Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Chem Neurosci ; 15(3): 645-655, 2024 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-38275568

RESUMEN

In recent years, there has been growing interest in the potential therapeutic use of inhibitors of adenosine A2A receptors (A2AR) for the treatment of neurodegenerative diseases and cancer. Nevertheless, the widespread expression of A2AR throughout the body emphasizes the importance of temporally and spatially selective ligands. Photopharmacology is an emerging strategy that utilizes photosensitive ligands to attain high spatiotemporal precision and regulate the function of biomolecules using light. In this study, we combined photochemistry and cellular and in vivo photopharmacology to investigate the light sensitivity of the FDA-approved antagonist istradefylline and its potential use as an A2AR photopharmacological tool. Our findings reveal that istradefylline exhibits rapid trans-to-cis isomerization under near-UV light, and prolonged exposure results in the formation of photocycloaddition products. We demonstrate that exposure to UV light triggers a time-dependent decrease in the antagonistic activity of istradefylline in A2AR-expressing cells and enables real-time optical control of A2AR signaling in living cells and zebrafish. Together, these data demonstrate that istradefylline is a photoinactivatable A2AR antagonist and that this property can be utilized to perform photopharmacological experiments in living cells and animals.


Asunto(s)
Receptor de Adenosina A2A , Pez Cebra , Animales , Receptor de Adenosina A2A/metabolismo , Pez Cebra/metabolismo , Purinas/farmacología , Transducción de Señal , Antagonistas del Receptor de Adenosina A2/uso terapéutico
2.
Cell Res ; 33(10): 735-736, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37402897
3.
ACS Chem Biol ; 17(10): 2744-2752, 2022 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-36149353

RESUMEN

Recently determined structures of class C G protein-coupled receptors (GPCRs) revealed the location of allosteric binding sites and opened new opportunities for the discovery of novel modulators. In this work, molecular docking screens for allosteric modulators targeting the metabotropic glutamate receptor 5 (mGlu5) were performed. The mGlu5 receptor is activated by the main excitatory neurotransmitter of the nervous central system, L-glutamate, and mGlu5 receptor activity can be allosterically modulated by negative or positive allosteric modulators. The mGlu5 receptor is a promising target for the treatment of psychiatric and neurodegenerative diseases, and several allosteric modulators of this GPCR have been evaluated in clinical trials. Chemical libraries containing fragment- (1.6 million molecules) and lead-like (4.6 million molecules) compounds were docked to an allosteric binding site of mGlu5 identified in X-ray crystal structures. Among the top-ranked compounds, 59 fragments and 59 lead-like compounds were selected for experimental evaluation. Of these, four fragment- and seven lead-like compounds were confirmed to bind to the allosteric site with affinities ranging from 0.43 to 8.6 µM, corresponding to a hit rate of 9%. The four compounds with the highest affinities were demonstrated to be negative allosteric modulators of mGlu5 signaling in functional assays. The results demonstrate that virtual screens of fragment- and lead-like chemical libraries have complementary advantages and illustrate how access to high-resolution structures of GPCRs in complex with allosteric modulators can accelerate lead discovery.


Asunto(s)
Receptor del Glutamato Metabotropico 5 , Bibliotecas de Moléculas Pequeñas , Receptor del Glutamato Metabotropico 5/metabolismo , Regulación Alostérica , Simulación del Acoplamiento Molecular , Bibliotecas de Moléculas Pequeñas/farmacología , Ligandos , Ácido Glutámico , Sitio Alostérico , Receptores Acoplados a Proteínas G
4.
Proc Natl Acad Sci U S A ; 119(32): e2116289119, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35917342

