Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Neuron ; 83(5): 1085-97, 2014 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-25189209

RESUMEN

The activity of adult stem cells is regulated by signals emanating from the surrounding tissue. Many niche signals have been identified, but it is unclear how they influence the choice of stem cells to remain quiescent or divide. Here we show that when stem cells of the adult hippocampus receive activating signals, they first induce the expression of the transcription factor Ascl1 and only subsequently exit quiescence. Moreover, lowering Ascl1 expression reduces the proliferation rate of hippocampal stem cells, and inactivating Ascl1 blocks quiescence exit completely, rendering them unresponsive to activating stimuli. Ascl1 promotes the proliferation of hippocampal stem cells by directly regulating the expression of cell-cycle regulatory genes. Ascl1 is similarly required for stem cell activation in the adult subventricular zone. Our results support a model whereby Ascl1 integrates inputs from both stimulatory and inhibitory signals and converts them into a transcriptional program activating adult neural stem cells.


Asunto(s)
Células Madre Adultas/citología , Regulación del Desarrollo de la Expresión Génica/genética , Hipocampo/citología , Neurogénesis/genética , Células Madre Adultas/metabolismo , Factores de Edad , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proliferación Celular , Ventrículos Cerebrales/citología , Transportador 1 de Aminoácidos Excitadores/genética , Transportador 1 de Aminoácidos Excitadores/metabolismo , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Proteína Ácida Fibrilar de la Glía/metabolismo , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/deficiencia , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/genética , Histona Demetilasas con Dominio de Jumonji/metabolismo , Ácido Kaínico/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas de Dominio T Box/metabolismo , Factores de Transcripción p300-CBP/metabolismo
2.
Development ; 135(7): 1271-81, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18287202

RESUMEN

Development of oligodendrocytes, myelin-forming glia in the central nervous system (CNS), proceeds on a protracted schedule. Specification of oligodendrocyte progenitors (OLPs) begins early in development, whereas their terminal differentiation occurs at late embryonic and postnatal periods. How these distinct steps are controlled remains unclear. Our previous study demonstrated an important role of the helix-loop-helix (HLH) transcription factor Ascl1 in early generation of OLPs in the developing spinal cord. Here, we show that Ascl1 is also involved in terminal differentiation of oligodendrocytes late in development. Ascl1-/- mutant mice showed a deficiency in differentiation of myelin-expressing oligodendrocytes at birth. In vitro culture studies demonstrate that the induction and maintenance of co-expression of Olig2 and Nkx2-2 in OLPs, and thyroid hormone-responsive induction of myelin proteins are impaired in Ascl1-/- mutants. Gain-of-function studies further showed that Ascl1 collaborates with Olig2 and Nkx2-2 in promoting differentiation of OLPs into oligodendrocytes in vitro. Overexpression of Ascl1, Olig2 and Nkx2-2 alone stimulated the specification of OLPs, but the combinatorial action of Ascl1 and Olig2 or Nkx2-2 was required for further promoting their differentiation into oligodendrocytes. Thus, Ascl1 regulates multiple aspects of oligodendrocyte development in the spinal cord.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Oligodendroglía/citología , Médula Espinal/embriología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diferenciación Celular , Células Cultivadas , Proteína Homeobox Nkx-2.2 , Proteínas de Homeodominio/metabolismo , Ratones , Ratones Mutantes , Modelos Biológicos , Proteínas del Tejido Nervioso/metabolismo , Factor de Transcripción 2 de los Oligodendrocitos , Ratas , Ratas Sprague-Dawley , Médula Espinal/citología , Médula Espinal/metabolismo , Células Madre/citología , Células Madre/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Pez Cebra
3.
Dev Biol ; 307(2): 421-33, 2007 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-17540357

RESUMEN

The myogenic program is controlled by different groups of transcription factors acting during muscle development, including bHLH muscle regulatory factors (MRFs), the paired factors Pax3 and Pax7 and the homeobox factors Six1 and Six4. This program is critically dependent on MRFs that target downstream muscle-specific genes. We now report the expression of Pitx2 and Pitx3 transcription factors throughout muscle development. Pitx2 is first expressed in muscle progenitor cells of the dermomyotome and myotome. The onset of myoblast differentiation is concomitant with expression of Pitx3; its expression is maintained in all skeletal muscles while Pitx2 expression decreases thereafter. We have generated Pitx3 mutant mice and this deficiency does not significantly perturb muscle development but it is completely compensated by the maintenance of Pitx2 expression in all skeletal muscles. These experiments suggest that Pitx genes are important for myogenesis and that Pitx2 and Pitx3 may have partly redundant roles.


