Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Neurol Genet ; 7(3): e590, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34235269

RESUMEN

OBJECTIVE: To determine whether a new indel mutation in the dimerization domain of filamin C (FLNc) causes a hereditary myopathy with protein aggregation in muscle fibers, we clinically and molecularly studied a German family with autosomal dominant myofibrillar myopathy (MFM). METHODS: We performed mutational analysis in 3 generations, muscle histopathology, and proteomic studies of IM protein aggregates. Functional consequences of the FLNC mutation were investigated with interaction and transfection studies and biophysics molecular analysis. RESULTS: Eight patients revealed clinical features of slowly progressive proximal weakness associated with a heterozygous c.8025_8030delCAAGACinsA (p.K2676Pfs*3) mutation in FLNC. Two patients exhibited a mild cardiomyopathy. MRI of skeletal muscle revealed lipomatous changes typical for MFM with FLNC mutations. Muscle biopsies showed characteristic MFM findings with protein aggregation and lesion formation. The proteomic profile of aggregates was specific for MFM-filaminopathy and indicated activation of the ubiquitin-proteasome system (UPS) and autophagic pathways. Functional studies revealed that mutant FLNc is misfolded, unstable, and incapable of forming homodimers and heterodimers with wild-type FLNc. CONCLUSIONS: This new MFM-filaminopathy family confirms that expression of mutant FLNC leads to an adult-onset muscle phenotype with intracellular protein accumulation. Mutant FLNc protein is biochemically compromised and leads to dysregulation of protein quality control mechanisms. Proteomic analysis of MFM protein aggregates is a potent method to identify disease-relevant proteins, differentiate MFM subtypes, evaluate the relevance of gene variants, and identify novel MFM candidate genes.

2.
Commun Biol ; 3(1): 253, 2020 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-32444788

RESUMEN

The PI3K/Akt pathway promotes skeletal muscle growth and myogenic differentiation. Although its importance in skeletal muscle biology is well documented, many of its substrates remain to be identified. We here studied PI3K/Akt signaling in contracting skeletal muscle cells by quantitative phosphoproteomics. We identified the extended basophilic phosphosite motif RxRxxp[S/T]xxp[S/T] in various proteins including filamin-C (FLNc). Importantly, this extended motif, located in a unique insert in Ig-like domain 20 of FLNc, is doubly phosphorylated. The protein kinases responsible for this dual-site phosphorylation are Akt and PKCα. Proximity proteomics and interaction analysis identified filamin A-interacting protein 1 (FILIP1) as direct FLNc binding partner. FILIP1 binding induces filamin degradation, thereby negatively regulating its function. Here, dual-site phosphorylation of FLNc not only reduces FILIP1 binding, providing a mechanism to shield FLNc from FILIP1-mediated degradation, but also enables fast dynamics of FLNc necessary for its function as signaling adaptor in cross-striated muscle cells.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas del Citoesqueleto/metabolismo , Filaminas/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Fosfoproteínas/metabolismo , Proteoma/metabolismo , Secuencias de Aminoácidos , Células HEK293 , Humanos , Desarrollo de Músculos , Fibras Musculares Esqueléticas/citología , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Unión Proteica , Proteolisis , Proteoma/análisis , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal
3.
Mol Cell Proteomics ; 16(3): 346-367, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28028127

RESUMEN

The Z-disc is a protein-rich structure critically important for the development and integrity of myofibrils, which are the contractile organelles of cross-striated muscle cells. We here used mouse C2C12 myoblast, which were differentiated into myotubes, followed by electrical pulse stimulation (EPS) to generate contracting myotubes comprising mature Z-discs. Using a quantitative proteomics approach, we found significant changes in the relative abundance of 387 proteins in myoblasts versus differentiated myotubes, reflecting the drastic phenotypic conversion of these cells during myogenesis. Interestingly, EPS of differentiated myotubes to induce Z-disc assembly and maturation resulted in increased levels of proteins involved in ATP synthesis, presumably to fulfill the higher energy demand of contracting myotubes. Because an important role of the Z-disc for signal integration and transduction was recently suggested, its precise phosphorylation landscape further warranted in-depth analysis. We therefore established, by global phosphoproteomics of EPS-treated contracting myotubes, a comprehensive site-resolved protein phosphorylation map of the Z-disc and found that it is a phosphorylation hotspot in skeletal myocytes, underscoring its functions in signaling and disease-related processes. In an illustrative fashion, we analyzed the actin-binding multiadaptor protein filamin C (FLNc), which is essential for Z-disc assembly and maintenance, and found that PKCα phosphorylation at distinct serine residues in its hinge 2 region prevents its cleavage at an adjacent tyrosine residue by calpain 1. Fluorescence recovery after photobleaching experiments indicated that this phosphorylation modulates FLNc dynamics. Moreover, FLNc lacking the cleaved Ig-like domain 24 exhibited remarkably fast kinetics and exceedingly high mobility. Our data set provides research community resource for further identification of kinase-mediated changes in myofibrillar protein interactions, kinetics, and mobility that will greatly advance our understanding of Z-disc dynamics and signaling.