RESUMEN

Glioblastoma (GBM) is an aggressive malignant primary brain tumor with limited therapeutic options. We show that the angiotensin II (AngII) type 2 receptor (AT2R) is a therapeutic target for GBM and that AngII, endogenously produced in GBM cells, promotes proliferation through AT2R. We repurposed EMA401, an AT2R antagonist originally developed as a peripherally restricted analgesic, for GBM and showed that it inhibits the proliferation of AT2R-expressing GBM spheroids and blocks their invasiveness and angiogenic capacity. The crystal structure of AT2R bound to EMA401 was determined and revealed the receptor to be in an active-like conformation with helix-VIII blocking G-protein or ß-arrestin recruitment. The architecture and interactions of EMA401 in AT2R differ drastically from complexes of AT2R with other relevant compounds. To enhance central nervous system (CNS) penetration of EMA401, we exploited the crystal structure to design an angiopep-2-tethered EMA401 derivative, A3E. A3E exhibited enhanced CNS penetration, leading to reduced tumor volume, inhibition of proliferation, and increased levels of apoptosis in an orthotopic xenograft model of GBM.


Asunto(s)
Bloqueadores del Receptor Tipo 2 de Angiotensina II , Compuestos de Bencidrilo , Neoplasias Encefálicas , Reposicionamiento de Medicamentos , Glioblastoma , Isoquinolinas , Receptor de Angiotensina Tipo 2 , Analgésicos/farmacología , Angiotensina II/química , Angiotensina II/farmacología , Bloqueadores del Receptor Tipo 2 de Angiotensina II/uso terapéutico , Apoptosis , Compuestos de Bencidrilo/química , Compuestos de Bencidrilo/farmacología , Compuestos de Bencidrilo/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Glioblastoma/tratamiento farmacológico , Humanos , Isoquinolinas/química , Isoquinolinas/farmacología , Isoquinolinas/uso terapéutico , Conformación Proteica en Hélice alfa , Receptor de Angiotensina Tipo 2/química , Receptor de Angiotensina Tipo 2/metabolismo , Carga Tumoral/efectos de los fármacos
5.
Cell Rep ; 36(9): 109648, 2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34469715

RESUMEN

Metabotropic glutamate receptors (mGluRs) are dimeric G-protein-coupled receptors activated by the main excitatory neurotransmitter, L-glutamate. mGluR activation by agonists binding in the venus flytrap domain is regulated by positive (PAM) or negative (NAM) allosteric modulators binding to the 7-transmembrane domain (7TM). We report the cryo-electron microscopy structures of fully inactive and intermediate-active conformations of mGlu5 receptor bound to an antagonist and a NAM or an agonist and a PAM, respectively, as well as the crystal structure of the 7TM bound to a photoswitchable NAM. The agonist induces a large movement between the subunits, bringing the 7TMs together and stabilizing a 7TM conformation structurally similar to the inactive state. Using functional approaches, we demonstrate that the PAM stabilizes a 7TM active conformation independent of the conformational changes induced by agonists, representing an alternative mode of mGlu activation. These findings provide a structural basis for different mGluR activation modes.


Asunto(s)
Agonistas de Aminoácidos Excitadores/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Receptor del Glutamato Metabotropico 5/agonistas , Receptor del Glutamato Metabotropico 5/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Microscopía por Crioelectrón , Cristalografía por Rayos X , Agonistas de Aminoácidos Excitadores/metabolismo , Antagonistas de Aminoácidos Excitadores/metabolismo , Células HEK293 , Humanos , Modelos Moleculares , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estabilidad Proteica , Subunidades de Proteína , Receptor del Glutamato Metabotropico 5/metabolismo , Receptor del Glutamato Metabotropico 5/ultraestructura , Relación Estructura-Actividad
6.
Biol Aujourdhui ; 215(3-4): 85-94, 2021.
Artículo en Francés | MEDLINE | ID: mdl-35275053

