Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Environ Monit Assess ; 195(1): 182, 2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36481823

RESUMEN

This study assesses the variability of physicochemical and biochemical parameters, identifies principal pollutant sources, and characterizes water quality in Yuriria reservoir using water quality indexes in combination with multivariate statistical techniques. In situ parameters were measured in 55 reservoir sites including surface and deep points and in 7 associated channels. Moreover, major compounds and biochemical data were determined. Yuriria reservoir had alkaline, bicarbonate-mixed waters, with total dissolved solids (TDS) of 393.83 ± 3.43 mg L-1. Water quality index (WQI) indicated a good class for agricultural irrigation but very poor and poor classes for preservation of aquatic life. The nutrient inputs and the internal nitrogen recycling triggered a hypereutrophic status in the reservoir. The decomposition of residual biomass from aquatic macrophytes contributed to reduce dissolved oxygen (DO) in the hypolimnetic waters (mean DO = 3.86 mg L-1). Statistical analysis revealed that the study area is highly exposed to anthropogenic stress and in a lesser extent to natural processes. Urban and agriculture runoff enhanced the salinization and the generation of solid particles which deteriorated water quality. Chemical oxygen demand (COD), biochemical oxygen demand (BOD), and NO3--N presented a common anthropogenic origin by external (point and diffuse) and internal pollution sources, while a diffuse source (agricultural activities) was reveled for phosphorus. This study is important to be used in systematic monitoring and sustainable co-management programs and for formulating the necessary strategies to remediate the Yuriria reservoir water quality and extrapolate to other reservoirs worldwide.


Asunto(s)
Monitoreo del Ambiente , Calidad del Agua , Humanos , México , Efectos Antropogénicos
2.
Environ Monit Assess ; 194(2): 128, 2022 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-35080661

RESUMEN

In the present study, the hydrochemical dynamic and the water quality of La Purísima reservoir, Central Mexico, have been determined. The reservoir presents total dissolved solids (TDSs) between 146 and 328 mg L-1 and water quality neutral to slightly alkaline (pH 7.0 to 8.7) during the dry season, whereas it becomes clearly alkaline (pH 8.1-9.9) in the rainy-warm season. Through its main tributaries, La Purísima reservoir has been receiving water affected by anthropic activities, such as mining, urbanization, and agriculture. La Purísima reservoir indicates water quality suitable for irrigation and aquatic lives, but unsuitable for drinking purposes. A geochemical evolution from the riverine to the lacustrine zone is evidenced by the complexation of several free ions: the higher saturation indexes; the lower toxic metal concentrations; and the lower trophic status, which ameliorate the water quality in the lacustrine zone. Trace elements co-precipitate and are adsorbed onto bottom sediments. During summer, high evaporation rates and atmospheric precipitation are found to decline the water quality. Cluster analyses reflect the geo-setting and different pollution levels: urban impact from the north coast, and agricultural activities from the east coast. The sensitivity of the lake to geochemical behavior can be used to understand the complex dissolved geochemical dynamics in a lake and the potential effects from long-term anthropic impact variability. The information about water quality of La Purísima reservoir may be useful to preserve the ecosystem and its biodiversity.


Asunto(s)
Lagos , Contaminantes Químicos del Agua , Ecosistema , Monitoreo del Ambiente , México , Contaminantes Químicos del Agua/análisis , Calidad del Agua
3.
Chemosphere ; 263: 128098, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33297094

