Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 63(13): e202317070, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38063469

RESUMEN

Complex natural product functionalizations generally involve the use of highly engineered reagents, catalysts, or enzymes to react exclusively at a desired site through lowering of a select transition state energy. In this communication, we report a new, complementary strategy in which all transition states representing undesirable sites in a complex ionophore substrate are simultaneously energetically increased through the chelation of a metal ion to the large fragment we wish to neutralize. In the case of an electrophilic, radical based fluorination reaction, charge repulsion (electric field effects), induced steric effects, and electron withdrawal provide the necessary deactivation and proof of principle to afford a highly desirable natural product derivative. We envisage that many other electrophilic or charge based synthetic methods may be amenable to this approach as well.

2.
J Org Chem ; 88(24): 17538-17543, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38033293

RESUMEN

We have established hydrogen atom transfer (HAT) as the key player in a directed, photopromoted fluorination of pyridylic groups. The Lewis basic pyridyl nitrogen directs amine radical dication propagated HAT and Selectfluor fluorination of various ortho substituents in a highly regioselective manner with little to no side product formation. A variety of pyridines and quinolines were employed to showcase the directing capability of the nitrogen atom. Additionally, both experimental and computational data are provided that illuminate how this mechanism differs from and complements prior work in the area.

3.
Chem Commun (Camb) ; 59(99): 14661-14664, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-37987509

RESUMEN

Theoretical decomposition of "through space" spin-spin coupling constants (SSCCs) in organofluorine compounds signal that intramolecular hydrogen bonds (H-bonds) are not the primary mechanism of transmission for SSCCs. Increasing solvent polarity may disrupt H-bonds, but not necessarily the JFH SSCC. Substituent effects may drastically alter the SSCC transmission pathway. Accurate SSCC analysis requires benchmarking theoretical calculations to support experimental data interpretation.

4.
J Am Chem Soc ; 145(41): 22442-22455, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37791901

RESUMEN

In 2015, we reported a photochemical method for directed C-C bond cleavage/radical fluorination of relatively unstrained cyclic acetals using Selectfluor and catalytic 9-fluorenone. Herein, we provide a detailed mechanistic study of this reaction, during which it was discovered that the key electron transfer step proceeds through substrate oxidation from a Selectfluor-derived N-centered radical intermediate (rather than through initially suspected photoinduced electron transfer). This finding led to proof of concept for two new methodologies, demonstrating that unstrained C-C bond fluorination can also be achieved under chemical and electrochemical conditions. Moreover, as C-C and C-H bond fluorination reactions are both theoretically possible on 2-aryl-cycloalkanone acetals and would involve the same reactive intermediate, we studied the competition between single-electron transfer (SET) and apparent hydrogen-atom transfer (HAT) pathways in acetal fluorination reactions using density functional theory. Finally, these analyses were applied more broadly to other classes of C-H and C-C bond fluorination reactions developed over the past decade, addressing the feasibility of SET processes masquerading as HAT in C-H fluorination literature.

5.
Org Lett ; 25(23): 4318-4322, 2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37279142

RESUMEN

We have found that face-to-face π-stacked aromatic rings show the propensity to activate one another toward electrophilic aromatic substitution through direct influence of the probe aromatic ring by the adjacent stacked ring, rather than through the formation of relay or "sandwich complexes." This activation remains in force even when one of the rings is deactivated through nitration. The resulting dinitrated products are shown to crystallize in an extended parallel offset stacked form, in stark contrast to the substrate.

6.
Chemistry ; 29(52): e202301550, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37219499

RESUMEN

We report a detailed experimental and theoretical analysis of through-space arene activation with halogens, tetrazoles and achiral esters and amides. Contrary to previously assumed direct activation through σ-complex stabilization, our results suggest that these reactions proceed by a relay mechanism wherein the lone pair-containing activators form exothermic π-complexes with electrophilic nitronium ion before transferring it to the probe ring through low barrier transition states. Noncovalent interactions (NCI) plots and Quantum Theory of Atoms in Molecules (QTAIM) analyses depict favorable interactions between the Lewis base (LB) and the nitronium ion in the precomplexes and the transition states, suggesting directing group participation throughout the mechanism. The regioselectivity of substitution also comports with a relay mechanism. In all, these data pave the way for an alternate platform of electrophilic aromatic substitution (EAS) reactions.