RESUMEN

Class C GPCRs, that include metabotropic glutamate receptors (mGlu), taste receptors, GABAB receptor and Calcium-sensing receptor, are unusual in terms of their molecular architecture and allosteric regulation. They all form obligatory dimers, dimerization being fundamental for their function. More specifically, the mGlu are activated by the main excitatory neurotransmitter, L-glutamate. mGlu activation by glutamate binding in the venus flytrap domain (VFT) triggers conformational changes that are transmitted, through the Cystein-Rich Domain (CRD), to the conserved fold of 7 transmembrane helices (7TM), that couples to intracellular G protein. mGlu activity can also be allosterically modulated by positive (PAM) or negative (NAM) allosteric modulators binding to the 7TM. Recent progress in cryo-electron microscopy (cryoEM) has allowed unprecedented advances in deciphering the structural and molecular basis of their activation mechanism. The agonist induces a large movement between the subunits, bringing the 7TMs together and stabilizing a 7TM conformation structurally similar to the inactive state. The diversity of inactive conformations for the class C was unexpected but allows PAM stabilising a 7TM active conformation independent of the conformational changes induced by agonists, representing an alternative mode of mGlu activation. Here we present and discuss recent structural characterisation of mGlu receptors, highlighting findings that make the class C of GPCR unique. Understanding the structural basis of mGlu dimer signaling represents a landmark achievement and paves the way for structural investigation of GPCR dimer signaling in general. Structural information will open new avenues for structure-based drug design.


Title: Les avancées récentes dans le domaine de la biologie structurale des récepteurs couplés aux protéines G de la classe C : Le récepteur métabotropique du glutamate 5. Abstract: La classe C des Récepteurs Couplés aux Protéines G (RCPG) comprend plusieurs membres aux fonctions physiologiques importantes comme par exemple les récepteurs des principaux neurotransmetteurs excitateurs (glutamate) et inhibiteurs (GABA) du système nerveux, les récepteurs des goûts umami et sucré et les récepteurs sensibles au calcium. Ces récepteurs possèdent une architecture moléculaire particulière, caractérisée par la présence d'un large domaine extracellulaire (ECD) relié à un domaine membranaire composé de 7 hélices transmembranaires (7TM). De plus, ils forment tous des dimères obligatoires, la dimérisation étant fondamentale pour leur fonction. La fixation d'agoniste dans l'ECD induit l'activation du récepteur. L'activité des agonistes peut être modulée de manière allostérique par des modulateurs positifs (PAM) ou négatifs (NAM), se liant au domaine 7TM. Il est important de comprendre comment les changements de conformation induits par la liaison des agonistes au sein du domaine extracellulaire sont transmis au domaine transmembranaire mais aussi de comprendre les bases structurales et moléculaires de la régulation allostérique des récepteurs de la classe C. Les progrès récents de la microscopie électronique en conditions cryogéniques (cryoEM) ont permis des avancées sans précédent dans le décryptage des bases structurelles et moléculaires des mécanismes d'activation des RCPG de classe C, et notamment du récepteur métabotropique du glutamate de type 5 (mGlu5). Le glutamate entraîne une fermeture et un changement d'orientation des domaines extracellulaires qui induit un mouvement important entre les sous-unités, rapprochant les 7TM et stabilisant la conformation active du récepteur. La diversité de conformations inactives pour les récepteurs de la classe C était inattendue mais propice à une activation possible par des PAM. Ces derniers stabilisent une conformation active des 7TM, indépendante des changements conformationnels induits par les agonistes, représentant un mode alternatif d'activation des récepteurs mGlu. Nous présentons et discutons ici les caractérisations structurales récentes des récepteurs de classe C, en soulignant les résultats qui rendent cette famille de récepteurs unique. La compréhension de la base structurelle de la signalisation des dimères de mGlu représente une réalisation historique et ouvre la voie à l'analyse de la signalisation des dimères de RCPG en général. Ces analyses structurales devraient également ouvrir de nouvelles voies pour la conception de médicaments ciblant cette famille de récepteurs qui sont aussi des cibles thérapeutiques.