Asunto(s)
Proteínas de Homeodominio/genética , Desarrollo de Músculos/genética , Músculo Esquelético/embriología , Músculo Esquelético/metabolismo , Factores de Transcripción/genética , Animales , Secuencia de Bases , Diferenciación Celular/genética , Cartilla de ADN/genética , Femenino , Regulación del Desarrollo de la Expresión Génica , Hibridación in Situ , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Biológicos , Mioblastos Esqueléticos/citología , Mioblastos Esqueléticos/metabolismo , Embarazo , Factores de Transcripción/deficiencia , Proteína del Homeodomínio PITX2
4.
Dev Biol ; 302(1): 345-55, 2007 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-17026983

RESUMEN

Sonic Hedgehog (Shh) signaling plays a critical role during dorsoventral (DV) patterning of the developing neural tube by modulating the expression of neural patterning genes. Overlapping activator functions of Gli2 and Gli3 have been shown to be required for motoneuron development and correct neural patterning in the ventral spinal cord. However, the role of Gli2 and Gli3 in ventral hindbrain development is unclear. In this paper, we have examined DV patterning of the hindbrain of Shh(-/-), Gli2(-/-) and Gli3(-/-) embryos, and found that the respective role of Gli2 and Gli3 is not only different between the hindbrain and spinal cord, but also at distinct rostrocaudal levels of the hindbrain. Remarkably, the anterior hindbrain of Gli2(-/-) embryos displays ventral patterning defects as severe as those observed in Shh(-/-) embryos suggesting that, unlike in the spinal cord and posterior hindbrain, Gli3 cannot compensate for the loss of Gli2 activator function in Shh-dependent ventral patterning of the anterior hindbrain. Loss of Gli3 also results in a distinct patterning defect in the anterior hindbrain, including dorsal expansion of Nkx6.1 expression. Furthermore, we demonstrate that ventral patterning of rhombomere 4 is less affected by loss of Gli2 function revealing a different requirement for Gli proteins in this rhombomere. Taken together, these observations indicate that Gli2 and Gli3 perform rhombomere-specific function during DV patterning of the hindbrain.


Asunto(s)
Tipificación del Cuerpo , Regulación del Desarrollo de la Expresión Génica , Factores de Transcripción de Tipo Kruppel/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/metabolismo , Rombencéfalo/embriología , Animales , Proteínas Hedgehog/metabolismo , Factores de Transcripción de Tipo Kruppel/genética , Ratones , Ratones Endogámicos , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/genética , Rombencéfalo/citología , Transducción de Señal , Médula Espinal/citología , Médula Espinal/embriología , Proteína Gli2 con Dedos de Zinc , Proteína Gli3 con Dedos de Zinc
5.
Cell ; 123(2): 347-58, 2005 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-16239150

RESUMEN

Rhythmic cardiac contractions depend on the organized propagation of depolarizing and repolarizing wavefronts. Repolarization is spatially heterogeneous and depends largely on gradients of potassium currents. Gradient disruption in heart disease may underlie susceptibility to fatal arrhythmias, but it is not known how this gradient is established. We show that, in mice lacking the homeodomain transcription factor Irx5, the cardiac repolarization gradient is abolished due to increased Kv4.2 potassium-channel expression in endocardial myocardium, resulting in a selective increase of the major cardiac repolarization current, I(to,f), and increased susceptibility to arrhythmias. Myocardial Irx5 is expressed in a gradient opposite that of Kv4.2, and Irx5 represses Kv4.2 expression by recruiting mBop, a cardiac transcriptional repressor. Thus, an Irx5 repressor gradient negatively regulates potassium-channel-gene expression in the heart, forming an inverse I(to,f) gradient that ensures coordinated cardiac repolarization while also preventing arrhythmias.