7.
J Org Chem ; 88(11): 7597-7600, 2023 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-37159569

RESUMEN

In this note, we explore a unique reactivity pattern that involves a rare radical-based C-C bond scission of epoxides followed by demethylenation. The reaction is accomplished by Selecfluor and its radical dication working in tandem; a mechanism supported by experiment and DFT calculations is proposed that involves the generation and identification of a key reactive intermediate. The reaction seems to be fairly general for 1,1-disubstituted epoxides.

8.
J Org Chem ; 88(4): 2557-2560, 2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36702475

RESUMEN

Electrosynthesis has made a revival in the field of organic chemistry and, in particular, radical-mediated reactions. Herein, we report a simple directed, electrochemical C-H fluorination method. Employing a dabconium mediator, commercially available Selectfluor, and RVC electrodes, we provide a range of steroid-based substrates with competent regioselective directing groups, including enones, ketones, and hydroxy groups, as well as never reported before lactams, imides, lactones, and esters.

9.
J Org Chem ; 87(19): 13406-13410, 2022 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-36166828

RESUMEN

In this note, we present a series of rigid molecules that show close enforced interactions between Ar-F moieties and -CH2X groups in a "tetrel bond" configuration similar to a nascent SN2 attack. We explore the spectroscopic, crystallographic, and chemical reactivity consequences of these unusual interactions, including significant through-space spin-spin couplings, short C-F···CH2X distances, and differential SN1 and SN2 reaction pathways. We also reveal experimental evidence of carbon-based tetrel bonds influencing chemical reactivity in solution. Finally, density functional theory (DFT) calculations are employed throughout this study to confirm and illuminate our experimental data.


Asunto(s)
Carbono
10.
Chem Sci ; 13(23): 7007-7013, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35774162

RESUMEN

We report a photochemically induced, hydroxy-directed fluorination that addresses the prevailing challenge of high diastereoselectivity in this burgeoning field. Numerous simple and complex motifs showcase a spectrum of regio- and stereochemical outcomes based on the configuration of the hydroxy group. Notable examples include a long-sought switch in the selectivity of the refractory sclareolide core, an override of benzylic fluorination, and a rare case of 3,3'-difluorination. Furthermore, calculations illuminate a low barrier transition state for fluorination, supporting our notion that alcohols are engaged in coordinated reagent direction. A hydrogen bonding interaction between the innate hydroxy directing group and fluorine is also highlighted for several substrates with 19F-1H HOESY experiments, calculations, and more.

11.
J Org Chem ; 87(13): 8413-8419, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35658438

RESUMEN

Perhaps the most controversial and rare aspect of the halogen bonding interaction is the potential of fluorine in compounds to serve as a halogen bond donor. In this note, we provide clear and convincing examples of hypothetical molecules in which fluorine is strongly halogen bonding in a metastable state. Of particular note is a polycyclic system inspired by Selectfluor, which has been controversially proposed to engage in halogen bonding.

12.
Angew Chem Int Ed Engl ; 61(34): e202207966, 2022 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-35716396

RESUMEN

The putative interaction of a C-F bond with an amide carbonyl has been an intriguing topic of interest in this century for reasons spanning basic physical organic chemistry to biochemistry. However, to date, there exist no examples of a close, well-defined interaction in which its unique aspects can be identified and exploited. Herein, we finally present an engineered system possessing an exceptionally tight C-F-amide interaction, allowing us to obtain spectroscopic, crystallographic, and kinetic details of a distinctive, biochemically relevant chemical system for the first time. In turn, we also explore Lewis acid coordination, C-F bond promotion of amide isomerization, enantiomerization, and ion protonation processes.


Asunto(s)
Amidas , Amidas/química , Cristalografía , Cinética , Análisis Espectral
13.
Chemistry ; 28(8): e202103922, 2022 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-35133051

RESUMEN

As appreciation for nonclassical hydrogen bonds has progressively increased, so have efforts to characterize these interesting interactions. Whereas several kinds of C-H hydrogen bonds have been well-studied, much less is known about the R3 N+ -C-H⋅⋅⋅X variety. Herein, we present crystallographic and spectroscopic evidence for the existence of these interactions, with special relevance to Selectfluor chemistry. Of particular note is the propensity for Lewis bases to engage in nonclassical hydrogen bonding over halogen bonding with the electrophilic F atom of Selectfluor. Further, the first examples of 1 H NMR experiments detailing R3 N+ -C-H⋅⋅⋅X (X=O, N) hydrogen bonds are described.


Asunto(s)
Halógenos , Hidrógeno , Enlace de Hidrógeno , Análisis Espectral
17.
Nat Commun ; 12(1): 5275, 2021 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-34489464

RESUMEN

Organic fluoronium ions can be described as positively charged molecules in which the most electronegative and least polarizable element fluorine engages in two partially covalent bonding interactions to two carbon centers. While recent solvolysis experiments and NMR spectroscopic studies on a metastable [C-F-C]+ fluoronium ion strongly support the divalent fluoronium structure over the alternative rapidly equilibrating classical carbocation, the model system has, to date, eluded crystallographic analysis to confirm this phenomenon in the solid state. Herein, we report the single crystal structure of a symmetrical [C-F-C]+ fluoronium cation. Besides its synthesis and crystallographic characterization as the [Sb2F11]- salt, vibrational spectra are discussed and a detailed analysis concerning the nature of the bonding situation in this fluoronium ion and its heavier halonium homologues is performed, which provides detailed insights on this molecular structure.

18.
J Org Chem ; 86(8): 5771-5777, 2021 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-33787260

RESUMEN

Arene substitution patterns are well-known to affect the regioselectivity of a given transformation but not necessarily the type of reactivity. Herein, we report that the substitution pattern of alkoxyarenes dictates whether a putative one-electron or two-electron reaction predominates in reactions with Selectfluor. A series of amination products is presented, resulting from the single-electron oxidation of electron-rich arenes followed by direct C-H to C-N bond formation. We demonstrate the ability of this transformation to synthesize medicinally and biologically relevant nitrogen heterocycles. Lastly, this unusual "mechanistic switch" is probed with computational chemistry and competition experiments.


Asunto(s)
Compuestos de Diazonio , Halogenación , Aminación , Catálisis
19.
J Org Chem ; 86(1): 1300-1307, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33300794

RESUMEN

A series of steroidal α,ß-unsaturated hydrazones is presented whose behavior and reactivity are governed by various types of weak C-H hydrogen bonds. Several interesting features in a representative X-ray crystal structure and 1H NMR spectrum are examined that provide evidence for a unique bifurcated intramolecular C-H interaction. Moreover, these steroid derivatives undergo functionalization in the form of a highly regio- and stereoselective fluorination; the sulfonyl oxygen atoms are proposed to direct the fluorinating reagent through C-H hydrogen bonds.

20.
J Am Chem Soc ; 142(34): 14710-14724, 2020 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-32786786

RESUMEN

Recently, our group reported that enone and ketone functional groups, upon photoexcitation, can direct site-selective sp3 C-H fluorination in terpenoid derivatives. How this transformation actually occurred remained mysterious, as a significant number of mechanistic possibilities came to mind. Herein, we report a comprehensive study describing the reaction mechanism through kinetic studies, isotope-labeling experiments, 19F NMR, electrochemical studies, synthetic probes, and computational experiments. To our surprise, the mechanism suggests intermolecular hydrogen atom transfer (HAT) chemistry is at play, rather than classical Norrish hydrogen atom abstraction as initially conceived. What is more, we discovered a unique role for photopromoters such as benzil and related compounds that necessitates their chemical transformation through fluorination in order to be effective. Our findings provide documentation of an unusual form of directed HAT and are of crucial importance for defining the necessary parameters for the development of future methods.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA