Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Annu Rev Biomed Eng ; 26(1): 441-473, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38959386

RESUMEN

Multicellular model organisms, such as Drosophila melanogaster (fruit fly), are frequently used in a myriad of biological research studies due to their biological significance and global standardization. However, traditional tools used in these studies generally require manual handling, subjective phenotyping, and bulk treatment of the organisms, resulting in laborious experimental protocols with limited accuracy. Advancements in microtechnology over the course of the last two decades have allowed researchers to develop automated, high-throughput, and multifunctional experimental tools that enable novel experimental paradigms that would not be possible otherwise. We discuss recent advances in microtechnological systems developed for small model organisms using D. melanogaster as an example. We critically analyze the state of the field by comparing the systems produced for different applications. Additionally, we suggest design guidelines, operational tips, and new research directions based on the technical and knowledge gaps in the literature. This review aims to foster interdisciplinary work by helping engineers to familiarize themselves with model organisms while presenting the most recent advances in microengineering strategies to biologists.


Asunto(s)
Drosophila melanogaster , Animales , Microtecnología/métodos , Modelos Animales , Diseño de Equipo , Nanotecnología/métodos
2.
Proc Natl Acad Sci U S A ; 121(30): e2322330121, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39008665

RESUMEN

Ice is emerging as a promising sacrificial material in the rapidly expanding area of advanced manufacturing for creating precise 3D internal geometries. Freeform 3D printing of ice (3D-ICE) can produce microscale ice structures with smooth walls, hierarchical transitions, and curved and overhang features. However, controlling 3D-ICE is challenging due to an incomplete understanding of its complex physics involving heat transfer, fluid dynamics, and phase changes. This work aims to advance our understanding of 3D-ICE physics by combining numerical modeling and experimentation. We developed a 2D thermo-fluidic model to analyze the transition from layered to continuous printing and a 3D thermo-fluidic model for the oblique deposition, which enables curved and overhang geometries. Experiments are conducted and compared with model simulations. We found that high droplet deposition rates enable the continuous deposition mode with a sustained liquid cap on top of the ice, facilitating smooth geometries. The diameter of ice structures is controlled by the droplet deposition frequency. Oblique deposition causes unidirectional spillover of the liquid cap and asymmetric heat transfer at the freeze front, rotating the freeze front. These results provide valuable insights for reproducible 3D-ICE printing that could be applied across various fields, including tissue engineering, microfluidics, and soft robotics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...