Asunto(s)
Receptor del Glutamato Metabotropico 5 , Receptores Acoplados a Proteínas G , Regulación Alostérica , Microscopía por Crioelectrón , Humanos , Receptor del Glutamato Metabotropico 5/química , Receptor del Glutamato Metabotropico 5/metabolismo , Receptor del Glutamato Metabotropico 5/ultraestructura , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/clasificación , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/ultraestructura
8.
Anal Bioanal Chem ; 412(22): 5525-5535, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32564119

RESUMEN

Mass spectrometry (MS) binding assays are a label-free alternative to radioligand or fluorescence binding assays, so the readout is based on direct mass spectrometric detection of the test ligand. The study presented here describes the development and validation of a highly sensitive, rapid, and robust MS binding assay for the quantification of the binding of the metabotropic glutamate 5 (mGlu5) negative allosteric modulator (NAM), MPEP (2-methyl-6-phenylethynylpyridine) at the mGlu5 allosteric binding site. The LC-ESI-MS/MS (liquid chromatography-electrospray ionization-tandem mass spectrometric) analytical method was established and validated with a deuterated analogue of MPEP as an internal standard. The developed MS binding assay described here allowed for the determination of MS binding affinity estimates that were in agreement with affinity estimates obtained from a tritiated MPEP radioligand saturation binding assay, indicating the suitability of this methodology for determining affinity estimates for compounds that target mGlu5 allosteric binding sites. Graphical abstract.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Receptor del Glutamato Metabotropico 5/metabolismo , Espectrometría de Masa por Ionización de Electrospray/métodos , Espectrometría de Masas en Tándem/métodos , Sitio Alostérico , Células HEK293 , Humanos , Ligandos , Límite de Detección , Unión Proteica , Ensayo de Unión Radioligante , Reproducibilidad de los Resultados
9.
J Mol Cell Cardiol ; 143: 51-62, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32251670

RESUMEN

AIMS: During embryogenesis, the onset of circulatory blood flow generates a variety of hemodynamic forces which reciprocally induce changes in cardiovascular development and performance. It has been known for some time that these forces can be detected by as yet unknown mechanosensory systems which in turn promote cardiogenic events such as outflow tract and aortic valve development. PIEZO1 is a mechanosensitive ion channel present in endothelial cells where it serves to detect hemodynamic forces making it an ideal candidate to play a role during cardiac development. We sought to determine whether PIEZO1 is required for outflow tract and aortic valve development. METHODS AND RESULTS: By analysing heart development in zebrafish we have determined that piezo1 is expressed in the developing outflow tract where it serves to detect hemodynamic forces. Consequently, disrupting Piezo1 signalling leads to defective outflow tract and aortic valve development and indicates this gene may be involved in the etiology of congenital heart diseases. Based on these findings, we analysed genomic data generated from patients who suffer from left ventricular outflow tract obstructions (LVOTO) and identified 3 probands who each harboured potentially pathogenic variants in PIEZO1. Subsequent in vitro and in vivo assays indicates that these variants behave as dominant negatives leading to an inhibition of normal PIEZO1 mechanosensory activity. Expressing these dominant negative PIEZO1 variants in zebrafish endothelium leads to defective aortic valve development. CONCLUSION: These data indicate that the mechanosensitive ion channel piezo1 is required for outflow tract and aortic valve development.


Asunto(s)
Válvula Aórtica/embriología , Hemodinámica , Canales Iónicos/genética , Organogénesis/genética , Proteínas de Pez Cebra/genética , Alelos , Secuencia de Aminoácidos , Animales , Técnica del Anticuerpo Fluorescente , Expresión Génica , Técnicas de Silenciamiento del Gen , Genes Reporteros , Humanos , Canales Iónicos/química , Canales Iónicos/metabolismo , Modelos Moleculares , Mutación , Conformación Proteica , Proteínas de Pez Cebra/química , Proteínas de Pez Cebra/metabolismo
10.
Sci Rep ; 8(1): 4407, 2018 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-29535347

