Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
mSystems ; 7(4): e0024722, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-35762785

RESUMEN

Global changes will result in altered precipitation patterns, among which the increasing frequency of drought events has the highest deleterious potential for agriculture. Soil microbes have shown some promise to help crops adapt to drought events, but it is uncertain how crop-associated microorganisms will respond to altered precipitation patterns. To investigate this matter, we conducted a field experiment where we seeded two wheat cultivars (one resistant to water stress and the other sensitive) that were subjected to four precipitation exclusion (PE) regimes (0%, 25%, 50%, and 75% exclusion). These cultivars were sampled seven times (every 2 weeks, from May to August) within one growing season to investigate short-term microbiome responses to altered precipitation regimes and seasonality using 16S rRNA gene and internal transcribed spacer (ITS) region amplicon sequencing. One of the most striking features of the data set was the dramatic shift in microbial community diversity, structure, and composition together with a doubling of the relative abundance of the archaeal ammonia oxidizer genus Nitrososphaera following an important drying-rewetting event. Comparatively small but significant effects of PE and wheat cultivar on microbial community diversity, composition, and structure were observed. Taken together, our results demonstrate an uneven response of microbial taxa to decreasing soil water content, which was dwarfed by drying-rewetting events, to which soil bacteria and archaea were more sensitive than fungi. Importantly, our study showed that an increase in drying-rewetting cycles will cause larger shifts in soil microbial communities than a decrease in total precipitation, suggesting that under climate changes, the distribution of precipitation will be more important than small variations in the total quantity of precipitation. IMPORTANCE Climate change will have a profound effect on the precipitation patterns of global terrestrial ecosystems. Seasonal and interannual uneven distributions of precipitation will lead to increasing frequencies and intensities of extreme drought and rainfall events, which will affect crop productivity and nutrient contents in various agroecosystems. However, we still lack knowledge about the responses of soil microbial communities to reduced precipitation and drying-rewetting events in agroecosystems. Our results demonstrated an uneven response of the soil microbiome and a dramatic shift in microbial community diversity and structure to a significant drying-rewetting event with a large increase in the relative abundance of archaeal ammonia oxidizers. These findings highlight the larger importance of rewetting of dry soils on microbial communities, as compared to decreased precipitation, with potential for changes in the soil nitrogen cycling.


Asunto(s)
Microbiota , Suelo , Suelo/química , ARN Ribosómico 16S/genética , Amoníaco , Microbiología del Suelo , Archaea/genética , Triticum , Microbiota/genética
2.
Biomicrofluidics ; 13(3): 034106, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31123538

RESUMEN

Sialyl-LewisX and LewisX are cell-surface glycans that influence cell-cell adhesion behaviors. These glycans are assembled by α(1,3)-fucosyltransferase enzymes. Their increased expression plays a role in inflammatory disease, viral and microbial infections, and cancer. Efficient screens for specific glycan modifications such as those catalyzed by fucosyltransferases are tended toward costly materials and large instrumentation. We demonstrate for the first time a fucosylation inhibition assay on a digital microfluidic system with the integration of image-based techniques. Specifically, we report a novel lab-on-a-chip approach to perform a fluorescence-based inhibition assay for the fucosylation of a labeled synthetic disaccharide, 4-methylumbelliferyl ß-N-acetyllactosaminide. As a proof-of-concept, guanosine 5'-diphosphate has been used to inhibit Helicobacter pylori α(1,3)-fucosyltransferase. An electrode shape (termed "skewed wave") is designed to minimize electrode density and improve droplet movement compared to conventional square-based electrodes. The device is used to generate a 10 000-fold serial dilution of the inhibitor and to perform fucosylation reactions in aqueous droplets surrounded by an oil shell. Using an image-based method of calculating dilutions, referred to as "pixel count," inhibition curves along with IC50 values are obtained on-device. We propose the combination of integrating image analysis and digital microfluidics is suitable for automating a wide range of enzymatic assays.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...