Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Exp Brain Res ; 242(1): 257-265, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38010535

RESUMEN

The purpose of the study was to which investigate whether dexamethasone, which has anti-inflammatory and immune response suppression roles, could treat noise-induced hearing loss caused by damage to hair cells in the cochlea. The experiment used 8-week-old CBA mice exposed to white noise at an intensity of 110 dB SPL for 2 h, with hearing loss confirmed by the auditory brainstem response test. Dexamethasone was administered by intraperitoneal injection for 5 days, and the therapeutic effect was investigated for 3 weeks. The experimental groups were 3 mg/kg of dexamethasone (3 mpk) and 10 mg/kg of dexamethasone (10 mpk), and the control group was a saline-administered group. The results showed that compared to the control group, the hearing threshold value was recovered by 10 dB SPL compared to the saline group from the 14th day in the 3 mpk group. In the 10 mpk group, thresholds were recovered from the 7th day compared to the saline group. This difference was similar at 4 kHz, and in the case of the 10 mpk group, the threshold was recovered by 20 dB SPL compared to the saline group. The study also confirmed the restoration of nerve cell activity and showed a recovery effect of about 20 µV in the amplitude value change in the 10 mpk group. In conclusion, the study suggests that dexamethasone has a therapeutic effect for noise-induced hearing loss by increasing the activity of nerve cells and showing a recovery effect from hair cells damaged by noise.


Asunto(s)
Pérdida Auditiva Provocada por Ruido , Ratones , Animales , Pérdida Auditiva Provocada por Ruido/tratamiento farmacológico , Pérdida Auditiva Provocada por Ruido/etiología , Umbral Auditivo/fisiología , Ratones Endogámicos CBA , Cóclea , Modelos Animales de Enfermedad , Dexametasona/farmacología , Dexametasona/uso terapéutico , Potenciales Evocados Auditivos del Tronco Encefálico/fisiología
2.
Adv Sci (Weinh) ; 11(2): e2302410, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37997197

RESUMEN

The recent interests in bridging intriguing optical phenomena and thermal energy management has led to the demonstration of controlling thermal radiation with epsilon-near-zero (ENZ) and the related near-zero-index (NZI) optical media. In particular, the manipulation of thermal emission using phononic ENZ and NZI materials has shown promise in mid-infrared radiative cooling systems operating under low-temperature environments (below 100 °C). However, the absence of NZI materials capable of withstanding high temperatures has limited the spectral extension of these advanced technologies to the near-infrared (NIR) regime. Herein, a perovskite conducting oxide, lanthanum-doped barium stannate (La:BaSnO3 [LBSO]), as a refractory NZI material well suited for engineering NIR thermal emission is proposed. This work focuses on the experimental demonstration of superior high-temperature stability (of at least 1000 °C) of LBSO films in air and its durability under intense UV-pulsed laser irradiation below peak power of 9 MW cm-2 . Based on the low optical-loss in LBSO, a selective narrow-band thermal emission utilizing a metal-insulator-metal (MIM) Fabry-Pérot nanocavity consisting of LBSO films as metallic component is demonstrated. This study shows that LBSO is an ideal candidate as a refractory NZI component for thermal energy conversion operating at high temperatures in air and under strong light irradiations.

3.
Gene ; 870: 147403, 2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37001573

RESUMEN

SPG30 is a newly categorized type of HSP caused by variants in the kinesin family member 1A gene (KIF1A). Advances in next-generation sequencing have resulted in a limited number of studies describing the clinical, electrophysiological, and radiological features of HSP, with variable manifestations. Most known pathogenic KIF1A variants affect the motor domain, although some rare pathogenic variants have been identified that affect the non-motor domain. Here, we report a Korean family with a rare homozygous autosomal-recessive form of SPG30. A 59-year-old man and his father presented with an uncomplicated, mild SPG30 phenotype, characterized by a progressive, spastic gait. Familial co-segregation analysis revealed a pathogenic c.2751_2753delGGA KIF1A variant that affects the non-motor domain. Our case broadens the genetic and clinical variability of SPG30, warranting similar studies to consolidate the pathogenicity of SPG30.


