Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 9(1): 1919, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29765038

RESUMEN

The concept of feedback is key in assessing whether a perturbation to a system is amplified or damped by mechanisms internal to the system. In polar regions, climate dynamics are controlled by both radiative and non-radiative interactions between the atmosphere, ocean, sea ice, ice sheets and land surfaces. Precisely quantifying polar feedbacks is required for a process-oriented evaluation of climate models, a clear understanding of the processes responsible for polar climate changes, and a reduction in uncertainty associated with model projections. This quantification can be performed using a simple and consistent approach that is valid for a wide range of feedbacks, offering the opportunity for more systematic feedback analyses and a better understanding of polar climate changes.

2.
Nat Commun ; 8(1): 258, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28811497

RESUMEN

Several processes have been hypothesized to explain the slight overall expansion of Antarctic sea ice over the satellite observation era, including externally forced changes in local winds or in the Southern Ocean's hydrological cycle, as well as internal climate variability. Here, we show the critical influence of an ocean-sea-ice feedback. Once initiated by an external perturbation, it may be sufficient to sustain the observed sea-ice expansion in the Ross Sea, the region with the largest and most significant expansion. We quantify the heat trapped at the base of the ocean mixed layer and demonstrate that it is of the same order of magnitude as the latent heat storage due to the long-term changes in sea-ice volume. The evidence thus suggests that the recent ice coverage increase in the Ross Sea could have been achieved through a reorganization of energy within the near-surface ice-ocean system.The mechanisms responsible for the overall expansion of Antarctic sea-ice in recent decades remain unclear. Here, using observations and model results, the authors show that ice-ocean feedbacks, triggered by an external perturbation, could be responsible for changes in sea-ice extent observed in the Ross Sea.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...