RESUMEN

The metabotropic glutamate (mGlu) receptors are class C G protein-coupled receptors (GPCRs) that modulate synaptic activity and plasticity throughout the mammalian brain. Signal transduction is initiated by glutamate binding to the venus flytrap domains (VFT), which initiates a conformational change that is transmitted to the conserved heptahelical domains (7TM) and results ultimately in the activation of intracellular G proteins. While both mGlu1 and mGlu5 activate Gαq G-proteins, they also increase intracellular cAMP concentration through an unknown mechanism. To study directly the G protein coupling properties of the human mGlu5 receptor homodimer, we purified the full-length receptor, which required careful optimisation of the expression, N-glycosylation and purification. We successfully purified functional mGlu5 that activated the heterotrimeric G protein Gq. The high-affinity agonist-PAM VU0424465 also activated the purified receptor in the absence of an orthosteric agonist. In addition, it was found that purified mGlu5 was capable of activating the G protein Gs either upon stimulation with VU0424465 or glutamate, although the later induced a much weaker response. Our findings provide important mechanistic insights into mGlu5 G protein-dependent activity and selectivity.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gs/metabolismo , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Receptor del Glutamato Metabotropico 5/metabolismo , Animales , Línea Celular , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/química , Subunidades alfa de la Proteína de Unión al GTP Gs/química , Glicosilación , Proteínas de Unión al GTP Heterotriméricas/química , Humanos , Modelos Moleculares , Mutación , Unión Proteica , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Estabilidad Proteica , Receptor del Glutamato Metabotropico 5/química , Receptor del Glutamato Metabotropico 5/aislamiento & purificación , Solubilidad , Relación Estructura-Actividad
11.
Toxins (Basel) ; 9(7)2017 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-28718822

RESUMEN

Mycolactone, a polyketide molecule produced by Mycobacterium ulcerans, is the etiological agent of Buruli ulcer. This lipid toxin is endowed with pleiotropic effects, presents cytotoxic effects at high doses, and notably plays a pivotal role in host response upon colonization by the bacillus. Most remarkably, mycolactone displays intriguing analgesic capabilities: the toxin suppresses or alleviates the pain of the skin lesions it inflicts. We demonstrated that the analgesic capability of mycolactone was not attributable to nerve damage, but instead resulted from the triggering of a cellular pathway targeting AT2 receptors (angiotensin II type 2 receptors; AT2R), and leading to potassium-dependent hyperpolarization. This demonstration paves the way to new nature-inspired analgesic protocols. In this direction, we assess here the hyperpolarizing properties of mycolactone on nociceptive neurons. We developed a dedicated medium-throughput assay based on membrane potential changes, and visualized by confocal microscopy of bis-oxonol-loaded Dorsal Root Ganglion (DRG) neurons. We demonstrate that mycolactone at non-cytotoxic doses triggers the hyperpolarization of DRG neurons through AT2R, with this action being not affected by known ligands of AT2R. This result points towards novel AT2R-dependent signaling pathways in DRG neurons underlying the analgesic effect of mycolactone, with the perspective for the development of new types of nature-inspired analgesics.


Asunto(s)
Analgésicos/farmacología , Toxinas Bacterianas/farmacología , Macrólidos/farmacología , Neuronas/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Ganglios Espinales/citología , Potenciales de la Membrana/efectos de los fármacos , Neuronas/metabolismo , Neuronas/fisiología , Receptor de Angiotensina Tipo 2/metabolismo
12.
Front Pharmacol ; 8: 898, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29311917

RESUMEN

Adenosine receptors (ARs) comprise the P1 class of purinergic receptors and belong to the largest family of integral membrane proteins in the human genome, the G protein-coupled receptors (GPCRs). ARs are classified into four subtypes, A1, A2A, A2B, and A3, which are all activated by extracellular adenosine, and play central roles in a broad range of physiological processes, including sleep regulation, angiogenesis and modulation of the immune system. ARs are potential therapeutic targets in a variety of pathophysiological conditions, including sleep disorders, cancer, and dementia, which has made them important targets for structural biology. Over a decade of research and innovation has culminated with the publication of more than 30 crystal structures of the human adenosine A2A receptor (A2AR), making it one of the best structurally characterized GPCRs at the atomic level. In this review we analyze the structural data reported for A2AR that described for the first time the binding of mode of antagonists, including newly developed drug candidates, synthetic and endogenous agonists, sodium ions and an engineered G protein. These structures have revealed the key conformational changes induced upon agonist and G protein binding that are central to signal transduction by A2AR, and have highlighted both similarities and differences in the activation mechanism of this receptor compared to other class A GPCRs. Finally, comparison of A2AR with the recently solved structures of A1R has provided the first structural insight into the molecular determinants of ligand binding specificity in different AR subtypes.

13.
Nature ; 536(7617): 484-7, 2016 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-27525504

RESUMEN

Class A G-protein-coupled receptors (GPCRs) are a large family of membrane proteins that mediate a wide variety of physiological functions, including vision, neurotransmission and immune responses. They are the targets of nearly one-third of all prescribed medicinal drugs such as beta blockers and antipsychotics. GPCR activation is facilitated by extracellular ligands and leads to the recruitment of intracellular G proteins. Structural rearrangements of residue contacts in the transmembrane domain serve as 'activation pathways' that connect the ligand-binding pocket to the G-protein-coupling region within the receptor. In order to investigate the similarities in activation pathways across class A GPCRs, we analysed 27 GPCRs from diverse subgroups for which structures of active, inactive or both states were available. Here we show that, despite the diversity in activation pathways between receptors, the pathways converge near the G-protein-coupling region. This convergence is mediated by a highly conserved structural rearrangement of residue contacts between transmembrane helices 3, 6 and 7 that releases G-protein-contacting residues. The convergence of activation pathways may explain how the activation steps initiated by diverse ligands enable GPCRs to bind a common repertoire of G proteins.


Asunto(s)
Proteínas de Unión al GTP Heterotriméricas/metabolismo , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Sitios de Unión , Secuencia Conservada , Humanos , Ligandos , Modelos Moleculares , Estructura Secundaria de Proteína , Receptores Acoplados a Proteínas G/clasificación , Receptores Acoplados a Proteínas G/genética , Receptores de Vasopresinas/química , Receptores de Vasopresinas/genética , Receptores de Vasopresinas/metabolismo , Transducción de Señal , Homología Estructural de Proteína
14.
Nat Protoc ; 11(8): 1554-71, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27466713

RESUMEN

The thermostability of an integral membrane protein (MP) in detergent solution is a key parameter that dictates the likelihood of obtaining well-diffracting crystals that are suitable for structure determination. However, many mammalian MPs are too unstable for crystallization. We developed a thermostabilization strategy based on systematic mutagenesis coupled to a radioligand-binding thermostability assay that can be applied to receptors, ion channels and transporters. It takes ∼6-12 months to thermostabilize a G-protein-coupled receptor (GPCR) containing 300 amino acid (aa) residues. The resulting thermostabilized MPs are more easily crystallized and result in high-quality structures. This methodology has facilitated structure-based drug design applied to GPCRs because it is possible to determine multiple structures of the thermostabilized receptors bound to low-affinity ligands. Protocols and advice are given on how to develop thermostability assays for MPs and how to combine mutations to make an optimally stable mutant suitable for structural studies. The steps in the procedure include the generation of ∼300 site-directed mutants by Ala/Leu scanning mutagenesis, the expression of each mutant in mammalian cells by transient transfection and the identification of thermostable mutants using a thermostability assay that is based on binding of an (125)I-labeled radioligand to the unpurified, detergent-solubilized MP. Individual thermostabilizing point mutations are then combined to make an optimally stable MP that is suitable for structural biology and other biophysical studies.


Asunto(s)
Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Mutagénesis , Temperatura , Secuencia de Aminoácidos , Detergentes/química , Modelos Moleculares , Mutación , Conformación Proteica , Estabilidad Proteica , Solubilidad
15.
Methods Mol Biol ; 1335: 17-27, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26260591

RESUMEN

Crystallization of G protein-coupled receptors (GPCRs) is successful due to the development of generic protein engineering strategies, which has resulted in the structure determination of more than 25 GPCRs, including representatives from class A, B, C, and F. Most of the X-ray structures available correspond to an inactive conformation of the receptor bound to an antagonist. Only a few high-resolution structures of agonist-bound conformations of GPCRs have been determined over the last 6 years. Here, we describe the purification and crystallization protocols of a thermostabilized agonist-bound conformation of the human adenosine A2A receptor.