Asunto(s)
Potenciales de Acción/genética , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Función Ventricular Izquierda/fisiología , Función Ventricular , Potenciales de Acción/fisiología , Animales , Western Blotting , Cruzamientos Genéticos , Perros , Electrocardiografía , Electrofisiología , Endocardio/citología , Endocardio/fisiología , Genes Reporteros , Ventrículos Cardíacos/citología , Heterocigoto , Homocigoto , Inmunohistoquímica , Luciferasas/metabolismo , Masculino , Ratones , Ratones Noqueados , Modelos Biológicos , Miocitos Cardíacos/citología , Miocitos Cardíacos/fisiología , Técnicas de Placa-Clamp , Pericardio/citología , Pericardio/fisiología , Canales de Potasio con Entrada de Voltaje/genética , Canales de Potasio con Entrada de Voltaje/metabolismo , Canales de Potasio con Entrada de Voltaje/fisiología , Pruebas de Precipitina , Proteínas/análisis , ARN Mensajero/análisis
6.
Dev Biol ; 287(1): 48-60, 2005 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-16182275

RESUMEN

In the mouse retina, at least ten distinct types of bipolar interneurons are involved in the transmission of visual signals from photoreceptors to ganglion cells. How bipolar interneuron diversity is generated during retinal development is poorly understood. Here, we show that Irx5, a member of the Iroquois homeobox gene family, is expressed in developing bipolar cells starting at postnatal day 5 and is localized to a subset of cone bipolar cells in the mature mouse retina. In Irx5-deficient mice, defects were observed in the expression of some, but not all, immunohistological markers that define mature Type 2 and Type 3 OFF cone bipolar cells, indicating a role for Irx5 in bipolar cell differentiation. The differentiation of these two bipolar cell types has previously been shown to require the homeodomain-CVC transcription factor, Vsx1. However, the defects observed in Irx5-deficient retinas do not coincide with a reduction of Vsx1 expression, and conversely, the expression of Irx5 in cone bipolar cells does not require the presence of a functional Vsx1 allele. These results indicate that there are at least two distinct genetic pathways (Irx5-dependent and Vsx1-dependent) regulating the development of Type 2 and Type 3 cone bipolar cells.


Asunto(s)
Diferenciación Celular/genética , Genes Homeobox/fisiología , Proteínas de Homeodominio/fisiología , Retina/embriología , Células Fotorreceptoras Retinianas Conos/citología , Células Fotorreceptoras Retinianas Conos/fisiología , Factores de Transcripción/fisiología , Animales , Diferenciación Celular/fisiología , Proteínas del Ojo/fisiología , Proteínas de Homeodominio/genética , Ratones , Ratones Noqueados , Neuroglía/fisiología , Factores de Transcripción/genética
7.
Mol Cell Biol ; 23(22): 8216-25, 2003 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-14585979

RESUMEN

The Iroquois homeobox (Irx) genes have been implicated in the specification and patterning of several organs in Drosophila and several vertebrate species. Misexpression studies of chick, Xenopus, and zebra fish embryos have demonstrated that Irx genes are involved in the specification of the midbrain-hindbrain boundary. All six murine Irx genes are expressed in the developing heart, suggesting that they might possess distinct functions during heart development, and a role for Irx4 in normal heart development has been recently demonstrated by gene-targeting experiments. Here we describe the generation and phenotypic analysis of an Irx2-deficient mouse strain. By targeted insertion of a lacZ reporter gene into the Irx2 locus, we show that lacZ expression reproduces most of the endogenous Irx2 expression pattern. Despite the dynamic expression of Irx2 in the developing heart, nervous system, and other organs, Irx2-deficient mice are viable, are fertile, and appear to be normal. Although chick Irx2 has been implicated in the development of the midbrain-hindbrain region, we show that Irx2-deficient mice develop a normal midbrain-hindbrain boundary. Furthermore, Irx2-deficient mice have normal cardiac morphology and function. Functional compensation by other Irx genes might account for the absence of a phenotype in Irx2-deficient mice. Further studies of mutant mice of other Irx genes as well as compound mutant mice will be necessary to uncover the functional roles of these evolutionarily conserved transcriptional regulators in development and disease.


Asunto(s)
Corazón/embriología , Proteínas de Homeodominio/fisiología , Mesencéfalo/embriología , Rombencéfalo/embriología , Factores de Transcripción/fisiología , Animales , Secuencia de Bases , Tipificación del Cuerpo/genética , Tipificación del Cuerpo/fisiología , ADN/genética , Desarrollo Embrionario y Fetal/genética , Desarrollo Embrionario y Fetal/fisiología , Femenino , Regulación del Desarrollo de la Expresión Génica , Marcación de Gen , Genes Reporteros , Proteínas de Homeodominio/genética , Hibridación in Situ , Operón Lac , Masculino , Ratones , Ratones Noqueados , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factores de Transcripción/deficiencia , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...