Asunto(s)
Cinesinas , Paraplejía Espástica Hereditaria , Humanos , Cinesinas/genética , Paraplejía Espástica Hereditaria/genética , Fenotipo , Homocigoto , República de Corea , Mutación , Linaje
4.
Genes Genomics ; 45(2): 225-230, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36630074

RESUMEN

BACKGOUND: Hereditary hearing loss is one of the most common genetically heterogeneous defects in human. About 70% of hereditary hearing loss is defined as non-syndromic hearing loss showing loss of hearing ability without any other symptoms. Up to date, the identified genes associated with non-syndromic hearing loss are 128, including 52 genes for DFNA and 76 genes for DFNB. Because of high levels of heterogeneity, it is difficult to identify the causative factors for hearing loss using Sanger sequencing. OBJECTIVE: Our aim was to detect causative factors and investigate pathogenic mutations, which co-segregates within the candidate family. METHODS: We used Next Generation Sequencing technique to investigate whole-exome sequences of a Korean family with non-syndromic hereditary hearing loss. The family showed autosomal dominant inheritance pattern. RESULTS: We identified a novel missense variation, c.1978G > A in MYO7A gene, in the family with the autosomal dominant inheritance pattern. c.1978G > A produced Gly660Arg in the motor head domain of Myosin VIIA disrupt the ATP- and actin-binding motif function. CONCLUSION: This study is the first to report pathogenic mutations within MYO7A gene in Korean family and our data would facilitate diagnosing the primary cause of hereditary hearing loss in Korean.


Asunto(s)
Sordera , Pérdida Auditiva , Humanos , Mutación Missense , Pérdida Auditiva/genética , Sordera/genética , República de Corea
5.
J Colloid Interface Sci ; 634: 930-939, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36566637

RESUMEN

Pt-Ni (111) alloy nanoparticles (NPs) and atomically dispersed Pt have been shown to be the most effective catalysts for oxygen reduction reaction (ORR) in polymer electrolyte membrane fuel cells (PEMFCs) as well as less expensive compared to pure Pt NPs. To meet reaction kinetic demands and minimize the Pt utilization at cathode in PEMFCs, we propose a novel electrocatalyst composed of dual single-atoms (Pt, Ni) and Pt-Ni alloy NPs dispersed on the surface of N-doped carbon (NDC); collectively, PtNiSA-NPS-NDC. The optimized PtNiSA-NPS-NDC catalyst displays excellent mass activity and durability compared to commercial Pt/C. Electrocatalytic measurements show that the PtNiSA-NPS-NDC catalyst, with a metal loading of 4.5 wt%, exhibited distinguished ORR performance (E1/2 = 0.912 V) through a 4-electron (4e-) pathway, which is higher than that of commercial 20 wt% Pt/C (E1/2 = 0.857 V). The DFT simulations indicate Pt-Ni alloy NPs and PtNiN2C4 atomic structure are the mobile active sites for ORR catalytic activity in PtNiSA-NPS-NDC. As a cathode catalyst in PEMFC, the Pt utilization efficiency in the PtNiSA-NPS-NDC catalyst is 0.033 gPt kW-1, which is 5.6 times higher than that of commercial Pt/C (0.185gPt kW-1). Therefore, the consumption of precious metals is effectively minimized.

6.
Sci Rep ; 12(1): 5363, 2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-35354865

RESUMEN

In this study, we experimentally demonstrate fabrication of ultra-smooth and crystalline barium titanate (BTO) films on magnesium oxide (MgO) substrates by engineering lattice strain and crystal structure via thermal treatment. We observe that oxygen-depleted deposition allows growth of highly strained BTO films on MgO substrates with crack-free surface. In addition, post-thermal treatment relaxes strain, resulting in an enhancement of ferroelectricity. Surface roughening of the BTO films caused by recrystallization during post-thermal treatment is controlled by chemical-mechanical polishing (CMP) to retain their initial ultra-smooth surfaces. From Raman spectroscopy, reciprocal space map (RSM), and capacitance-voltage (C-V) curve measurements, we confirm that the ferroelectricity of BTO films strongly depend on the relaxation of lattice strain and the phase transition from a-axis to c-axis oriented crystal structure.

