Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
2.
Biomed Pharmacother ; 176: 116799, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38805969

RESUMEN

BACKGROUND: The overstoring of surplus calories in mature adipocytes causes obesity and abnormal metabolic activity. The anti-obesity effect of a Celosia cristata (CC) total flower extract was assessed in vitro, using 3T3-L1 pre-adipocytes and mouse adipose-derived stem cells (ADSCs), and in vivo, using high-fat diet (HFD)-treated C57BL/6 male mice. METHODS: CC extract was co-incubated during adipogenesis in both 3T3-L1 cells and ADSCs. After differentiation, lipid droplets were assessed by oil red O staining, adipogenesis and lipolytic factors were evaluated, and intracellular triglyceride and glycerol concentrations were analyzed. For in vivo experiments, histomorphological analysis, mRNA expression levels of adipogenic and lipolytic factors in adipose tissue, blood plasma analysis, metabolic profiles were investigated. RESULTS: CC treatment significantly prevented adipocyte differentiation and lipid droplet accumulation, reducing adipogenesis-related factors and increasing lipolysis-related factors. Consequently, the intracellular triacylglycerol content was diminished, whereas the glycerol concentration in the cell supernatant increased. Mice fed an HFD supplemented with the CC extract exhibited decreased HFD-induced weight gain with metabolic abnormalities such as intrahepatic lipid accumulation and adipocyte hypertrophy. Improved glucose utilization and insulin sensitivity were observed, accompanied by the amelioration of metabolic disturbances, including alterations in liver enzymes and lipid profiles, in CC-treated mice. Moreover, the CC extract helped restore the disrupted energy metabolism induced by the HFD, based on a metabolic animal monitoring system. CONCLUSION: This study suggests that CC total flower extract is a potential natural herbal supplement for the prevention and management of obesity.


Asunto(s)
Células 3T3-L1 , Adipocitos , Adipogénesis , Fármacos Antiobesidad , Celosia , Dieta Alta en Grasa , Flores , Ratones Endogámicos C57BL , Obesidad , Extractos Vegetales , Animales , Extractos Vegetales/farmacología , Extractos Vegetales/aislamiento & purificación , Masculino , Ratones , Fármacos Antiobesidad/farmacología , Fármacos Antiobesidad/aislamiento & purificación , Flores/química , Adipogénesis/efectos de los fármacos , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Dieta Alta en Grasa/efectos adversos , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Celosia/química , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Lipólisis/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos
3.
JMIR Ment Health ; 11: e50259, 2024 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-38683658

RESUMEN

BACKGROUND: Limited awareness, social stigma, and access to mental health professionals hinder early detection and intervention of internet gaming disorder (IGD), which has emerged as a significant concern among young individuals. Prevalence estimates vary between 0.7% and 15.6%, and its recognition in the International Classification of Diseases, 11th Revision and Diagnostic and Statistical Manual of Mental Disorders, 5th Edition underscores its impact on academic functioning, social isolation, and mental health challenges. OBJECTIVE: This study aimed to uncover digital phenotypes for the early detection of IGD among adolescents in learning settings. By leveraging sensor data collected from student tablets, the overarching objective is to incorporate these digital indicators into daily school activities to establish these markers as a mental health screening tool, facilitating the early identification and intervention for IGD cases. METHODS: A total of 168 voluntary participants were engaged, consisting of 85 students with IGD and 83 students without IGD. There were 53% (89/168) female and 47% (79/168) male individuals, all within the age range of 13-14 years. The individual students learned their Korean literature and mathematics lessons on their personal tablets, with sensor data being automatically collected. Multiple regression with bootstrapping and multivariate ANOVA were used, prioritizing interpretability over predictability, for cross-validation purposes. RESULTS: A negative correlation between IGD Scale (IGDS) scores and learning outcomes emerged (r166=-0.15; P=.047), suggesting that higher IGDS scores were associated with lower learning outcomes. Multiple regression identified 5 key indicators linked to IGD, explaining 23% of the IGDS score variance: stroke acceleration (ß=.33; P<.001), time interval between keys (ß=-0.26; P=.01), word spacing (ß=-0.25; P<.001), deletion (ß=-0.24; P<.001), and horizontal length of strokes (ß=0.21; P=.02). Multivariate ANOVA cross-validated these findings, revealing significant differences in digital phenotypes between potential IGD and non-IGD groups. The average effect size, measured by Cohen d, across the indicators was 0.40, indicating a moderate effect. Notable distinctions included faster stroke acceleration (Cohen d=0.68; P=<.001), reduced word spacing (Cohen d=.57; P=<.001), decreased deletion behavior (Cohen d=0.33; P=.04), and longer horizontal strokes (Cohen d=0.34; P=.03) in students with potential IGD compared to their counterparts without IGD. CONCLUSIONS: The aggregated findings show a negative correlation between IGD and learning performance, highlighting the effectiveness of digital markers in detecting IGD. This underscores the importance of digital phenotyping in advancing mental health care within educational settings. As schools adopt a 1-device-per-student framework, digital phenotyping emerges as a promising early detection method for IGD. This shift could transform clinical approaches from reactive to proactive measures.