Asunto(s)
Fibras Musculares Esqueléticas/metabolismo , Mioblastos/citología , Proteína Quinasa C/metabolismo , Proteómica/métodos , Sarcómeros/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Diferenciación Celular , Línea Celular , Estimulación Eléctrica , Filaminas/metabolismo , Ratones , Mioblastos/metabolismo , Fosforilación , Mapas de Interacción de Proteínas
4.
Hum Mol Genet ; 25(13): 2776-2788, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27206985

RESUMEN

Filamin c (FLNc) is a large dimeric actin-binding protein located at premyofibrils, myofibrillar Z-discs and myofibrillar attachment sites of striated muscle cells, where it is involved in mechanical stabilization, mechanosensation and intracellular signaling. Mutations in the gene encoding FLNc give rise to skeletal muscle diseases and cardiomyopathies. Here, we demonstrate by fluorescence recovery after photobleaching that a large fraction of FLNc is highly mobile in cultured neonatal mouse cardiomyocytes and in cardiac and skeletal muscles of live transgenic zebrafish embryos. Analysis of cardiomyocytes from Xirp1 and Xirp2 deficient animals indicates that both Xin actin-binding repeat-containing proteins stabilize FLNc selectively in premyofibrils. Using a novel assay to analyze myofibrillar microdamage and subsequent repair in cultured contracting cardiomyocytes by live cell imaging, we demonstrate that repair of damaged myofibrils is achieved within only 4 h, even in the absence of de novo protein synthesis. FLNc is immediately recruited to these sarcomeric lesions together with its binding partner aciculin and precedes detectable assembly of filamentous actin and recruitment of other myofibrillar proteins. These data disclose an unprecedented degree of flexibility of the almost crystalline contractile machinery and imply FLNc as a dynamic signaling hub, rather than a primarily structural protein. Our myofibrillar damage/repair model illustrates how (cardio)myocytes are kept functional in their mechanically and metabolically strained environment. Our results help to better understand the pathomechanisms and pathophysiology of early stages of FLNc-related myofibrillar myopathy and skeletal and cardiac diseases preceding pathological protein aggregation.


Asunto(s)
Filaminas/genética , Filaminas/metabolismo , Miofibrillas/patología , Actinas/metabolismo , Animales , Técnicas de Cultivo de Célula , Proteínas del Citoesqueleto/genética , Proteínas de Unión al ADN/genética , Filaminas/fisiología , Humanos , Ratones , Músculo Esquelético/metabolismo , Enfermedades Musculares/genética , Mutación , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Proteínas Nucleares/genética , Unión Proteica
5.
Mol Cell Proteomics ; 12(1): 215-27, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23115302

RESUMEN

Filaminopathy is a subtype of myofibrillar myopathy caused by mutations in FLNC, the gene encoding filamin C, and histologically characterized by pathologic accumulation of several proteins within skeletal muscle fibers. With the aim to get new insights in aggregate composition, we collected aggregates and control tissue from skeletal muscle biopsies of six myofibrillar myopathy patients harboring three different FLNC mutations by laser microdissection and analyzed the samples by a label-free mass spectrometry approach. A total of 390 proteins were identified, and 31 of those showed significantly higher spectral indices in aggregates compared with patient controls with a ratio >1.8. These proteins included filamin C, other known myofibrillar myopathy associated proteins, and a striking number of filamin C binding partners. Across the patients the patterns were extremely homogeneous. Xin actin-binding repeat containing protein 2, heat shock protein 27, nebulin-related-anchoring protein, and Rab35 could be verified as new filaminopathy biomarker candidates. In addition, further experiments identified heat shock protein 27 and Xin actin-binding repeat containing protein 2 as novel filamin C interaction partners and we could show that Xin actin-binding repeat containing protein 2 and the known interaction partner Xin actin-binding repeat containing protein 1 simultaneously associate with filamin C. Ten proteins showed significant lower spectral indices in aggregate samples compared with patient controls (ratio <0.56) including M-band proteins myomesin-1 and myomesin-2. Proteomic findings were consistent with previous and novel immunolocalization data. Our findings suggest that aggregates in filaminopathy have a largely organized structure of proteins also interacting under physiological conditions. Different filamin C mutations seem to lead to almost identical aggregate compositions. The finding that filamin C was detected as highly abundant protein in aggregates in filaminopathy indicates that our proteomic approach may be suitable to identify new candidate genes among the many MFM patients with so far unknown mutation.


Asunto(s)
Proteínas Contráctiles/genética , Proteínas de Microfilamentos/genética , Fibras Musculares Esqueléticas/metabolismo , Distrofias Musculares/metabolismo , Proteoma/análisis , Adulto , Biomarcadores de Tumor/análisis , Proteínas de Unión al ADN/análisis , Femenino , Filaminas , Proteínas de Choque Térmico HSP27/análisis , Proteínas de Choque Térmico , Humanos , Proteínas con Dominio LIM/análisis , Masculino , Espectrometría de Masas , Persona de Mediana Edad , Chaperonas Moleculares , Proteínas Musculares/análisis , Músculo Esquelético/metabolismo , Distrofias Musculares/etiología , Distrofias Musculares/genética , Mutación , Proteínas Nucleares/análisis , Proteómica , Proteínas de Unión al GTP rab/análisis
6.
Brain ; 135(Pt 9): 2642-60, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22961544

RESUMEN

Mutations in FLNC cause two distinct types of myopathy. Disease associated with mutations in filamin C rod domain leading to expression of a toxic protein presents with progressive proximal muscle weakness and shows focal destructive lesions of polymorphous aggregates containing desmin, myotilin and other proteins in the affected myofibres; these features correspond to the profile of myofibrillar myopathy. The second variant associated with mutations in the actin-binding domain of filamin C is characterized by weakness of distal muscles and morphologically by non-specific myopathic features. A frameshift mutation in the filamin C rod domain causing haploinsufficiency was also found responsible for distal myopathy with some myofibrillar changes but no protein aggregation typical of myofibrillar myopathies. Controversial data accumulating in the literature require re-evaluation and comparative analysis of phenotypes associated with the position of the FLNC mutation and investigation of the underlying disease mechanisms. This is relevant and necessary for the refinement of diagnostic criteria and developing therapeutic approaches. We identified a p.W2710X mutation in families originating from ethnically diverse populations and re-evaluated a family with a p.V930_T933del mutation. Analysis of the expanded database allows us to refine clinical and myopathological characteristics of myofibrillar myopathy caused by mutations in the rod domain of filamin C. Biophysical and biochemical studies indicate that certain pathogenic mutations in FLNC cause protein misfolding, which triggers aggregation of the mutant filamin C protein and subsequently involves several other proteins. Immunofluorescence analyses using markers for the ubiquitin-proteasome system and autophagy reveal that the affected muscle fibres react to protein aggregate formation with a highly increased expression of chaperones and proteins involved in proteasomal protein degradation and autophagy. However, there is a noticeably diminished efficiency of both the ubiquitin-proteasome system and autophagy that impairs the muscle capacity to prevent the formation or mediate the degradation of aggregates. Transfection studies of cultured muscle cells imitate events observed in the patient's affected muscle and therefore provide a helpful model for testing future therapeutic strategies.


Asunto(s)
Proteínas Contráctiles/metabolismo , Proteínas de Microfilamentos/metabolismo , Músculo Esquelético/metabolismo , Distrofias Musculares/metabolismo , Mutación , Fenotipo , Actinas/metabolismo , Adulto , Proteínas Contráctiles/genética , Progresión de la Enfermedad , Femenino , Filaminas , Proteínas de Choque Térmico/metabolismo , Humanos , Masculino , Proteínas de Microfilamentos/genética , Persona de Mediana Edad , Músculo Esquelético/patología , Distrofias Musculares/genética , Distrofias Musculares/patología , Linaje , Unión Proteica , Proteolisis , Ubiquitinación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...