7.
Vet Sci ; 8(3)2021 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-33802823

RESUMEN

DBA/2 mice are a well-known animal model for hearing loss developed due to intrinsic properties of these animals. However, results on the phenotype of hearing loss in DBA/2 mice have been mainly reported at an early stage in mice aged ≤7 weeks. Instead, the present study evaluated the hearing ability at 5, 13, and 34 weeks of age using DBA/2korl mice. Auditory brainstem response test was performed at 8-32 KHz at 5, 13, and 34 weeks of age, and hearing loss was confirmed to be induced in a time-dependent manner. In addition, histopathological evaluation at the same age confirmed the morphological damage of the cochlea. The findings presented herein are the results of the long-term observation of the phenotype of hearing loss in DBA/2 mice and can be useful in studies related to aging-dependent hearing loss.

8.
Gene ; 765: 145129, 2021 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-32905827

RESUMEN

Hereditary spastic paraplegia (HSP) is a heterogeneous group of genetic disorders characterized by lower-limb spastic paralysis. We report on a family with three generations of autosomal dominant inheritance of HSP caused by a novel heterozygous splice-site mutation (c.303 + 2 T > C) in REEP1 that was confirmed by RFLP analysis. Carriers of the mutation, including one asymptomatic individual, showed a mild HSP phenotype with a wide range of intrafamilial variation. All symptomatic carriers had ankle contractures in addition to other classical clinical symptoms of HSP. Clinicians should suspect REEP1-related HSP in patients who show ankle contractures with other symptoms of HSP and should consider that these patients have asymptomatic carriers within their family.


Asunto(s)
Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Paraplejía Espástica Hereditaria/genética , Adulto , Familia , Femenino , Heterocigoto , Humanos , Masculino , Persona de Mediana Edad , Mutación , Linaje , Fenotipo , Empalme del ARN/genética , Paraplejía Espástica Hereditaria/fisiopatología
9.
Sci Rep ; 10(1): 3295, 2020 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-32094424

RESUMEN

Hereditary spastic paraplegia (HSP) is a heterogeneous inherited disorder that manifests with lower extremity weakness and spasticity. HSP can be inherited by autosomal dominant, autosomal recessive, and X-linked inheritance patterns. Recent studies have shown that, although rare, mutations in a single gene can lead to multiple patterns of inheritance of HSP. We enrolled the HSP family showing autosomal dominant inheritance and performed genetic study to find the cause of phenotype in this family. We recruited five members of a Korean family as study participants. Four of the five family members had pure HSP. Part of the family members underwent whole-exome sequencing (WES) to identify the causative mutation. As the result of WES and Sanger sequencing analysis, a novel missense mutation (c.452 C > T, p.Ala151Val) of ERLIN2 gene was identified as the cause of the autosomal dominant HSP in the family. Our study suggests that the ERLIN2 gene leads to both autosomal recessive and autosomal dominant patterns of inheritance in HSP. Moreover, autosomal dominant HSP caused by ERLIN2 appears to cause pure HSP in contrast to autosomal recessive ERLIN2 related complicated HSP (SPG18).


Asunto(s)
Proteínas de la Membrana/genética , Mutación , Paraplejía Espástica Hereditaria/genética , Anciano , Exoma , Femenino , Trastornos Neurológicos de la Marcha/genética , Genes Dominantes , Genes Recesivos , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Enfermedad de la Neurona Motora/genética , Mutación Missense , Linaje , Fenotipo , República de Corea , Análisis de Secuencia de ADN , Secuenciación del Exoma
10.
Med Eng Phys ; 69: 50-57, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31153877

RESUMEN

This paper presents a gait sub-phase detection and prediction approach using surface electromyogram (sEMG) signals, pressure sensors, and the knee angle for a lower-limb power-assist robot. Pattern recognition and machine learning models using sEMG signals have several inherent problems for gait sub-phase detection. These problems are due to recognition delay, lack of consideration for the unique characteristics of sEMG signals based on the subject, and meaningless features. To solve these problems, we propose a new labeling technique based on the heel and toe, a muscle and feature selection, a user-adaptive classifier using a weighted voting technique to achieve gait sub-phase detection, and a gait sub-phase prediction technique using interpolation. Experimental results show that the average accuracies of the proposed labeling, the muscle and feature selection, and the user-adaptive classifier using weighted voting are 7%, 12%, and 17% better, respectively, than the existing methods using physical sensors. Results also show that the average prediction time of the proposed method is 80% faster than the existing methods.


Asunto(s)
Electromiografía , Análisis de la Marcha/métodos , Adulto , Femenino , Talón/fisiología , Humanos , Masculino , Músculos/fisiología , Procesamiento de Señales Asistido por Computador , Adulto Joven
11.
Gene ; 705: 177-180, 2019 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-30986449

RESUMEN

Congenital nystagmus (CN) is a heterogeneous disease that shows variable clinical features. There are a few mutations that are known to cause CN. Among them, a PAX6 mutation is known to cause CN with an extremely high frequency of aniridia. Here, we report on a family with an autosomal dominant PAX6 mutation, c.214G > A (p.Gly72Ser.), who presented with CN in the absence of aniridia. This study describes detailed clinical findings, including videonystagmography and fundus photography findings and emphasizes the importance of screening for the PAX6 gene in patients who present with CN in the absence of aniridia, as this will further elucidate the known phenotypes of PAX6-related diseases.


Asunto(s)
Coloboma/patología , Secuenciación del Exoma/métodos , Nistagmo Congénito/patología , Nervio Óptico/anomalías , Factor de Transcripción PAX6/genética , Mutación Puntual , Preescolar , Coloboma/genética , Femenino , Predisposición Genética a la Enfermedad , Humanos , Masculino , Nistagmo Congénito/genética , Disco Óptico/patología , Nervio Óptico/patología , Linaje , Fenotipo , Grabación en Video
12.
Hum Mutat ; 40(8): 1172-1180, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31033086

RESUMEN

One of most important factors for messenger RNA (mRNA) transcription is the spliceosomal component U1 small nuclear RNA (snRNA), which recognizes 5' splicing donor sites at specific regions in pre-mRNA. Mutations in these sites disrupt U1 snRNA binding and cause abnormal splicing. In this study, we investigated mutations at splice sites in SLC26A4 (HGNC 8818), one of the major causative genes of hearing loss, which may result in the synthesis of abnormal pendrin, the channel protein encoded by the gene. Seventeen SLC26A4 variants with mutations in the U1 snRNA binding sites were assessed by minigene splicing assays, and 11 were found to result in abnormal splicing. Interestingly, eight of the 11 pathogenic mutations were intronic, suggesting the importance of conserved sequences at the intronic splice site. The application of modified U1 snRNA effectively rescued the abnormal splicing for most of these mutations. Although three were cryptic mutations, they were rescued by cotransfection of modified U1 snRNA and modified antisense oligonucleotides. Our results demonstrate the important role of snRNA in SLC26A4 mutations, suggesting the therapeutic potential of modified U1 snRNA and antisense oligonucleotides for neutralizing the pathogenic effect of the splice-site mutations that may result in hearing loss.


Asunto(s)
Pérdida Auditiva Sensorineural/genética , Oligonucleótidos Antisentido/farmacología , ARN Nuclear Pequeño/farmacología , Transportadores de Sulfato/genética , Empalme Alternativo/efectos de los fármacos , Secuencia de Bases , Sitios de Unión , Secuencia Conservada , Células HeLa , Pérdida Auditiva Sensorineural/terapia , Humanos , Intrones , Mutación , Sitios de Empalme de ARN , ARN Nuclear Pequeño/metabolismo , Transportadores de Sulfato/química , Transportadores de Sulfato/metabolismo
13.
Mol Ther Methods Clin Dev ; 13: 197-204, 2019 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-30805407

RESUMEN

Targeting specific cell types in the mammalian inner ear is important for treating genetic hearing loss due to the different cell type-specific functions. Adeno-associated virus (AAV) is an efficient in vivo gene transfer vector, and it has demonstrated promise for treating genetic hearing loss. Although more than 100 AAV serotypes have been identified, few studies have investigated whether AAV can be distributed to specific inner ear cell types. Here we screened three EGFP-AAV reporter constructs (serotypes DJ, DJ8, and PHP.B) in the neonatal mammalian inner ear by injection via the round window membrane to determine the cellular specificity of the AAV vectors. Sensory hair cells, supporting cells, cells in Reissner's membrane, interdental cells, and root cells were successfully transduced. Hair cells in the cochlear sensory epithelial region were the most frequently transduced cell type by all tested AAV serotypes. The recombinant DJ serotype most effectively transduced a range of cell types at a high rate. Our findings provide a basis for improving treatment of hereditary hearing loss using targeted AAV-mediated gene therapy.