Asunto(s)
Diagnóstico Precoz , Trastorno de Adicción a Internet , Estudiantes , Adolescente , Femenino , Humanos , Masculino , Trastorno de Adicción a Internet/epidemiología , Trastorno de Adicción a Internet/diagnóstico , Fenotipo , República de Corea/epidemiología , Estudiantes/psicología
4.
Int J Mol Sci ; 25(3)2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38338667

RESUMEN

mRNA vaccines have emerged as a pivotal tool in combating COVID-19, offering an advanced approach to immunization. A key challenge with these vaccines is their need for extremely-low-temperature storage, which affects their stability and shelf life. Our research addresses this issue by enhancing the stability of mRNA vaccines through a novel cationic lipid, O,O'-dimyristyl-N-lysyl aspartate (DMKD). DMKD effectively binds with mRNA, improving vaccine stability. We also integrated phosphatidylserine (PS) into the formulation to boost immune response by promoting the uptake of these nanoparticles by immune cells. Our findings reveal that DMKD-PS nanoparticles maintain structural integrity under long-term refrigeration and effectively protect mRNA. When tested, these nanoparticles containing green fluorescent protein (GFP) mRNA outperformed other commercial lipid nanoparticles in protein expression, both in immune cells (RAW 264.7 mouse macrophage) and non-immune cells (CT26 mouse colorectal carcinoma cells). Importantly, in vivo studies show that DMKD-PS nanoparticles are safely eliminated from the body within 48 h. The results suggest that DMKD-PS nanoparticles present a promising alternative for mRNA vaccine delivery, enhancing both the stability and effectiveness of these vaccines.


Asunto(s)
Liposomas , Nanopartículas , Vacunas , Animales , Ratones , ARN Mensajero/química , Vacunas de ARNm , Transfección , Células Presentadoras de Antígenos , Nanopartículas/química
5.
Front Pharmacol ; 14: 1228646, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38116084

RESUMEN

Sodium-glucose cotransporter 2 (SGLT2) inhibitors have recently emerged as novel cardioprotective agents. However, their direct impact on cardiomyocyte injury is yet to be studied. In this work, we investigate the underlying molecular mechanisms of empagliflozin (EMPA), an SGLT2 inhibitor, in mitigating palmitate (PA)-induced cardiomyocyte injury in H9c2 cells. We found that EMPA significantly attenuated PA-induced impairments in insulin sensitivity, ER stress, inflammatory cytokine gene expression, and cellular apoptosis. Additionally, EMPA elevated AMP levels, activated the AMPK pathway, and increased carnitine palmitoyl transferase1 (CPT1) gene expression, which collectively enhanced fatty acid oxidation and reduced stress signals. This study reveals a novel mechanism of EMPA's protective effects against PA-induced cardiomyocyte injury, providing new therapeutic insights into EMPA as a cardioprotective agent.

6.
Int J Mol Sci ; 24(5)2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36902181

RESUMEN

Obesity is characterized by the excessive accumulation of mature adipocytes that store surplus energy in the form of lipids. In this study, we investigated the inhibitory effects of loganin on adipogenesis in mouse preadipocyte 3T3-L1 cells and primary cultured adipose-derived stem cells (ADSCs) in vitro and in mice with ovariectomy (OVX)- and high-fat diet (HFD)-induced obesity in vivo. For an in vitro study, loganin was co-incubated during adipogenesis in both 3T3-L1 cells and ADSCs, lipid droplets were evaluated by oil red O staining, and adipogenesis-related factors were assessed by qRT-PCR. For in vivo studies, mouse models of OVX- and HFD-induced obesity were orally administered with loganin, body weight was measured, and hepatic steatosis and development of excessive fat were evaluated by histological analysis. Loganin treatment reduced adipocyte differentiation by accumulating lipid droplets through the downregulation of adipogenesis-related factors, including peroxisome proliferator-activated receptor γ (Pparg), CCAAT/enhancer-binding protein α (Cebpa), perilipin 2 (Plin2), fatty acid synthase (Fasn), and sterol regulatory element binding transcription protein 1 (Srebp1). Loganin administration prevented weight gain in mouse models of obesity induced by OVX and HFD. Further, loganin inhibited metabolic abnormalities, such as hepatic steatosis and adipocyte enlargement, and increased the serum levels of leptin and insulin in both OVX- and HFD-induced obesity models. These results suggest that loganin is a potential candidate for preventing and treating obesity.


Asunto(s)
Adipogénesis , Fármacos Antiobesidad , Iridoides , Animales , Ratones , Células 3T3-L1 , Adipogénesis/efectos de los fármacos , Fármacos Antiobesidad/farmacología , Dieta Alta en Grasa , Ratones Endogámicos C57BL , Obesidad/metabolismo , PPAR gamma/metabolismo , Aumento de Peso , Iridoides/farmacología
7.
Int J Mol Sci ; 24(2)2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36674651

RESUMEN

Rheumatoid arthritis (RA) is an autoimmune disease of the joint synovial membranes. RA is difficult to prevent or treat; however, blocking proinflammatory cytokines is a general therapeutic strategy. Pulsed electromagnetic field (PEMF) is reported to alleviate RA's inflammatory response and is being studied as a non-invasive physical therapy. In this current study, PEMF decreased paw inflammation in a collagen-induced arthritis (CIA) murine model. PEMF treatment at 10 Hz was more effective in ameliorating arthritis than at 75 Hz. In the PEMF-treated CIA group, the gross inflammation score and cartilage destruction were lower than in the untreated CIA group. The CIA group treated with PEMF also showed lower serum levels of IL-1ß but not IL-6, IL-17, or TNF-α. Serum levels of total anti-type II collagen IgG and IgG subclasses (IgG1, IgG2a, and IgG2b) remained unchanged. In contrast, tissue protein levels of IL-1ß, IL-6, TNF-α, receptor activator of nuclear factor kappa-Β (RANK), RANK ligand (RANKL), IL-6 receptor (IL-6R), and TNF-α receptor1 (TNFR1) were all lower in the ankle joints of the PEMF-treated CIA group compared with the CIA group. The results of this study suggest that PEMF treatment can preserve joint morphology cartilage and delay the occurrence of CIA. PEMF has potential as an effective adjuvant therapy that can suppress the progression of RA.


Asunto(s)
Artritis Experimental , Artritis Reumatoide , Ratones , Animales , Artritis Experimental/tratamiento farmacológico , Factor de Necrosis Tumoral alfa/uso terapéutico , Modelos Animales de Enfermedad , Campos Electromagnéticos , Citocinas , Artritis Reumatoide/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Inmunoglobulina G/uso terapéutico
8.
Int J Mol Sci ; 25(1)2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38203534

RESUMEN

Enterotoxigenic Bacteroides fragilis (ETBF) causes colitis and is implicated in inflammatory bowel diseases and colorectal cancer. The ETBF-secreted B. fragilis toxin (BFT) causes cleavage of the adherence junction, the E-cadherin, resulting in the large intestine showing IL-17A inflammation in wild-type (WT) mice. However, intestinal pathology by ETBF infection is not fully understood in B-cell-deficient mice. In this study, ETBF-mediated inflammation was characterized in B-cell-deficient mice (muMT). WT or muMT C57BL/6J mice were orally inoculated with ETBF and examined for intestinal inflammation. The indirect indicators for colitis (loss of body weight and cecum weight, as well as mortality) were increased in muMT mice compared to WT mice. Histopathology and inflammatory genes (Nos2, Il-1ß, Tnf-α, and Cxcl1) were elevated and persisted in the large intestine of muMT mice compared with WT mice during chronic ETBF infection. However, intestinal IL-17A expression was comparable between WT and muMT mice during infection. Consistently, flow cytometry analysis applied to the mesenteric lymph nodes showed a similar Th17 immune response in both WT and muMT mice. Despite elevated ETBF colonization, the ETBF-infected muMT mice showed no histopathology or inflammation in the small intestine. In conclusion, B cells play a protective role in ETBF-induced colitis, and IL-17A inflammation is not attributed to prompted colitis in B-cell-deficient mice. Our data support the fact that B cells are required to ameliorate ETBF infection-induced colitis in the host.


Asunto(s)
Infecciones Bacterianas , Colitis , Animales , Ratones , Ratones Endogámicos C57BL , Bacteroides fragilis , Interleucina-17/genética , Inflamación
9.
Int J Mol Sci ; 23(22)2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36430605

RESUMEN

Osteoporosis is a disease caused by impaired bone remodeling that is especially prevalent in elderly and postmenopausal women. Although numerous chemical agents have been developed to prevent osteoporosis, arguments remain regarding their side effects. Here, we demonstrated the effects of loganin, a single bioactive compound isolated from Cornus officinalis, on osteoblast and osteoclast differentiation in vitro and on ovariectomy (OVX)-induced osteoporosis in mice in vivo. Loganin treatment increased the differentiation of mouse preosteoblast cells into osteoblasts and suppressed osteoclast differentiation in primary monocytes by regulating the mRNA expression levels of differentiation markers. Similar results were obtained in an osteoblast-osteoclast co-culture system, which showed that loganin enhanced alkaline phosphatase (ALP) activity and reduced TRAP activity. In in vivo experiments, the oral administration of loganin prevented the OVX-induced loss of bone mineral density (BMD) and microstructure in mice and improved bone parameters. In addition, loganin significantly increased the serum OPG/RANKL ratio and promoted osteogenic activity during bone remodeling. Our findings suggest that loganin could be used as an alternative treatment to protect against osteoporosis.


Asunto(s)
Osteogénesis , Osteoporosis , Femenino , Animales , Ratones , Iridoides , Osteoblastos , Osteoporosis/tratamiento farmacológico
10.
Oxid Med Cell Longev ; 2022: 4122253, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36225173

RESUMEN

Methods: Polyphenolic and iridoid constituents of extracts were analyzed qualitatively and quantitatively using the ultraperformance liquid chromatography system coupled with a quadrupole-time of flight mass spectrometry. Primary cultured osteoblasts isolated from mouse calvarias and osteoclast-lineage primary cultured monocytes isolated from mouse bone marrow were used for the assessment of osteoblast and osteoclast differentiation. In the osteoblast culture, cellular viability, alkaline phosphatase (ALP) activity, ALP staining, and mRNA expression of Alpl and Runx2 were examined. In the osteoclast culture, the examined parameters were cellular viability, tartrate-resistant acid phosphatase (TRAP) activity and staining, and mRNA expression of Nfatc1, Ctsk, and Acp. Results: A total of 41 main compounds of iridoids, anthocyanins, hydrolysable tannins, phenolic acids, and flavonols were identified in the three extracts. RED EXT1 contained most of the tested polyphenols and iridoids and was the only extract containing anthocyanins. YL EXT2 contained only one iridoid, loganic acid and gallic acid. YL EXT3 comprised a mixture of iridoids and polyphenols. RED EXT1, YL EXT 2, and to a lesser extent YL EXT3 promoted osteoblast differentiation increasing significantly ALP activity and the amount of ALP-positive stained cells. All extracts upregulated mRNA expression of Alpl and Runx2. RED EXT1 caused the most significant decrease in TRAP activity and the numbers of TRAP-positive multinucleated cells. RED EXT1 caused also the most significant downregulation of mRNA expression of osteoclast related genes Nfatc1, Ctsk, and Acp5. Extracts from yellow fruits, mostly YL EXT2 caused lower, but still significant inhibitory effect on TRAP and osteoclast related genes. Conclusions: The main conclusion of our study is that all three extracts, especially RED EXT1 from red cornelian cherry fruits, possess the antiosteoporotic potential and may be a promising phytomedicine candidate for the prevention and treatment of osteoporosis.