RESUMEN

The Amarillo River in La Rioja, Argentina, is a natural acidic environment that is influenced by an abandoned mine. The river is characterized by extremely low pH and high concentrations of metals and metalloids. Fe(III)-bearing neoformed precipitated minerals are widespread along the hydrological basin. This work reports the presence of different species of iron-oxidizing bacteria and demonstrates that their action has a significant role in geochemical processes of the Amarillo River, mainly by catalyzing Fe2+ oxidation and intensifying the Fe(III)-bearing mineral precipitation. Various iron oxidizers (i.e. Acidithiobacillus ferrivorans, Leptospirillum ferrooxidans, Ferrimicrobium acidophilum, Alicyclobacillus cycloheptanicus) were detected in enrichment cultures at different temperatures. Moreover, this is the first report confirming that Acidithiobacillus ferrivorans is able to grow at 4 °C. Other acidophilic bacteria (i.e., Acidiphilium iwatensii) and fungi (e.g., Fodinomyces uranophilus, Coniochaeta fodinicola, Acidea extrema, Penicillium sp. and Cladosporium pseudocladosporioides) were also detected. In vitro laboratory studies recreating natural Fe(III)-bearing mineral formation showed that mineral precipitation rate was higher than 350 mg L-1 day-1 in the presence of microorganisms whereas it was about 15 mg L-1 day-1 under abiotic conditions. Jarosite was the only mineral detected in the precipitates generated by microbial action and it was also identified in the Amarillo River bed sediments. Biological Fe2+ oxidation rates depend on temperature which range from 8 to 32 mM day-1 at 4 and 30 °C, respectively. Finally, a conceptual model recognizing the significant microbial role is proposed to gain a better understanding of the biogeochemistry dynamics of the Amarillo River.


Asunto(s)
Compuestos Férricos , Ríos , Acidithiobacillus , Alicyclobacillus , Argentina , Ascomicetos , Bacterias , Cladosporium , Concentración de Iones de Hidrógeno , Oxidación-Reducción
4.
Data Brief ; 30: 105438, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32292806

RESUMEN

This article presents analytical observations on physicochemical parameters and major and trace element concentrations of water, ice, and sediment samples from the lake systems of Clearwater Mesa (CWM), northeast Antarctic Peninsula. Geochemical analyses include inductively coupled plasma mass spectrometry (ICP-MS) for cations and trace elements and ion chromatography for anions. Some figures are included (i.e. Piper and Gibbs diagrams) which indicate water classification type and rock-water interactions in CWM, respectively. It also contains PHREEQC software output, listing the chemical speciation for dissolved elements, Saturation Indexes (SI), and modelling outputs. Each lake SI are also illustrated in a figure. Finally, total organic and inorganic carbon (TOC and TIC, respectively) were determined for bottom lake sediments and marginal salt samples. This information will be useful for future research assessing the impacts of anthropogenic pollution and the effects of climate change, providing insights into naturally occurring geochemical processes in a pristine environment, and evaluating geochemical behaviour of dissolved elements in high-latitude hydrological systems. These data correspond to the research article "Dissolved major and trace geochemical dynamics in Antarctic Lacustrine Systems" [1].

5.
Chemosphere ; 240: 124938, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31574444

RESUMEN

Clearwater Mesa (James Ross Island, northeast Antarctic Peninsula) provides a unique opportunity to study solute dynamics and geochemical weathering in the pristine lacustrine systems of a high latitude environment. In order to determine major controls on the solute composition of these habitats, a geochemical survey was conducted on 35 lakes. Differences between lakes were observed based on measured physico-chemical parameters, revealing neutral to alkaline waters with total dissolved solids (TDS) < 2500 mg L-1. Katerina and Trinidad-Tatana systems showed an increase in their respective TDS, total organic carbon values, and finner sediments from external to internal lakes, indicating an accumulation of solutes due to weathering. Norma and Florencia systems exhibited the most diluted and circumneutral waters, likely from the influence of glacier and snow melt. Finally, isolated lakes presented large variability in TDS values, indicating weathering and meltwater contributions at different proportions. Trace metal abundances revealed a volcanic mineral weathering source, except for Pb and Zn, which could potentially indicate atmospheric inputs. Geochemical modelling was also conducted on a subset of connected lakes to gain greater insight into processes determining solute composition, resulting in the weathering of salts, carbonates and silicates with the corresponding generation of clays. We found CO2 consumption accounted for 20-30% of the total species involved in weathering reactions. These observations allow insights into naturally occurring geochemical processes in a pristine environment, while also providing baseline data for future research assessing the impacts of anthropogenic pollution and the effects of climate change.


Asunto(s)
Monitoreo del Ambiente/métodos , Sedimentos Geológicos/química , Lagos/química , Minerales/análisis , Compuestos Orgánicos/análisis , Oligoelementos/análisis , Regiones Antárticas , Carbonatos/análisis , Cambio Climático , Ecosistema , Cubierta de Hielo/química , Plomo/análisis , Trinidad y Tobago , Tiempo (Meteorología) , Zinc/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...