Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Blood Adv ; 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38830141

RESUMEN

Exposure to cancer therapies is associated with an increased risk of clonal hematopoiesis (CH). The objective of our study was to investigate the genesis and evolution of CH following cancer therapy. In this prospective study, we undertook error-corrected duplex DNA sequencing in blood samples collected prior to and at two timepoints following chemoradiation in patients with esophageal or lung cancer recruited from 2013-2018. We applied a customized workflow to identify the earliest changes in CH mutation count and clone size and determine their association with clinical outcomes. Our study included 29 patients (87 samples). Their median age was 67 years, 76% (n = 22) were male; the median follow-up period was 3.9 years. The most mutated genes were DNMT3A, TET2, TP53, and ASXL1. We observed a two-fold increase in the number of mutations from before to after treatment in TP53, which differed from all other genes examined (P < .001). Among mutations detected before and after treatment, we observed an increased clone size in 38% and a decreased clone size in 5% of TP53 mutations (odds ratio = 3.7; 95% CI = 1.75-7.84; P < .001). Changes in mutation count and clone size were not observed in other genes. Individuals with an increase in the number of TP53 mutations following chemoradiation experienced shorter overall survival (hazard ratio = 7.07; 95% CI = 1.50-33.46; P = .014). In summary, we found an increase in the number and size of TP53 CH clones following chemoradiation that were associated with clinical outcomes.

2.
Cancers (Basel) ; 16(12)2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38927929

RESUMEN

Exposure to ionizing radiation is associated with an increased risk of hematologic malignancies in myeloid and lymphoid lineages in humans and experimental mice. Given that substantial evidence links radiation exposure with the risk of hematologic malignancies, it is imperative to deeply understand the mechanisms underlying cellular and molecular changes during the latency period between radiation exposure and the emergence of fully transformed malignant cells. One experimental model widely used in the field of radiation and cancer biology to study hematologic malignancies induced by radiation exposure is mouse models of radiation-induced thymic lymphoma. Murine radiation-induced thymic lymphoma is primarily driven by aberrant activation of Notch signaling, which occurs frequently in human precursor T-cell lymphoblastic lymphoma (T-LBL) and T-cell lymphoblastic leukemia (T-ALL). Here, we summarize the literature elucidating cell-autonomous and non-cell-autonomous mechanisms underlying cancer initiation, progression, and malignant transformation in the thymus following total-body irradiation (TBI) in mice.

3.
Int J Radiat Oncol Biol Phys ; 119(2): 669-680, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38760116

RESUMEN

The Pediatric Normal Tissue Effects in the Clinic (PENTEC) consortium has made significant contributions to understanding and mitigating the adverse effects of childhood cancer therapy. This review addresses the role of diagnostic imaging in detecting, screening, and comprehending radiation therapy-related late effects in children, drawing insights from individual organ-specific PENTEC reports. We further explore how the development of imaging biomarkers for key organ systems, alongside technical advancements and translational imaging approaches, may enhance the systematic application of imaging evaluations in childhood cancer survivors. Moreover, the review critically examines knowledge gaps and identifies technical and practical limitations of existing imaging modalities in the pediatric population. Addressing these challenges may expand access to, minimize the risk of, and optimize the real-world application of, new imaging techniques. The PENTEC team envisions this document as a roadmap for the future development of imaging strategies in childhood cancer survivors, with the overarching goal of improving long-term health outcomes and quality of life for this vulnerable population.


Asunto(s)
Traumatismos por Radiación , Humanos , Niño , Traumatismos por Radiación/diagnóstico por imagen , Supervivientes de Cáncer , Órganos en Riesgo/diagnóstico por imagen , Órganos en Riesgo/efectos de la radiación , Neoplasias/radioterapia , Neoplasias/diagnóstico por imagen , Radioterapia/efectos adversos , Diagnóstico por Imagen/métodos
4.
Nat Commun ; 15(1): 3018, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589357

RESUMEN

Ionizing radiation induces cell death in the gastrointestinal (GI) epithelium by activating p53. However, p53 also prevents animal lethality caused by radiation-induced acute GI syndrome. Through single-cell RNA-sequencing of the irradiated mouse small intestine, we find that p53 target genes are specifically enriched in regenerating epithelial cells that undergo fetal-like reversion, including revival stem cells (revSCs) that promote animal survival after severe damage of the GI tract. Accordingly, in mice with p53 deleted specifically in the GI epithelium, ionizing radiation fails to induce fetal-like revSCs. Using intestinal organoids, we show that transient p53 expression is required for the induction of revival stem cells and is controlled by an Mdm2-mediated negative feedback loop. Together, our findings reveal that p53 suppresses severe radiation-induced GI injury by promoting fetal-like reprogramming of irradiated intestinal epithelial cells.