Asunto(s)
Cornus , Fosfatasa Alcalina , Animales , Antocianinas/farmacología , Diferenciación Celular , Subunidad alfa 1 del Factor de Unión al Sitio Principal , Cornus/química , Flavonoles , Frutas/química , Ácido Gálico/análisis , Iridoides/química , Iridoides/farmacología , Ratones , Osteoblastos , Osteoclastos , Extractos Vegetales/análisis , Extractos Vegetales/farmacología , Polifenoles/química , ARN Mensajero , Taninos , Fosfatasa Ácida Tartratorresistente/análisis
11.
Int J Mol Sci ; 23(17)2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-36077368

RESUMEN

The accumulation of hepatic lipid droplets (LDs) is a hallmark of non-alcoholic fatty liver disease (NAFLD). Appropriate degradation of hepatic LDs and oxidation of complete free fatty acids (FFAs) are important for preventing the development of NAFLD. Histone deacetylase (HDAC) is involved in the impaired lipid metabolism seen in high-fat diet (HFD)-induced obese mice. Here, we evaluated the effect of MS-275, an inhibitor of HDAC1/3, on the degradation of hepatic LDs and FFA oxidation in HFD-induced NAFLD mice. To assess the dynamic degradation of hepatic LDs and FFA oxidation in fatty livers of MS-275-treated HFD C57BL/6J mice, an intravital two-photon imaging system was used and biochemical analysis was performed. The MS-275 improved hepatic metabolic alterations in HFD-induced fatty liver by increasing the dynamic degradation of hepatic LDs and the interaction between LDs and lysozyme in the fatty liver. Numerous peri-droplet mitochondria, lipolysis, and lipophagy were observed in the MS-275-treated mouse fatty liver. Biochemical analysis revealed that the lipolysis and autophagy pathways were activated in MS-275 treated mouse liver. In addition, MS-275 reduced the de novo lipogenesis, but increased the mitochondrial oxidation and the expression levels of oxidation-related genes, such as PPARa, MCAD, CPT1b, and FGF21. Taken together, these results suggest that MS-275 stimulates the degradation of hepatic LDs and mitochondrial free fatty acid oxidation, thus protecting against HFD-induced NAFLD.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Animales , Benzamidas , Dieta Alta en Grasa/efectos adversos , Ácidos Grasos no Esterificados/metabolismo , Gotas Lipídicas/metabolismo , Metabolismo de los Lípidos , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Piridinas
12.
Int J Mol Sci ; 23(10)2022 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-35628471

RESUMEN

Despite advances in medicine, mortality due to sepsis has not decreased. Pulsed electromagnetic field (PEMF) therapy is emerging as an alternative treatment in many inflammation-related diseases. However, there are few studies on the application of PEMF therapy to sepsis. In the current study, we examined the effect of PEMF therapy on a mouse model of lipopolysaccharide (LPS)-induced septic shock. Mice injected with LPS and treated with PEMF showed higher survival rates compared with the LPS group. The increased survival was correlated with decreased levels of pro-inflammatory cytokine mRNA expression and lower serum nitric oxide levels and nitric oxide synthase 2 mRNA expression in the liver compared with the LPS group. In the PEMF + LPS group, there was less organ damage in the liver, lungs, spleen, and kidneys compared to the LPS group. To identify potential gene targets of PEMF treatment, microarray analysis was performed, and the results showed that 136 genes were up-regulated, and 267 genes were down-regulated in the PEMF + LPS group compared to the LPS group. These results suggest that PEMF treatment can dramatically decrease septic shock through the reduction of pro-inflammatory cytokine gene expression. In a clinical setting, PEMF may provide a beneficial effect for patients with bacteria-induced sepsis and reduce septic shock-induced mortality.


Asunto(s)
Campos Electromagnéticos , Magnetoterapia , Sepsis , Choque Séptico , Animales , Citocinas/genética , Humanos , Lipopolisacáridos , Ratones , ARN Mensajero , Sepsis/inducido químicamente , Sepsis/terapia , Choque Séptico/inducido químicamente , Choque Séptico/terapia
13.
Biomedicines ; 10(4)2022 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-35453577

RESUMEN

Enterotoxigenic Bacteroides fragilis (ETBF) has emerged as a gut microbiome pathogen that can promote colitis associated cancer in humans. ETBF secretes the metalloprotease, B. fragilis toxin (BFT), which can induce ectodomain cleavage of E-cadherin and IL-8 secretion through the ß-catenin, NF-κB, and MAPK pathways in intestinal epithelial cells. However, it is still unclear whether E-cadherin cleavage is required for BFT induced IL-8 secretion and the relative contribution of these signaling pathways to IL-8 secretion. Using siRNA knockdown and CRISPR knockout studies, we found that E-cadherin cleavage is required for BFT mediated IL-8 secretion. In addition, genetic ablation of ß-catenin indicates that ß-catenin is required for the BFT induced increase in transcriptional activity of NF-κB, p65 nuclear localization and early IL-8 secretion. These results suggest that BFT induced ß-catenin signaling is upstream of NF-κB activation. However, despite ß-catenin gene disruption, BFT still activated the MAPK pathway, suggesting that the BFT induced activation of the MAPK signaling pathway is independent from the E-cadherin/ß-catenin/NF-κB pathway. These findings show that E-cadherin and ß-catenin play a critical role in acute inflammation following ETBF infection through the inflammatory response to BFT in intestinal epithelial cells.