Asunto(s)
Agonistas del Receptor de Adenosina A2/metabolismo , Fraccionamiento Químico/métodos , Receptor de Adenosina A2A/química , Receptor de Adenosina A2A/aislamiento & purificación , Temperatura , Membrana Celular/metabolismo , Cristalización , Humanos , Conformación Proteica , Estabilidad Proteica , Receptor de Adenosina A2A/metabolismo , Volatilización
16.
Mol Pharmacol ; 87(6): 907-15, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25762024

RESUMEN

The adenosine A2A receptor (A(2A)R) plays a key role in transmembrane signaling mediated by the endogenous agonist adenosine. Here, we describe the crystal structure of human A2AR thermostabilized in an active-like conformation bound to the selective agonist 2-[p-(2-carboxyethyl)phenylethyl-amino]-5'-N-ethylcarboxamido adenosine (CGS21680) at a resolution of 2.6 Å. Comparison of A(2A)R structures bound to either CGS21680, 5'-N-ethylcarboxamido adenosine (NECA), UK432097 [6-(2,2-diphenylethylamino)-9-[(2R,3R,4S,5S)-5-(ethylcarbamoyl)-3,4-dihydroxy-tetrahydrofuran-2-yl]-N-[2-[[1-(2-pyridyl)-4-piperidyl]carbamoylamino]ethyl]purine-2-carboxamide], or adenosine shows that the adenosine moiety of the ligands binds to the receptor in an identical fashion. However, an extension in CGS21680 compared with adenosine, the (2-carboxyethyl)phenylethylamino group, binds in an extended vestibule formed from transmembrane regions 2 and 7 (TM2 and TM7) and extracellular loops 2 and 3 (EL2 and EL3). The (2-carboxyethyl)phenylethylamino group makes van der Waals contacts with side chains of amino acid residues Glu169(EL2), His264(EL3), Leu267(7.32), and Ile274(7.39), and the amine group forms a hydrogen bond with the side chain of Ser67(2.65). Of these residues, only Ile274(7.39) is absolutely conserved across the human adenosine receptor subfamily. The major difference between the structures of A(2A)R bound to either adenosine or CGS21680 is that the binding pocket narrows at the extracellular surface when CGS21680 is bound, due to an inward tilt of TM2 in that region. This conformation is stabilized by hydrogen bonds formed by the side chain of Ser67(2.65) to CGS21680, either directly or via an ordered water molecule. Mutation of amino acid residues Ser67(2.65), Glu169(EL2), and His264(EL3), and analysis of receptor activation either in the presence or absence of ligands implicates this region in modulating the level of basal activity of A(2A)R.


Asunto(s)
Agonistas del Receptor de Adenosina A2/química , Adenosina/análogos & derivados , Fenetilaminas/química , Receptor de Adenosina A2A/química , Adenosina/química , Adenosina/farmacología , Agonistas del Receptor de Adenosina A2/farmacología , Animales , Células CHO , Cricetulus , Cristalografía por Rayos X , AMP Cíclico/biosíntesis , Humanos , Modelos Moleculares , Fenetilaminas/farmacología , Conformación Proteica , Receptor de Adenosina A2A/metabolismo
17.
Nature ; 494(7436): 185-94, 2013 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-23407534

RESUMEN

G-protein-coupled receptors (GPCRs) are physiologically important membrane proteins that sense signalling molecules such as hormones and neurotransmitters, and are the targets of several prescribed drugs. Recent exciting developments are providing unprecedented insights into the structure and function of several medically important GPCRs. Here, through a systematic analysis of high-resolution GPCR structures, we uncover a conserved network of non-covalent contacts that defines the GPCR fold. Furthermore, our comparative analysis reveals characteristic features of ligand binding and conformational changes during receptor activation. A holistic understanding that integrates molecular and systems biology of GPCRs holds promise for new therapeutics and personalized medicine.