Asunto(s)
Traumatismos por Radiación , Proteína p53 Supresora de Tumor , Ratones , Animales , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Intestinos , Tracto Gastrointestinal/metabolismo , Traumatismos por Radiación/genética , Traumatismos por Radiación/metabolismo , Células Madre/metabolismo , Apoptosis/genética
5.
Cancer Res Commun ; 3(12): 2455-2467, 2023 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-37982576

RESUMEN

Approximately half of patients with cancer receive radiotherapy and, as cancer survivorship increases, the low rate of radiation-associated sarcomas is rising. Pharmacologic inhibition of p53 has been proposed as an approach to ameliorate acute injury of normal tissues from genotoxic therapies, but how this might impact the risk of therapy-induced cancer and normal tissue injuries remains unclear. We utilized mice that express a doxycycline (dox)-inducible p53 short hairpin RNA to reduce Trp53 expression temporarily during irradiation. Mice were placed on a dox diet 10 days prior to receiving 30 or 40 Gy hind limb irradiation in a single fraction and then returned to normal chow. Mice were examined weekly for sarcoma development and scored for radiation-induced normal tissue injuries. Radiation-induced sarcomas were subjected to RNA sequencing. Following single high-dose irradiation, 21% of animals with temporary p53 knockdown during irradiation developed a sarcoma in the radiation field compared with 2% of control animals. Following high-dose irradiation, p53 knockdown preserves muscle stem cells, and increases sarcoma development. Mice with severe acute radiation-induced injuries exhibit an increased risk of developing late persistent wounds, which were associated with sarcomagenesis. RNA sequencing revealed radiation-induced sarcomas upregulate genes related to translation, epithelial-mesenchymal transition (EMT), inflammation, and the cell cycle. Comparison of the transcriptomes of human and mouse sarcomas that arose in irradiated tissues revealed regulation of common gene programs, including elevated EMT pathway gene expression. These results suggest that blocking p53 during radiotherapy could minimize acute toxicity while exacerbating late effects including second cancers. SIGNIFICANCE: Strategies to prevent or mitigate acute radiation toxicities include pharmacologic inhibition of p53 and other cell death pathways. Our data show that temporarily reducing p53 during irradiation increases late effects including sarcomagenesis.


Asunto(s)
Traumatismos por Radiación , Sarcoma , Humanos , Ratones , Animales , Proteína p53 Supresora de Tumor/genética , Sarcoma/genética , Ciclo Celular , Daño del ADN
6.
Methods Cell Biol ; 180: 147-175, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37890927

RESUMEN

Given the potential risk of radiological terrorism and disasters, it is essential to develop plans to prepare for such events. In these hazardous scenarios, radiation-induced gastrointestinal (GI) syndrome is one of the many manifestations that may happen after the organism is exposed to a lethal dose of ionizing radiation. Therefore, it is critical to better understand how the intestinal tissues initiate and orchestrate regeneration following severe radiation injury. In this chapter, we aimed to provide several key considerations for researchers who utilize histological assessment to study radiation-induced intestinal injury. Rigor and reproducibility are critical in experimental design and can be achieved by maintaining proper radiation administration, maintaining consistency in sample collection, and selecting and using appropriate controls. We also provided technical details of histological preparation of the intestines with tips on dissecting, cleaning, fixing, and preserving. Step-by-step descriptions of both bundling and Swiss rolling are provided with discussion on how to choose between the two approaches. In the following section, we detailed several histological assessment methods and then provided suggestions on how to use histological assessment to study cellular dynamics in the small intestines. Finally, we touched on some non-histological assessments. We hope that the information provided in this chapter will contribute to the research society of radiation-induced intestinal injury with an ultimate goal of promoting the development of radiation countermeasures against the GI acute radiation syndrome.


Asunto(s)
Intestino Delgado , Intestinos , Reproducibilidad de los Resultados , Intestinos/patología , Radiación Ionizante
7.
bioRxiv ; 2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37577531

RESUMEN

Background: Tp53 is the most commonly mutated gene in cancer. Canonical Tp53 DNA damage response pathways are well characterized and classically thought to underlie the tumor suppressive effect of Tp53. Challenging this dogma, mouse models have revealed that p53 driven apoptosis and cell cycle arrest are dispensable for tumor suppression. Here, we investigated the inverse context of a p53 mutation predicted to drive expression of canonical targets, but is detected in human cancer. Methods: We established a novel mouse model with a single base pair mutation (GAG>GAC, p53E221D) in the DNA-Binding domain that has wild-type function in screening assays, but is paradoxically found in human cancer in Li-Fraumeni syndrome. Using mouse p53E221D and the analogous human p53E224D mutant, we evaluated expression, transcriptional activation, and tumor suppression in vitro and in vivo. Results: Expression of human p53E224D from cDNA translated to a fully functional p53 protein. However, p53E221D/E221D RNA transcribed from the endogenous locus is mis-spliced resulting in nonsense mediated decay. Moreover, fibroblasts derived from p53E221D/E221D mice do not express a detectable protein product. Mice homozygous for p53E221D exhibited increased tumor penetrance and decreased life expectancy compared to p53 WT animals. Conclusions: Mouse p53E221D and human p53E224D mutations lead to splice variation and a biologically relevant p53 loss of function in vitro and in vivo.

8.
Sci Rep ; 13(1): 12916, 2023 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-37558703

RESUMEN

The tumor suppressor p53 is a transcriptional factor that plays a crucial role in controlling acute toxicity and long-term malignant transformation of hematopoietic cells induced by genotoxic stress such as ionizing radiation. Among all transcriptional targets of p53, one gene that is robustly induced by radiation is the pleckstrin homology domain-only protein Phlda3. However, the role that Phlda3 plays in regulating the response of hematopoietic cells to radiation is unknown. Here, using isogenic cell lines and genetically engineered mouse models, we showed that radiation induces Phlda3 in human leukemia cells and mouse normal hematopoietic cells in a p53-dependent manner. However, deletion of the Phlda3 gene did not ameliorate radiation-induced acute hematologic toxicity. In addition, distinct from mice that lose p53, loss of Phlda3 did not alter the latency and incidence of radiation-induced thymic lymphoma in mice. Remarkably, whole-exome sequencing data showed that lymphomas in irradiated Phlda3+/+ mice harbor a significantly higher number of single nucleotide variants (SNVs) and indels compared to lymphomas in irradiated Phlda3+/- and Phlda3-/- littermates. Together, our results indicate that although deletion of Phlda3 does not accelerate the development of radiation-induced thymic lymphoma, fewer SNVs and indels are necessary to initiate lymphomagenesis after radiation exposure when Phlda3 is silenced.


Asunto(s)
Linfoma , Proteínas Nucleares , Neoplasias del Timo , Animales , Humanos , Ratones , Línea Celular , Transformación Celular Neoplásica/genética , Linfoma/genética , Linfoma/radioterapia , Linfoma/metabolismo , Neoplasias del Timo/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Nucleares/genética
9.
bioRxiv ; 2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37162959

RESUMEN

Ionizing radiation induces cell death in the gastrointestinal (GI) epithelium by activating p53. However, p53 also prevents animal lethality caused by radiation-induced GI injury. Through single-cell RNA-sequencing of the irradiated mouse intestine, we find that p53 target genes are specifically enriched in stem cells of the regenerating epithelium, including revival stem cells that promote animal survival after GI damage. Accordingly, in mice with p53 deleted specifically in the GI epithelium, ionizing radiation fails to induce revival stem cells. Using intestinal organoids, we show that transient p53 expression is required for the induction of revival stem cells that is controlled by an Mdm2-mediated negative feedback loop. These results suggest that p53 suppresses severe radiation-indued GI injury by promoting intestinal epithelial cell reprogramming. One-Sentence Summary: After severe radiation injury to the intestine, transient p53 activity induces revival stem cells to promote regeneration.

10.
Radiat Res ; 198(2): 145-153, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35512345

RESUMEN

Thoracic radiation therapy can cause endothelial injury in the heart, leading to cardiac dysfunction and heart failure. Although it has been demonstrated that the tumor suppressor p53 functions in endothelial cells to prevent the development of radiation-induced myocardial injury, the key mechanism(s) by which p53 regulates the radiosensitivity of cardiac endothelial cells is not completely understood. Here, we utilized genetically engineered mice that express mutations in p53 transactivation domain 1 (TAD1) (p5325,26) or mutations in p53 TAD1 and TAD2 (p5325,26,53,54) specifically in endothelial cells to study the p53 transcriptional program that protects cardiac endothelial cells from ionizing radiation in vivo. p5325,26,53,54 loses the ability to drive transactivation of p53 target genes after irradiation while p5325,26 can induce transcription of a group of non-canonical p53 target genes, but not the majority of classic radiation-induced p53 targets critical for p53-mediated cell cycle arrest and apoptosis. After 12 Gy whole-heart irradiation, we found that both p5325,26 and p5325,26,53,54 sensitized mice to radiation-induced cardiac injury, in contrast to wild-type p53. Histopathological examination suggested that mutation of TAD1 contributes to myocardial necrosis after whole-heart irradiation, while mutation of both TAD1 and TAD2 abolishes the ability of p53 to prevent radiation-induced heart disease. Taken together, our results show that the transcriptional program downstream of p53 TAD1, which activates the acute DNA damage response after irradiation, is necessary to protect cardiac endothelial cells from radiation injury in vivo.


Asunto(s)
Células Endoteliales , Corazón , Traumatismos por Radiación , Proteína p53 Supresora de Tumor , Animales , Apoptosis/genética , Apoptosis/efectos de la radiación , Daño del ADN , Células Endoteliales/metabolismo , Corazón/efectos de la radiación , Ratones , Traumatismos por Radiación/metabolismo , Activación Transcripcional , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...