14.
Medicina (Kaunas) ; 58(4)2022 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-35454305

RESUMEN

Background and Objectives: Traditional herbal medicines are becoming more popular as a complementary medication as they have the advantages of being mostly harmless and safe, causing fewer side-effects than conventional medications. Here, we demonstrate the inhibitory effects of the combination of Ulmus davidiana (UD) and Cornus officinalis (CO) extracts on osteoporotic bone loss. Materials and Methods: This study presented osteogenic effects in primary cultured osteoblasts, pre-osteoblastic MC3T3-E1 cell lines, and osteoclastogenic effects in osteoclasts derived from bone marrow monocytes, and finally, protective effects on bone loss in an ovariectomy (OVX)-induced osteoporotic animal model. Results: A significant increase in alkaline phosphatase (ALP) activity was observed following treatment with UD and CO mixtures (8:2, 7:3, and 5:5 ratios) and individual UD and CO extracts, with the highest ALP activity being detected for the treatment with UD and CO extracts at a 5:5 ratio. An optimal ratio of UD and CO (UC) extract promoted osteoblast differentiation in both pre-osteoblastic cells and primary osteoblasts by increasing osteoblastic markers such as Alpl, Runx2, and Bglap. However, treatment with the UC extract inhibited osteoclast differentiation with a decreased expression of osteoclastogenesis-related genes, including Ctsk, Acp5, Mmp9, and Nfatc1. In addition, UC treatment prevented osteoporotic bone loss in OVX mice and improved impaired skeletal structure parameters. Conclusions: This study suggests that combined UD and CO extracts may be a beneficial traditional medicine for the prevention of postmenopausal osteoporosis.


Asunto(s)
Cornus , Osteoporosis Posmenopáusica , Ulmus , Animales , Diferenciación Celular , Femenino , Humanos , Ratones , Osteoclastos , Osteoporosis Posmenopáusica/tratamiento farmacológico , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Ulmus/química
15.
Antioxidants (Basel) ; 12(1)2022 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-36670908

RESUMEN

Osteoarthritis (OA) is the progressive destruction of articular cartilage with severe symptoms, including pain and stiffness. We investigated the anti-osteoarthritic effects of Prunella vulgaris (PV) and Gentiana lutea (GL) extract in primary cultured chondrocytes RAW 264.7 cells in vitro and destabilization of the medial meniscus (DMM)-induced OA mice in vivo. Primary chondrocytes were induced with IL-1ß, and RAW 264.7 cells were treated with LPS and co-incubated with either individual extracts of PV and GL or different ratios of PV and GL mixture. For the OA animal model, the medial meniscus (DMM) was destabilized in 9-week-old male C57BL/6 mice. Treatment of individual PV and GL and combination of PV and GL extracts inhibited the mRNA expression level of COX2 in chondrocytes and RAW 264.7 cells. The optimized inhibitory effect was attained with a PV and GL combination at an 8:2 ratio (PG) without cytotoxic effects. PG extracts prevented the expression of catabolic factors (COX2, Mmp3, Mmp9, and Mmp13) and inflammatory mediator levels (PGE2 and collagenase). In addition, PG decreased subchondral sclerosis and increased BMD in the subchondral region of DMM-induced OA mice with protection of articular cartilage destruction by inhibiting inflammatory processes. This study suggests that PG may be an alternative medicinal herb for treatment of OA.