15.
Redox Biol ; 20: 544-555, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30508699

RESUMEN

Mitochondrial NADP+-dependent isocitrate dehydrogenase 2 (IDH2) is a major NADPH-producing enzyme which is essential for maintaining the mitochondrial redox balance in cells. We sought to determine whether IDH2 deficiency induces mitochondrial dysfunction and modulates auditory function, and investigated the protective potential of an antioxidant agent against reactive oxygen species (ROS)-induced cochlear damage in Idh2 knockout (Idh2-/-) mice. Idh2 deficiency leads to damages to hair cells and spiral ganglion neurons (SGNs) in the cochlea and ultimately to apoptotic cell death and progressive sensorineural hearing loss in Idh2-/- mice. Loss of IDH2 activity led to decreased levels of NADPH and glutathione causing abnormal ROS accumulation and oxidative damage, which might trigger apoptosis signal in hair cells and SGNs in Idh2-/- mice. We performed ex vivo experiments to determine whether administration of mitochondria-targeted antioxidants might protect or induce recovery of cells from ROS-induced apoptosis in Idh2-deficient mouse cochlea. MitoQ almost completely neutralized the H2O2-induced ototoxicity, as the survival rate of Idh2-/- hair cells were restored to normal levels. In addition, the lack of IDH2 led to the accumulation of mitochondrial ROS and the depolarization of ΔΨm, resulting in hair cell loss. In the present study, we identified that IDH2 is indispensable for the functional maintenance and survival of hair cells and SGNs. Moreover, the hair cell degeneration caused by IDH2 deficiency can be prevented by MitoQ, which suggests that Idh2-/- mice could be a valuable animal model for evaluating the therapeutic effects of various antioxidant candidates to overcome ROS-induced hearing loss.


Asunto(s)
Pérdida Auditiva Sensorineural/genética , Pérdida Auditiva Sensorineural/metabolismo , Isocitrato Deshidrogenasa/deficiencia , Mitocondrias/genética , Mitocondrias/metabolismo , Compuestos Organofosforados/farmacología , Especies Reactivas de Oxígeno/metabolismo , Ubiquinona/análogos & derivados , Animales , Apoptosis/genética , Biomarcadores/metabolismo , Modelos Animales de Enfermedad , Técnica del Anticuerpo Fluorescente , Células Ciliadas Auditivas/efectos de los fármacos , Células Ciliadas Auditivas/metabolismo , Pérdida Auditiva Sensorineural/tratamiento farmacológico , Pérdida Auditiva Sensorineural/fisiopatología , Homocigoto , Inmunohistoquímica , Ratones , Ratones Noqueados , Oxidación-Reducción , Estrés Oxidativo , Ganglio Espiral de la Cóclea/citología , Ganglio Espiral de la Cóclea/efectos de los fármacos , Ganglio Espiral de la Cóclea/metabolismo , Ubiquinona/farmacología
16.
R Soc Open Sci ; 5(10): 181330, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30473862

RESUMEN

Zinc ferrite thin films were deposited using a radio-frequency-sputtering method on glass substrates. As-deposited films were annealed at 200°C for 1, 3 and 5 h, respectively. X-ray diffraction studies revealed the amorphous nature of as-grown and annealed films. Thickness of as-deposited film is 96 nm as determined from Rutherford backscattering spectroscopy which remains almost invariant with annealing. Transmission electron microscopic investigations envisaged a low degree of crystalline order in as-deposited and annealed films. Thicknesses estimated from these measurements were almost 62 nm. Roughness values of these films were almost 1-2 nm as determined from atomic force microscopy. X-ray reflectivity measurements further support the results obtained from TEM and AFM. Near-edge X-ray absorption fine structure measurements envisaged 3+ and 2+ valence states of Fe and Zn ions in these films. UV-Vis spectra of these films were characterized by a sharp absorption in the UV region. All films exhibited almost the same value of optical band gap within experimental error, which is close to 2.86 eV.

17.
Cell Death Dis ; 9(8): 827, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-30068942

RESUMEN

Cisplatin, a small platinum-containing molecule, is a widely used, highly effective anticancer drug. However, severe side effects have been found in cancer patients treated with cisplatin, including nephrotoxicity, neurotoxicity, and ototoxicity. These cisplatin-induced side effects can have a major impact on patient quality of life, including social development problems in pediatric patients that develop hearing loss. Previous studies have suggested that the major cause of cisplatin-induced ototoxicity is abnormal accumulation of reactive oxygen species (ROS) and oxidative stress. Alpha-lipoic acid (ALA), one of the most effective antioxidants, is known to be involved in the cellular antioxidant system and may have a protective effect on cisplatin-induced ototoxicity. However, the therapeutic effect of ALA on damaged hearing function and its detailed mechanism of action are not fully understood. This study focused on determining whether ALA has a potential as a protective and/or therapeutic agent for cisplatin-induced ototoxicity. Histological and physiological analyses were performed using cisplatin-treated mouse cochlea and HEI-OC1 culture cells in pre- and post-treatment with ALA in vitro and in vivo. We found that ALA contributes to protecting mitochondrial function by preventing ROS accumulation and inhibiting apoptotic cell death. Importantly, post-treatment with ALA consistently showed an almost equal restorative effect to pretreatment, in vitro and in vivo, supporting the possible use of ALA as a therapeutic agent for cisplatin-induced ototoxicity. This study is the first report on a strong therapeutic potential of ALA to rescue ototoxic hearing loss caused by cisplatin, and our data provide key evidence that ALA may act as a reducing agent for glutathione disulfide to increase glutathione levels on behalf of glutathione reductase. This result was consistent in both cultured cells and the mouse model, which improves the clinical value of ALA for therapy of cisplatin-induced ototoxicity.


Asunto(s)
Antineoplásicos/toxicidad , Cisplatino/toxicidad , Pérdida Auditiva/prevención & control , Sustancias Protectoras/uso terapéutico , Ácido Tióctico/uso terapéutico , Animales , Apoptosis/efectos de los fármacos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Oído Interno/patología , Femenino , Puntos de Control de la Fase G1 del Ciclo Celular/efectos de los fármacos , Células Ciliadas Auditivas/citología , Células Ciliadas Auditivas/efectos de los fármacos , Células Ciliadas Auditivas/metabolismo , Pérdida Auditiva/inducido químicamente , Masculino , Ratones , Sustancias Protectoras/farmacología , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ganglio Espiral de la Cóclea/citología , Ganglio Espiral de la Cóclea/efectos de los fármacos , Ganglio Espiral de la Cóclea/metabolismo , Estría Vascular/efectos de los fármacos , Estría Vascular/fisiología , Ácido Tióctico/farmacología , Proteína X Asociada a bcl-2/metabolismo
18.
Nanomedicine ; 14(7): 2095-2102, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29969727

RESUMEN

The-state-of-art CRISPR/Cas9 is one of the most powerful among the approaches being developed to rescue fundamental causes of gene-based inheritable diseases. Several strategies for delivering such genome editing materials have been developed, but the safety, efficacy over time, cost of production, and gene size limitations are still under debate and must be addressed to further improve applications. In this study, we evaluated branched forms of the polyethylenimine (PEI) - branched PEI 25 kDa (BPEI-25K) - and found that it could efficiently deliver CRISPR/Cas9 plasmids. Plasmid DNA expressing both guide RNA and Cas9 to target the Slc26a4 locus was successfully delivered into Neuro2a cells and meditated genome editing within the targeted locus. Our results demonstrated that BPEI-25K is a promising non-viral vector to deliver the CRISPR/Cas9 system in vitro to mediate targeted gene therapy, and these findings contribute to an understanding of CRISPR/Cas9 delivery that may enable development of successful in vivo techniques.