Asunto(s)
Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Animales , Sitios de Unión , Cristalografía por Rayos X , Humanos , Ligandos , Conformación Proteica , Pliegue de Proteína , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Transducción de Señal
18.
Mol Pharmacol ; 83(5): 949-58, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23429888

RESUMEN

Using isolated receptor conformations crystal structures of the adenosine A2A receptor have been solved in active and inactive states. Studying the change in affinity of ligands at these conformations allowed qualitative prediction of compound efficacy in vitro in a system-independent manner. Agonist 5'-N-ethylcarboxamidoadenosine displayed a clear preference to bind to the active state receptor; inverse agonists (xanthine amine congener, ZM241385, SCH58261, and preladenant) bound preferentially to the inactive state, whereas neutral antagonists (theophylline, caffeine, and istradefylline) demonstrated equal affinity for active and inactive states. Ligand docking into the known crystal structures of the A2A receptor rationalized the pharmacology observed; inverse agonists, unlike neutral antagonists, cannot be accommodated within the agonist-binding site of the receptor. The availability of isolated receptor conformations opens the door to the concept of "reverse pharmacology" whereby the functional pharmacology of ligands can be characterized in a system-independent manner by their affinity for a pair (or set) of G protein-coupled receptor conformations.


Asunto(s)
Agonistas del Receptor de Adenosina A2/farmacología , Antagonistas del Receptor de Adenosina A2/farmacología , Receptor de Adenosina A2A/química , Receptor de Adenosina A2A/metabolismo , Animales , Sitios de Unión , Células CHO , Línea Celular , Cricetinae , Ligandos , Conformación Molecular , Receptores Acoplados a Proteínas G/metabolismo , Relación Estructura-Actividad
19.
Med Sci (Paris) ; 28(10): 876-82, 2012 Oct.
Artículo en Francés | MEDLINE | ID: mdl-23067420

RESUMEN

G protein-coupled receptors (GPCR) are the largest family of integral membrane proteins found in the plasma membrane of mammalian cells. GPCR respond to a large variety of ligands such as amines, lipids, hormones and amino-acids, which are involved in inter-cellular signalling events in a multitude of physiological and pathological processes. GPCRs are therefore key regulators of signal transduction by which cells respond to variations in their environment. During the last five years, striking progress has been made to solve high-resolution structure of GPCR. The most recent successes are the structures of the ß(1) and ß(2) adrenoreceptors and the adenosine A(2A) receptor bound to a variety of agonists. Most importantly, the structure of the ß(2) adrenoreceptor in complex with a trimeric G protein, Gs, was recently reported. This review will present an overview of the X-ray structure determination of the GPCR and of their activation mechanism.


Asunto(s)
Receptores Acoplados a Proteínas G/fisiología , Animales , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Estructura Cuaternaria de Proteína , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Relación Estructura-Actividad
20.
Acta Crystallogr D Biol Crystallogr ; 68(Pt 7): 810-8, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22751666

RESUMEN

A significant increase in the lifetime of room-temperature macromolecular crystals is reported through the use of a high-brilliance X-ray beam, reduced exposure times and a fast-readout detector. This is attributed to the ability to collect diffraction data before hydroxyl radicals can propagate through the crystal, fatally disrupting the lattice. Hydroxyl radicals are shown to be trapped in amorphous solutions at 100 K. The trend in crystal lifetime was observed in crystals of a soluble protein (immunoglobulin γ Fc receptor IIIa), a virus (bovine enterovirus serotype 2) and a membrane protein (human A(2A) adenosine G-protein coupled receptor). The observation of a similar effect in all three systems provides clear evidence for a common optimal strategy for room-temperature data collection and will inform the design of future synchrotron beamlines and detectors for macromolecular crystallography.


Asunto(s)
Cristalografía por Rayos X/métodos , Enterovirus Bovino/química , Radical Hidroxilo/química , Receptor de Adenosina A2A/química , Receptores de IgG/química , Infecciones por Enterovirus/virología , Humanos , Espectrofotometría Ultravioleta , Temperatura , Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...