16.
Sci Rep ; 11(1): 24195, 2021 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-34921221

RESUMEN

Delivery of automatic electrical defibrillator (AED) by unmanned aerial vehicle (UAV) was suggested for out-of-hospital cardiac arrest (OHCA). The goal of this study is to assess the effect of topographic and weather conditions on call to AED attach time by UAV-AED. We included OHCA patients from 2013 to 2016 in Seoul, South Korea. We developed a UAV-AED flight simulator using topographic information of Seoul for Euclidean and topographic flight pathway including vertical flight to overcome high-rise structures. We used 4 kinds of UAV flight scenarios according to weather conditions or visibility. Primary outcome was emergency medical service (EMS) call to AED attach time. Secondary outcome was pre-arrival rate of UAV-AED before current EMS based AED delivery. Call to AED attach time in topographic pathway was 7.0 min in flight and control advanced UAV and 8.0 min in basic UAV model. Pre-arrival rate in Euclidean pathway was 38.0% and 16.3% for flight and control advanced UAV and basic UAV. Pre-arrival rate in the topographic pathway was 27.0% and 11.7%, respectively. UAV-AED topographic flight took longer call to AED attach time than Euclidean pathway. Pre-arrival rate of flight and control advanced UAV was decreased in topographic flight pathway compared to Euclidean pathway.


Asunto(s)
Paro Cardíaco Extrahospitalario/metabolismo , Paro Cardíaco Extrahospitalario/cirugía , Anciano , Reanimación Cardiopulmonar , Desfibriladores Implantables , Electricidad , Servicios Médicos de Urgencia , Femenino , Humanos , Masculino , Persona de Mediana Edad , República de Corea , Dispositivos Aéreos No Tripulados , Tiempo (Meteorología)
17.
Int J Mol Sci ; 22(24)2021 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-34948100

RESUMEN

Neurofibromatosis type 1 (NF1) is an autosomal dominant human genetic disorder. The progression of benign plexiform neurofibromas to malignant peripheral nerve sheet tumors (MPNSTs) is a major cause of mortality in patients with NF1. Although elevated epidermal growth factor receptor (EGFR) expression plays a crucial role in the pathogenesis of MPNST, the cause of EGFR overexpression remains unclear. Here, we assessed EGFR expression levels in MPNST tissues of NF1 patients and NF1 patient-derived MPNST cells. We found that the expression of EGFR was upregulated in MPNST tissues and MPNST cells, while the expression of neurofibromin was significantly decreased. Manipulation of NF1 expression by NF1 siRNA treatment or NF1-GAP-related domain overexpression demonstrated that EGFR expression levels were closely and inversely correlated with neurofibromin levels. Notably, knockdown of the NF1 gene by siRNA treatment augmented the nuclear localization of phosphorylated SP1 (pSP1) and enhanced pSP1 binding to the EGFR gene promoter region. Our results suggest that neurofibromin deficiency in NF1-associated MPNSTs enhances the Ras/ERK/SP1 signaling pathway, which in turn may lead to the upregulation of EGFR expression. This study provides insight into the progression of benign tumors and novel therapeutic approaches for treatment of NF1-associated MPNSTs.


Asunto(s)
Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Regulación Neoplásica de la Expresión Génica , Sistema de Señalización de MAP Quinasas , Neurofibromatosis 1/metabolismo , Neurofibromina 1/metabolismo , Factor de Transcripción Sp1/metabolismo , Regulación hacia Arriba , Proteínas ras/metabolismo , Línea Celular Tumoral , Receptores ErbB/biosíntesis , Receptores ErbB/genética , Quinasas MAP Reguladas por Señal Extracelular/genética , Humanos , Neurofibromatosis 1/genética , Neurofibromina 1/genética , Factor de Transcripción Sp1/genética , Proteínas ras/genética
18.
Animals (Basel) ; 11(11)2021 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-34827919

RESUMEN

Medicinal plants are widely used as supplements for the treatment of various diseases because of their few side-effects. Here, we examined the anti-obesity effects of a mixture extract of Cornus officinalis and Ribes fasciculatum (CR) in high-fat diet (HFD)-induced obese male mice. Four week old male C57BL/6J mice were fed a normal diet (ND) or 60% high-fat diet (HFD) with different concentrations of CR extracts (75, 150, and 300 mg/kg/day) by oral administration for 12 weeks. CR extract administration prevented HFD-induced weight gain, hepatic steatosis, and adipocyte enlargement through the downregulation of adipogenesis-associated genes in obese male mice. In addition, CR administration improved the impaired glucose metabolism, insulin action, biochemical obesity parameters, and metabolic profiles in HFD-induced male mice. Consequently, the CR extract exhibited beneficial effects on HFD-induced systemic metabolic challenges. Taken together, our findings suggest that CR extract may be a potent therapeutic supplement for the treatment and prevention of obesity.

