 16S/genética , Composición de Base , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , Hibridación de Ácido Nucleico , Análisis de Secuencia de ADN , Ácidos Grasos/química , LactobacillusRESUMEN
AIMS: To test the in vitro probiotic potential and starter culture capacity of lactic acid bacteria (LAB) isolated from Naaqe and Cheka, cereal-based Ethiopian traditional fermented beverages. METHODS AND RESULTS: A total of 44 strains were isolated from spontaneously fermented Ethiopian cereal-based beverages, Naaqe and Cheka with 24 putatively identified as LAB and 14 identified up to the species level. The species Limosilactobacillus fermentum (6/12; 50%) and Weissella confusa (5/12, 41.67%) were the predominant species identified from Naaqe, while the two Cheka isolates were L. fermentum and Pediococcus pentosaceus. Six LAB strains inhibited eight of the nine gastrointestinal indicator key pathogens in Ethiopia, including Escherichia coli, Salmonella enterica subsp. enterica var. Typhimurium, Staphylococcus aureus, Shigella flexneri, and Listeria monocytogenes. Three of the LAB isolates exhibited strain-specific immunostimulation in human monocytes. Based on these probiotic properties and growth, six strains were selected for in situ evaluation in a mock fermentation of Naaqe and Cheka. During primary fermentations, L. fermentum 73B, P. pentosaceus 74D, L. fermentum 44B, W. confusa 44D, L. fermentum 82C, and Weissella cibaria 83E and their combinations demonstrated higher pH-lowering properties and colony-forming unit counts compared to the control spontaneous fermentation. The same pattern was also observed in the secondary mock fermentation by the Naaqe LAB isolates. CONCLUSIONS: In this study, we selected six LAB strains with antipathogenic, immunostimulatory, and starter culture potentials that can be used as autochthonous probiotic starters for Naaqe and Cheka fermentations once their health benefit is ascertained in a clinical trial as a next step.
Asunto(s)
Lactobacillales , Limosilactobacillus fermentum , Probióticos , Humanos , Grano Comestible/microbiología , Bebidas/microbiología , FermentaciónRESUMEN
IMPORTANCE: Plant protection products are essential for ensuring food production, but their use poses a threat to human and environmental health, and their efficacy is decreasing due to the acquisition of resistance by pathogens. Stricter regulations and consumer demand for cleaner produce are driving the search for safer and more sustainable alternatives. Microbial biocontrol agents, such as microorganisms with antifungal activity, have emerged as a promising alternative management strategy, but their commercial use has been limited by poor establishment and spread on crops. This study presents a novel system to overcome these challenges. The biocontrol agent Lactiplantibacillus plantarum AMBP214 was spray-dried and successfully dispersed to strawberry flowers via bumblebees. This is the first report of combining spray-dried, non-spore-forming bacteria with pollinator-dispersal, which scored better than the state-of-the-art in terms of dispersal to the plant (CFU/flower), and resuscitation of the biocontrol agent. Therefore, this new entomovectoring system holds great promise for the use of biocontrol agents for disease management in agriculture.
Asunto(s)
Fragaria , Control Biológico de Vectores , Animales , Abejas , Humanos , Productos Agrícolas , Fragaria/microbiologíaRESUMEN
Understanding the composition and function of the vaginal microbiome is crucial for reproductive and overall health. Here we established the Isala citizen-science project to analyse the vaginal microbiomes of 3,345 women in Belgium (18-98 years) through self-sampling, 16S amplicon sequencing and extensive questionnaires. The overall vaginal microbiome composition was strongly tied to age, childbirth and menstrual cycle phase. Lactobacillus species dominated 78% of the vaginal samples. Specific bacterial taxa also showed to co-occur in modules based on network correlation analysis. Notably, the module containing Lactobacillus crispatus, Lactobacillus jensenii and Limosilactobacillus taxa was positively linked to oestrogen levels and contraceptive use and negatively linked to childbirth and breastfeeding. Other modules, named after abundant taxa (Gardnerella, Prevotella and Bacteroides), correlated with multiple partners, menopause, menstrual hygiene and contraceptive use. With this resource-rich vaginal microbiome map and associated health, life-course, lifestyle and dietary factors, we provide unique data and insights for follow-up clinical and mechanistic research.
Asunto(s)
Higiene , Microbiota , Femenino , Humanos , Menstruación , Vagina/microbiología , AnticonceptivosRESUMEN
Diverse terms have been used in the literature to refer to the health benefits obtained from the administration of non-viable microorganisms or their cell fragments and metabolites. In an effort to provide continuity to this emerging field, the International Scientific Association of Probiotics and Prebiotics (ISAPP) convened a panel of experts to consider this category of substances and adopted the term postbiotic, which they defined as a "preparation of inanimate microorganisms and/or their components that confers a health benefit on the host." This definition does not stipulate any specific health benefit, finished product, target population or regulatory status. In this perspective article, we focused on postbiotics developed for pharmaceutical uses, including medicinal products and medical devices. We address how this field is regulated for products based on inanimate microorganisms, marketing considerations and existing examples of postbiotics products developed as cosmetics for the skin, for vaginal health, and as orally consumed products. We focus on the European Union for regulatory aspects, but also give examples from other geographical areas.
RESUMEN
IMPORTANCE: The salivary microbiome has been proven to play a crucial role in local and systemic diseases. Moreover, the effects of biological and lifestyle factors such as oral hygiene and smoking on this microbial community have already been explored. However, what was not yet well understood was the natural variation of the saliva microbiome in healthy women and how this is associated with specific use of hormonal contraception and with the number of different sexual partners with whom microbiome exchange is expected regularly. In this paper, we characterized the salivary microbiome of 255 healthy women of reproductive age using an in-depth questionnaire and self-sampling kits. Using the large metadata set, we were able to investigate the associations of several host-related and lifestyle variables with the salivary microbiome profiles. Our study shows a high preservation between individuals.
Asunto(s)
Microbiota , Reproducción , Humanos , Femenino , Saliva , Parejas Sexuales , Estado de Salud , ARN Ribosómico 16SRESUMEN
A novel strain of the genus Lactiplantibacillus, named AMBF275T, was isolated from fermented carrot juice, a salted fermented beverage dominated by lactic acid bacteria. The results of phylogenetic analysis indicated that the 16S rRNA gene of AMBF275T is most similar to the 16S rRNA gene of Lactiplantibacillus garii FI11369T with a sequence similarity of 99.4â%. However, a genome-wide comparison using average nucleotide identity (ANI) revealed that AMBF275T and L. garii FI11369T have an ANI of only 82.35â%. ANI values between AMBF275T and other representative strains of species of the genus Lactiplantibacillus from the Genome Taxonomy Database (GTDB) were even lower than this 82.35â%, indicating that AMBF275T represents a distinct species. We thus propose the name Lactiplantibacillus carotarum sp. nov. for this novel species, with AMBF275T (=LMG 32885T, =CECT 30757T) as the type strain.
Asunto(s)
Daucus carota , Análisis de Secuencia de ADN , Filogenia , ARN Ribosómico 16S/genética , Fermentación , Genes Bacterianos , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Hibridación de Ácido Nucleico , Ácidos Grasos/química , Microbiología de AlimentosRESUMEN
BACKGROUND AND AIMS: We aimed to identify mucin-microbiome signatures shaping the tumor microenvironment in gastric adenocarcinomas and clinical outcomes. METHODS: We performed high-throughput profiling of the mucin phenotypes present in 108 gastric adenocarcinomas and 20 functional dyspepsia cases using validated mucin-based RT-qPCRs with subsequent immunohistochemistry validation and correlated the data with clinical outcome parameters. The gastric microbiota was assessed by 16S rRNA gene sequencing, taxonomy, and community composition determined, microbial networks analyzed, and the metagenome inferred in association with mucin phenotypes and expression. RESULTS: Gastric adenocarcinomas with an intestinal mucin environment or high-level MUC13 expression are associated with poor survival. On the contrary, gastric MUC5AC or MUC6 abundance was associated with a more favorable outcome. The oral taxa Neisseria, Prevotella, and Veillonella had centralities in tumors with intestinal and mixed phenotypes and were associated with MUC13 overexpression, highlighting their role as potential drivers in MUC13 signaling in GC. Furthermore, dense bacterial networks were observed in intestinal and mixed mucin phenotype tumors whereas the lowest community complexity was shown in null mucin phenotype tumors due to higher Helicobacter abundance resulting in a more decreased diversity. Enrichment of oral or intestinal microbes was mucin phenotype dependent. More specifically, intestinal mucin phenotype tumors favored the establishment of pro-inflammatory oral taxa forming strong co-occurrence networks. CONCLUSIONS: Our results emphasize key roles for mucins in gastric cancer prognosis and shaping microbial networks in the tumor microenvironment. Specifically, the enriched oral taxa associated with aberrant MUC13 expression can be potential biomarkers in predicting disease outcomes. Video Abstract.