Asunto(s)
Sistemas CRISPR-Cas , Sistemas de Liberación de Medicamentos , Terapia Genética , Neuroblastoma/terapia , Plásmidos , Polietileneimina/química , Transportadores de Sulfato/antagonistas & inhibidores , Animales , Proliferación Celular , Ratones , Neuroblastoma/genética , Transportadores de Sulfato/genética , Células Tumorales Cultivadas
19.
Mol Neurobiol ; 55(8): 6518-6532, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29327200

RESUMEN

The exocyst, an octameric protein complex consisting of Exoc1 through Exoc8, was first determined to regulate exocytosis by targeting vesicles to the plasma membrane in yeast to mice. In addition to this fundamental role, the exocyst complex has been implicated in other cellular processes. In this study, we investigated the role of the exocyst in cochlear development and hearing by targeting EXOC5, a central exocyst component. Deleting Exoc5 in the otic epithelium with widely used Cre lines resulted in early lethality. Thus, we generated two different inner ear-specific Exoc5 knockout models by crossing Gfi1Cre mice with Exoc5f/f mice for hair cell-specific deletion (Gfi1Cre/+;Exoc5f/f) and by in utero delivery of rAAV-iCre into the otocyst of embryonic day 12.5 for deletion throughout the otic epithelium (rAAV2/1-iCre;Exoc5f/f). Gfi1Cre/+;Exoc5f/f mice showed relatively normal hair cell morphology until postnatal day 20, after which hair cells underwent apoptosis accompanied by disorganization of stereociliary bundles, resulting in progressive hearing loss. rAAV2/1-iCre;Exoc5f/f mice exhibited abnormal neurite morphology, followed by apoptotic degeneration of spiral ganglion neurons (SGNs) and hair cells, which led to profound and early-onset hearing loss. These results demonstrate that Exoc5 is essential for the normal development and survival of cochlear hair cells and SGNs, as well as the functional maintenance of hearing.


Asunto(s)
Células Ciliadas Auditivas/metabolismo , Células Ciliadas Auditivas/patología , Audición , Neuronas/patología , Ganglio Espiral de la Cóclea/patología , Proteínas de Transporte Vesicular/metabolismo , Animales , Apoptosis , Supervivencia Celular , Proteínas de Unión al ADN/metabolismo , Dependovirus/metabolismo , Epitelio/patología , Células Ciliadas Auditivas/ultraestructura , Pérdida Auditiva/metabolismo , Pérdida Auditiva/patología , Integrasas/metabolismo , Ratones Endogámicos C57BL , Degeneración Nerviosa/patología , Neuritas/metabolismo , Neuronas/metabolismo , Órgano Espiral/metabolismo , Órgano Espiral/ultraestructura , Estereocilios/metabolismo , Estereocilios/ultraestructura , Factores de Transcripción/metabolismo , Proteínas de Transporte Vesicular/deficiencia
20.
Gene ; 627: 233-238, 2017 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-28647561

RESUMEN

Hereditary hearing loss (HHL) is a common genetically heterogeneous disorder, which follows Mendelian inheritance in humans. Because of this heterogeneity, the identification of the causative gene of HHL by linkage analysis or Sanger sequencing have shown economic and temporal limitations. With recent advances in next-generation sequencing (NGS) techniques, rapid identification of a causative gene via massively parallel sequencing is now possible. We recruited a Korean family with three generations exhibiting autosomal dominant inheritance of hearing loss (HL), and the clinical information about this family revealed that there are no other symptoms accompanied with HL. To identify a causative mutation of HL in this family, we performed whole-exome sequencing of 4 family members, 3 affected and an unaffected. As the result, A novel splicing mutation, c.763+1G>T, in the solute carrier family 17, member 8 (SLC17A8) gene was identified in the patients, and the genotypes of the mutation were co-segregated with the phenotype of HL. Additionally, this mutation was not detected in 100 Koreans with normal hearing. Via NGS, we detected a novel splicing mutation that might influence the hearing ability within the patients with autosomal dominant non-syndromic HL. Our data suggests that this technique is a powerful tool to discover causative genetic factors of HL and facilitate diagnoses of the primary cause of HHL.


Asunto(s)
Pérdida Auditiva/genética , Mutación , Empalme del ARN , Proteínas de Transporte Vesicular de Glutamato/genética , Adulto , Anciano , Exoma , Femenino , Humanos , Masculino , Linaje , República de Corea
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...