19.
Int J Mol Sci ; 22(19)2021 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-34638983

RESUMEN

Bone remodeling is a continuous process of bone synthesis and destruction that is regulated by osteoblasts and osteoclasts. Here, we investigated the anti-osteoporotic effects of morroniside in mouse preosteoblast MC3T3-E1 cells and mouse primary cultured osteoblasts and osteoclasts in vitro and ovariectomy (OVX)-induced mouse osteoporosis in vivo. Morroniside treatment enhanced alkaline phosphatase activity and positively stained cells via upregulation of osteoblastogenesis-associated genes in MC3T3-E1 cell lines and primary cultured osteoblasts. However, morroniside inhibited tartrate-resistant acid phosphatase activity and TRAP-stained multinucleated positive cells via downregulation of osteoclast-mediated genes in primary cultured monocytes. In the osteoporotic animal model, ovariectomized (OVX) mice were administered morroniside (2 or 10 mg/kg/day) for 12 weeks. Morroniside prevented OVX-induced bone mineral density (BMD) loss and reduced bone structural compartment loss in the micro-CT images. Taken together, morroniside promoted increased osteoblast differentiation and decreased osteoclast differentiation in cells, and consequently inhibited OVX-induced osteoporotic pathogenesis in mice. This study suggests that morroniside may be a potent therapeutic single compound for the prevention of osteoporosis.


Asunto(s)
Conservadores de la Densidad Ósea/administración & dosificación , Diferenciación Celular/efectos de los fármacos , Cornus/química , Glicósidos/administración & dosificación , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Osteoporosis/etiología , Osteoporosis/terapia , Ovariectomía/efectos adversos , Fitoterapia/métodos , Extractos Vegetales/administración & dosificación , Animales , Densidad Ósea/efectos de los fármacos , Remodelación Ósea/efectos de los fármacos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Femenino , Ratones , Ratones Endogámicos ICR , Osteoblastos/efectos de los fármacos , Osteoclastos/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Osteoporosis/metabolismo
20.
Int J Mol Sci ; 22(6)2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33804203

RESUMEN

Osteoarthritis (OA) is a common degenerative disease that results in joint inflammation as well as pain and stiffness. A previous study has reported that Cornus officinalis (CO) extract inhibits oxidant activities and oxidative stress in RAW 264.7 cells. In the present study, we isolated bioactive compound(s) by fractionating the CO extract to elucidate its antiosteoarthritic effects. A single bioactive component, morroniside, was identified as a potential candidate. The CO extract and morroniside exhibited antiosteoarthritic effects by downregulating factors associated with cartilage degradation, including cyclooxygenase-2 (Cox-2), matrix metalloproteinase 3 (Mmp-3), and matrix metalloproteinase 13 (Mmp-13), in interleukin-1 beta (IL-1ß)-induced chondrocytes. Furthermore, morroniside prevented prostaglandin E2 (PGE2) and collagenase secretion in IL-1ß-induced chondrocytes. In the destabilization of the medial meniscus (DMM)-induced mouse osteoarthritic model, morroniside administration attenuated cartilage destruction by decreasing expression of inflammatory mediators, such as Cox-2, Mmp3, and Mmp13, in the articular cartilage. Transverse microcomputed tomography analysis revealed that morroniside reduced DMM-induced sclerosis in the subchondral bone plate. These findings suggest that morroniside may be a potential protective bioactive compound against OA pathogenesis.


Asunto(s)
Cornus/química , Glicósidos/farmacología , Inflamación/tratamiento farmacológico , Meniscos Tibiales/efectos de los fármacos , Osteoartritis/tratamiento farmacológico , Animales , Cartílago Articular/efectos de los fármacos , Condrocitos/efectos de los fármacos , Ciclooxigenasa 2/genética , Dinoprostona/genética , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/efectos de los fármacos , Glicósidos/química , Humanos , Interleucina-1beta/genética , Metaloproteinasa 13 de la Matriz/genética , Metaloproteinasa 3 de la Matriz/genética , Meniscos Tibiales/patología , Meniscos Tibiales/cirugía , Ratones , Osteoartritis/genética , Osteoartritis/patología , Osteoartritis/cirugía , Extractos Vegetales/química , Extractos Vegetales/farmacología , Cultivo Primario de Células , Células RAW 264.7 , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA