Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38853926

RESUMEN

All eukaryotes share a common ancestor from roughly 1.5 - 1.8 billion years ago, a single-celled, swimming microbe known as LECA, the Last Eukaryotic Common Ancestor. Nearly half of the genes in modern eukaryotes were present in LECA, and many current genetic diseases and traits stem from these ancient molecular systems. To better understand these systems, we compared genes across modern organisms and identified a core set of 10,092 shared protein-coding gene families likely present in LECA, a quarter of which are uncharacterized. We then integrated >26,000 mass spectrometry proteomics analyses from 31 species to infer how these proteins interact in higher-order complexes. The resulting interactome describes the biochemical organization of LECA, revealing both known and new assemblies. We analyzed these ancient protein interactions to find new human gene-disease relationships for bone density and congenital birth defects, demonstrating the value of ancestral protein interactions for guiding functional genetics today.

2.
Mol Biol Cell ; 35(3): ar39, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38170584

RESUMEN

DIFFRAC is a powerful method for systematically comparing proteome content and organization between samples in a high-throughput manner. By subjecting control and experimental protein extracts to native chromatography and quantifying the contents of each fraction using mass spectrometry, it enables the quantitative detection of alterations to protein complexes and abundances. Here, we applied DIFFRAC to investigate the consequences of genetic loss of Ift122, a subunit of the intraflagellar transport-A (IFT-A) protein complex that plays a vital role in the formation and function of cilia and flagella, on the proteome of Tetrahymena thermophila. A single DIFFRAC experiment was sufficient to detect changes in protein behavior that mirrored known effects of IFT-A loss and revealed new biology. We uncovered several novel IFT-A-regulated proteins, which we validated through live imaging in Xenopus multiciliated cells, shedding new light on both the ciliary and non-ciliary functions of IFT-A. Our findings underscore the robustness of DIFFRAC for revealing proteomic changes in response to genetic or biochemical perturbation.


Asunto(s)
Proteoma , Proteómica , Transporte de Proteínas/fisiología , Proteoma/metabolismo , Transporte Biológico/fisiología , Cilios/metabolismo , Flagelos/metabolismo , Fenotipo
3.
bioRxiv ; 2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37781579

RESUMEN

Motile cilia are ancient, evolutionarily conserved organelles whose dysfunction underlies motile ciliopathies, a broad class of human diseases. Motile cilia contain myriad different proteins that assemble into an array of distinct machines, so understanding the interactions and functional hierarchies among them presents an important challenge. Here, we defined the protein interactome of motile axonemes using cross-linking mass spectrometry (XL/MS) in Tetrahymena thermophila. From over 19,000 XLs, we identified 4,757 unique amino acid interactions among 1,143 distinct proteins, providing both macromolecular and atomic-scale insights into diverse ciliary machines, including the Intraflagellar Transport system, axonemal dynein arms, radial spokes, the 96 nm ruler, and microtubule inner proteins, among others. Guided by this dataset, we used vertebrate multiciliated cells to reveal novel functional interactions among several poorly-defined human ciliopathy proteins. The dataset therefore provides a powerful resource for studying the basic biology of an ancient organelle and the molecular etiology of human genetic disease.

4.
Differentiation ; 131: 49-58, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37120964

RESUMEN

The beating of motile cilia requires the coordinated action of diverse machineries that include not only the axonemal dynein arms, but also the central apparatus, the radial spokes, and the microtubule inner proteins. These machines exhibit complex radial and proximodistal patterns in mature axonemes, but little is known about the interplay between them during motile ciliogenesis. Here, we describe and quantify the relative rates of axonemal deployment for these diverse cilia beating machineries during the final stages of differentiation of Xenopus epidermal multiciliated cells.


Asunto(s)
Axonema , Dineínas , Animales , Axonema/metabolismo , Dineínas/metabolismo , Cilios/metabolismo , Vertebrados/metabolismo
5.
bioRxiv ; 2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36945534

RESUMEN

DIFFRAC is a powerful method for systematically comparing proteome content and organization between samples in a high-throughput manner. By subjecting control and experimental protein extracts to native chromatography and quantifying the contents of each fraction using mass spectrometry, it enables the quantitative detection of alterations to protein complexes and abundances. Here, we applied DIFFRAC to investigate the consequences of genetic loss of Ift122, a subunit of the intraflagellar transport-A (IFT-A) protein complex that plays a vital role in the formation and function of cilia and flagella, on the proteome of Tetrahymena thermophila . A single DIFFRAC experiment was sufficient to detect changes in protein behavior that mirrored known effects of IFT-A loss and revealed new biology. We uncovered several novel IFT-A-regulated proteins, which we validated through live imaging in Xenopus multiciliated cells, shedding new light on both the ciliary and non-ciliary functions of IFT-A. Our findings underscore the robustness of DIFFRAC for revealing proteomic changes in response to genetic or biochemical perturbation.

6.
J Cell Sci ; 136(5)2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35531639

RESUMEN

Most motile cilia have a stereotyped structure of nine microtubule outer doublets and a single central pair of microtubules. The central pair of microtubules are surrounded by a set of proteins, termed the central pair apparatus. A specific kinesin, Klp1 projects from the central pair and contributes to ciliary motility in Chlamydomonas. The vertebrate ortholog, Kif9, is required for beating in mouse sperm flagella, but the mechanism of Kif9/Klp1 function remains poorly defined. Here, using Xenopus epidermal multiciliated cells, we show that Kif9 is necessary for ciliary motility and the proper distal localization of not only central pair proteins, but also radial spokes and dynein arms. In addition, single-molecule assays in vitro reveal that Xenopus Kif9 is a long-range processive motor, although it does not mediate long-range movement in ciliary axonemes in vivo. Together, our data suggest that Kif9 is integral for ciliary beating and is necessary for proper axonemal distal end integrity.


Asunto(s)
Axonema , Cilios , Cinesinas , Animales , Axonema/metabolismo , Cilios/metabolismo , Dineínas/metabolismo , Flagelos/metabolismo , Cinesinas/genética , Microtúbulos/metabolismo , Xenopus
7.
Int J Mol Sci ; 23(17)2022 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-36077162

RESUMEN

Streptomycin is used primarily to treat bacterial infections, including brucellosis, plague, and tuberculosis. Streptomycin resistance easily develops in numerous bacteria through the inhibition of antibiotic transfer, the production of aminoglycoside-modifying enzymes, or mutations in ribosomal components with clinical doses of streptomycin treatment. (1) Background: A transposable insertion sequence is one of the mutation agents in bacterial genomes under oxidative stress. (2) Methods: In the radiation-resistant bacterium Deinococcus geothermalis subjected to chronic oxidative stress induced by 20 mM hydrogen peroxide, active transposition of an insertion sequence element and several point mutations in three streptomycin resistance (SmR)-related genes (rsmG, rpsL, and mthA) were identified. (3) Results: ISDge6 of the IS5 family integrated into the rsmG gene (dgeo_2335), called SrsmG, encodes a ribosomal guanosine methyltransferase resulting in streptomycin resistance. In the case of dgeo_2840-disrupted mutant strains (S1 and S2), growth inhibition under antibiotic-free conditions was recovered with increased growth yields in the presence of 50 µg/mL streptomycin due to a streptomycin-dependent (SmD) mutation. These mutants have a predicted proline-to-leucine substitution at the 91st residue of ribosomal protein S12 in the decoding center. (4) Conclusions: Our findings show that the active transposition of a unique IS element under oxidative stress conditions conferred antibiotic resistance through the disruption of rsmG. Furthermore, chronic oxidative stress induced by hydrogen peroxide also induced streptomycin resistance caused by point and frameshift mutations of streptomycin-interacting residues such as K43, K88, and P91 in RpsL and four genes for streptomycin resistance.


Asunto(s)
Deinococcus , Estreptomicina , Antibacterianos/metabolismo , Antibacterianos/farmacología , Deinococcus/genética , Deinococcus/metabolismo , Farmacorresistencia Bacteriana/genética , Peróxido de Hidrógeno/metabolismo , Peróxido de Hidrógeno/farmacología , Mutación , Estrés Oxidativo , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Estreptomicina/farmacología
8.
Dev Cell ; 57(9): 1119-1131.e5, 2022 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-35476939

RESUMEN

The design of an animal's body plan is encoded in the genome, and the execution of this program is a mechanical progression involving coordinated movement of proteins, cells, and whole tissues. Thus, a challenge to understanding morphogenesis is connecting events that occur across various length scales. Here, we describe how a poorly characterized adhesion effector, Arvcf catenin, controls Xenopus head-to-tail axis extension. We find that Arvcf is required for axis extension within the intact organism but not within isolated tissues. We show that the organism-scale phenotype results from a defect in tissue-scale force production. Finally, we determine that the force defect results from the dampening of the pulsatile recruitment of cell adhesion and cytoskeletal proteins to membranes. These results provide a comprehensive understanding of Arvcf function during axis extension and produce an insight into how a cellular-scale defect in adhesion results in an organism-scale failure of development.


Asunto(s)
Proteínas del Dominio Armadillo , Cateninas , Animales , Proteínas del Dominio Armadillo/genética , Proteínas del Dominio Armadillo/metabolismo , Cadherinas/metabolismo , Moléculas de Adhesión Celular/metabolismo , Morfogénesis , Fosfoproteínas/metabolismo , Xenopus laevis/metabolismo
9.
J Microbiol Methods ; 196: 106473, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35469976

RESUMEN

Insertion sequences (ISs) of the radiation-resistant bacterium Deinococcus geothermalis are transposed into other loci by oxidative stress through hydrogen peroxide treatment. Gamma irradiation and dielectric barrier discharge (DBD) plasma radiation are known to produce a variety of oxidative stress agents such as reactive oxygen species and reactive nitrogen species. Therefore, to determine whether the transposition of ISs was induced in D. geothermalis by both gamma irradiation and DBD plasma radiation, we selected non-pigmented mutants with disrupted target genes encoding carotenoid biosynthesis enzymes such as a phytoene synthase (dgeo_0523) and a phytoene desaturase (dgeo_0524). Different DNA-binding protein-deficient mutants exhibited novel transposition of ISs. Dps (dgeo_0257), OxyR (dgeo_1888), and the LysR (dgeo_2840) family regulator, in addition to cystine importer-disrupted and -overexpressed mutants (dgeo_1986-87 and dgeo_1985R) and wild-type D. geothermalis were tested in this study. Active IS transposition was not detected in two wild-type control species (Deinococcus radiodurans and Deinococcus radiopugnans) after phenotypic selection in gamma irradiation. Our finding demonstrated that gamma irradiation triggers the transposition of particular IS elements, especially ISDge2 and ISDge3 of the IS1 family, ISDge5 of the IS701 family, and ISDge6 of the IS5 family in wild-type strain and the Δdgeo_0257, Δdgeo_1986-87, Δdgeo_1985R, and Δdgeo_2840 mutants. Furthermore, DBD plasma radiation triggered the transposition of ISDge11 of the IS4 family in the wild-type strain; ISDge6 of the IS5 family on Δdgeo_0257, Δdgeo_1888 and Δdgeo_2840; ISDge5 of the IS701 family on Δdgeo_0257 strain.


Asunto(s)
Elementos Transponibles de ADN , Deinococcus , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Deinococcus/genética , Deinococcus/efectos de la radiación , Rayos gamma , Peróxido de Hidrógeno/farmacología , Estrés Oxidativo
10.
Genetics ; 219(1)2021 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-34849907

RESUMEN

Thiabendazole (TBZ) is an FDA-approved benzimidazole widely used for its antifungal and antihelminthic properties. We showed previously that TBZ is also a potent vascular disrupting agent and inhibits angiogenesis at the tissue level by dissociating vascular endothelial cells in newly formed blood vessels. Here, we uncover TBZ's molecular target and mechanism of action. Using human cell culture, molecular modeling, and humanized yeast, we find that TBZ selectively targets only 1 of 9 human ß-tubulin isotypes (TUBB8) to specifically disrupt endothelial cell microtubules. By leveraging epidemiological pesticide resistance data and mining chemical features of commercially used benzimidazoles, we discover that a broader class of benzimidazole compounds, in extensive use for 50 years, also potently disrupt immature blood vessels and inhibit angiogenesis. Thus, besides identifying the molecular mechanism of benzimidazole-mediated vascular disruption, this study presents evidence relevant to the widespread use of these compounds while offering potential new clinical applications.


Asunto(s)
Células Endoteliales
11.
Antioxidants (Basel) ; 10(10)2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34679757

RESUMEN

The transposition of insertion sequence elements was evaluated among different Deinococcus geothermalis lineages, including the wild-type, a cystine importer-disrupted mutant, a complemented strain, and a cystine importer-overexpressed strain. Cellular growth reached early exponential growth at OD600 2.0 and late exponential growth at OD600 4.0. Exposing the cells to hydrogen peroxide (80-100 mM) resulted in the transposition of insertion sequences (ISs) in genes associated with the carotenoid biosynthesis pathway. Particularly, ISDge7 (an IS5 family member) and ISDge5 (an IS701 family member) from the cystine importer-disrupted mutant were transposed into phytoene desaturase (dgeo_0524) via replicative transposition. Further, the cystine importer-overexpressed strain Δdgeo_1985R showed transposition of both ISDge2 and ISDge5 elements. In contrast, IS transposition was not detected in the complementary strain. Interestingly, a cystine importer-overexpressing strain exhibited streptomycin resistance, indicating that point mutation occurred in the rpsL (dgeo_1873) gene encoding ribosomal protein S12. qRT-PCR analyses were then conducted to evaluate the expression of oxidative stress response genes, IS elements, and low-molecular-weight thiol compounds such as mycothiol and bacillithiol. Nevertheless, the mechanisms that trigger IS transposition in redox imbalance conditions remain unclear. Here, we report that the active transposition of different IS elements was affected by intracellular redox imbalances caused by cystine importer deficiencies or overexpression.

12.
Bioinform Biol Insights ; 15: 11779322211037437, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34413635

RESUMEN

The genome of the radiation-resistant bacterium Deinococcus geothermalis contains 19 types of insertion sequences (ISs), including 93 total transposases (Tpases) in 73 full-length ISs from the main chromosome and 2 mega plasmids. In this study, 68 ISs from the D. geothermalis genome were extracted to implicate the earlier genome before its mutation by transposition of ISs. The total size of eliminated ISs from genome was 78.85 kb. From these in silico corrections of mutation by the ISs, we have become aware of some bioinformatics factualness as follows: (1) can reassemble the disrupted genes if the exact IS region was eliminated, (2) can configure the schematic clustering of major DDE type Tpases, (3) can determine IS integration order across multiple hot spots, and (4) can compare genetic relativeness by the partial synteny analysis between D. geothermalis and Deinococcus strain S9. Recently, we found that several IS elements actively transferred to other genomic sites under hydrogen peroxide-induced oxidative stress conditions, resulting in the inactivation of functional genes. Therefore, the single species genome's mobilome study provides significant support to define bacterial genome plasticity and molecular evolution from past and present progressive transposition events.

13.
Micromachines (Basel) ; 12(8)2021 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-34442565

RESUMEN

Because electronics are becoming flexible, the demand for techniques to manufacture thin flexible printed circuit boards (FPCBs) has increased. Conventional FPCBs are fabricated by attaching a coverlay film (41 µm) onto copper patterns/polyimide (PI) film to produce the structure of coverlay/Cu patterns/PI film. Given that the conventional coverlay consists of two layers of polyimide film and adhesive, its thickness must be reduced to generate thinner FPCBs. In this study, we fabricated 25-µm-thick poly(amide-imide-urethane)/epoxy interpenetrating networks (IPNs) to replace the thick conventional coverlay. Poly(amide-imide-urethane) (PAIU) was synthesized by reacting isocyanate-capped polyurethane with trimellitic anhydride and then mixed with epoxy resin to produce PAIU/epoxy IPNs after curing. Thanks to the soft segments of polyurethane, the elongation of PAIU/epoxy IPNs increased with increasing PAIU content and reached over 200%. After confirming the excellent thermal stability and chemical resistance of the PAIU/epoxy IPNs, we fabricated FPCBs by equipping them as coverlays. The mechanical durability of the FPCBs was evaluated through an MIT folding test, and the FPCB fabricated with PAIU/ep-2 was stable up to 164 folding cycles because of the balanced mechanical properties.

14.
J Cell Sci ; 134(14)2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34060614

RESUMEN

The dynamic control of the actin cytoskeleton is a key aspect of essentially all animal cell movements. Experiments in single migrating cells and in vitro systems have provided an exceptionally deep understanding of actin dynamics. However, we still know relatively little of how these systems are tuned in cell-type-specific ways, for example in the context of collective cell movements that sculpt the early embryo. Here, we provide an analysis of the actin-severing and depolymerization machinery during vertebrate gastrulation, with a focus on Twinfilin1 (Twf1) in Xenopus. We find that Twf1 is essential for convergent extension, and loss of Twf1 results in a disruption of lamellipodial dynamics and polarity. Moreover, Twf1 loss results in a failure to assemble polarized cytoplasmic actin cables, which are essential for convergent extension. These data provide an in vivo complement to our more-extensive understanding of Twf1 action in vitro and provide new links between the core machinery of actin regulation and the specialized cell behaviors of embryonic morphogenesis.


Asunto(s)
Actinas , Gastrulación , Citoesqueleto de Actina , Actinas/genética , Animales , Seudópodos , Xenopus laevis
15.
Development ; 148(2)2021 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-33500317

RESUMEN

Pathogenic mutations in the endocytic receptor LRP2 in humans are associated with severe neural tube closure defects (NTDs) such as anencephaly and spina bifida. Here, we have combined analysis of neural tube closure in mouse and in the African Clawed Frog Xenopus laevis to elucidate the etiology of Lrp2-related NTDs. Lrp2 loss of function impaired neuroepithelial morphogenesis, culminating in NTDs that impeded anterior neural plate folding and neural tube closure in both model organisms. Loss of Lrp2 severely affected apical constriction as well as proper localization of the core planar cell polarity (PCP) protein Vangl2, demonstrating a highly conserved role of the receptor in these processes, which are essential for neural tube formation. In addition, we identified a novel functional interaction of Lrp2 with the intracellular adaptor proteins Shroom3 and Gipc1 in the developing forebrain. Our data suggest that, during neurulation, motifs within the intracellular domain of Lrp2 function as a hub that orchestrates endocytic membrane removal for efficient apical constriction, as well as PCP component trafficking in a temporospatial manner.


Asunto(s)
Endocitosis , Espacio Intracelular/metabolismo , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Tubo Neural/embriología , Animales , Membrana Celular/metabolismo , Polaridad Celular , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/deficiencia , Ratones Endogámicos C57BL , Modelos Biológicos , Morfogénesis , Tubo Neural/metabolismo , Tubo Neural/ultraestructura , Células Neuroepiteliales/metabolismo , Prosencéfalo/metabolismo , Unión Proteica , Xenopus , Proteínas de Xenopus/metabolismo
16.
Elife ; 92020 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-33263282

RESUMEN

Ciliary motility is driven by axonemal dyneins that are assembled in the cytoplasm before deployment to cilia. Motile ciliopathy can result from defects in the dyneins themselves or from defects in factors required for their cytoplasmic pre-assembly. Recent work demonstrates that axonemal dyneins, their specific assembly factors, and broadly-acting chaperones are concentrated in liquid-like organelles in the cytoplasm called DynAPs (Dynein Axonemal Particles). Here, we use in vivo imaging in Xenopus to show that inner dynein arm (IDA) and outer dynein arm (ODA) subunits are partitioned into non-overlapping sub-regions within DynAPs. Using affinity- purification mass-spectrometry of in vivo interaction partners, we also identify novel partners for inner and outer dynein arms. Among these, we identify C16orf71/Daap1 as a novel axonemal dynein regulator. Daap1 interacts with ODA subunits, localizes specifically to the cytoplasm, is enriched in DynAPs, and is required for the deployment of ODAs to axonemes. Our work reveals a new complexity in the structure and function of a cell-type specific liquid-like organelle that is directly relevant to human genetic disease.


Asunto(s)
Dineínas Axonemales/metabolismo , Orgánulos/metabolismo , Animales , Cilios/metabolismo , Citoplasma/metabolismo , Inmunoprecipitación , Espectrometría de Masas , Purificación por Afinidad en Tándem , Xenopus laevis/embriología
17.
Front Microbiol ; 11: 558747, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33224109

RESUMEN

Radiation-resistant bacterium Deinococcus geothermalis has a total of 73 insertion sequences (ISs) in genomes, and some of them are actively transposed to other loci with replicative mode due to oxidative stress of hydrogen peroxide treatment. Here, we detected two transposition events in wild-type (WT) strain and LysR family member gene disrupted strain (Δdgeo_2840). Similar to our previous report (Lee et al., 2019), phytoene desaturase (dgeo_0524), a key enzyme of carotenoid biosynthesis, was disrupted by the integration of IS element, thereby detected a single phenotypically non-pigmented colony in each WT and Δdgeo_2840 strain. Two separate types of IS element have been integrated into non-pigmented clones: ISDge11 for WT and ISDge6 for Δdgeo_2840 strain. Surprisingly, Δdgeo_2840 mutant strain revealed higher resistance to oxidative stress than WT strain at late exponential growth phase. From the qRT-PCR analysis, OxyR (dgeo_1888) was highly up-regulated to 30-fold by oxidative stress through hydrogen peroxide treatment in both WT and Δdgeo_2840 mutant strains. However, the oxidative stress response enzyme, catalase or superoxide dismutase, was not significantly induced by overexpressed OxyR. Thus, a putative LysR family regulator Dgeo_2840 controlled the expression of ISDge6 type transposase and the induction of OxyR under oxidative condition. There is LysR family DNA-binding protein dependent active transposition of specific type IS and the up-regulated OxyR has not positively controlled ROS scavenger enzymes in D. geothermalis.

18.
Dev Biol ; 467(1-2): 108-117, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32898505

RESUMEN

Cell-type specific RNA-associated proteins are essential for development and homeostasis in animals. Despite a massive recent effort to systematically identify RNA-associated proteins, we currently have few comprehensive rosters of cell-type specific RNA-associated proteins in vertebrate tissues. Here, we demonstrate the feasibility of determining the RNA-associated proteome of a defined vertebrate embryonic tissue using DIF-FRAC, a systematic and universal (i.e., label-free) method. Application of DIF-FRAC to cultured tissue explants of Xenopus mucociliary epithelium identified dozens of known RNA-associated proteins as expected, but also several novel RNA-associated proteins, including proteins related to assembly of the mitotic spindle and regulation of ciliary beating. In particular, we show that the inner dynein arm tether Cfap44 is an RNA-associated protein that localizes not only to axonemes, but also to liquid-like organelles in the cytoplasm called DynAPs. This result led us to discover that DynAPs are generally enriched for RNA. Together, these data provide a useful resource for a deeper understanding of mucociliary epithelia and demonstrate that DIF-FRAC will be broadly applicable for systematic identification of RNA-associated proteins from embryonic tissues.


Asunto(s)
Cilios/metabolismo , Embrión no Mamífero/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Xenopus/metabolismo , Animales , Epitelio/embriología , Técnicas de Cultivo de Tejidos , Xenopus
19.
Antonie Van Leeuwenhoek ; 113(6): 779-790, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31993844

RESUMEN

Radiation resistant bacteria genus Deinococcus species were well studied on DNA repair and anti-oxidative stress response mechanisms. There are many protection factors as enzymatic and nonenzymatic involved. One of them is intracellular redox potential as like thiol compounds including cysteine acts as primary protectant against oxidation stress. A gene cluster consisting of the genes Dgeo_1986 and Dgeo_1987 of Deinococcus geothermalis was identified as a cystine importer. The expression levels of dgeo_1986 and dgeo_1987 were up-regulated by over 60-fold and 4-fold during the late exponential (L) growth phase, respectively. The double-knockout mutant of dgeo_1986 and dgeo_1987 was reduced in cystine and thiol concentrations and leading to enhanced sensitivity against H2O2 stress. The expression of catalase (Dgeo_2728) as an enzymatic anti-oxidant is more induced in the wild-type strain than the Δdgeo_1986-87 strain at the late growth phase. The expression level of the oxidative stress response regulator OxyR (Dgeo_1888) is dependent on the intracellular redox balance. That is, when the intracellular thiol content was reduced in the wild-type strain during the L phase, OxyR was clearly induced. Interestingly, the expression level of OxyR was higher in the Δdgeo_1986-87 strain than in the wild-type strain upon H2O2 treatment. Although OxyR was induced by H2O2 treatment in Δdgeo_1986-87 strain, where intracellular redox potential of cystine was reduced as a thiol compound due to reduced cystine import, the relative level of expression of catalase was unexpectedly down-regulated. Therefore, the catalase induction system as an enzymatic antioxidant protection should be affected via the cystine importer but not rely on the OxyR controlled manner.


Asunto(s)
Sistemas de Transporte de Aminoácidos/genética , Antioxidantes/metabolismo , Cistina/metabolismo , Deinococcus/metabolismo , Oxidación-Reducción/efectos de los fármacos , Sistemas de Transporte de Aminoácidos/metabolismo , Catalasa/metabolismo , Deinococcus/genética , Genes Bacterianos , Peróxido de Hidrógeno/farmacología , Familia de Multigenes
20.
Microorganisms ; 7(10)2019 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-31614796

RESUMEN

During an oxidative stress-response assay on a putative Dps-like gene-disrupted Δdgeo_0257 mutant strain of radiation-resistant bacterium Deinococcus geothermalis, a non-pigmented colony was observed among the normal reddish color colonies. This non-pigmented mutant cell subsequently displayed higher sensitivity to H2O2. While carotenoid has a role in protecting as scavenger of reactive oxygen species the reddish wild-type strain from radiation and oxidative stresses, it is hypothesized that the carotenoid biosynthesis pathway has been disrupted in the mutant D. geothermalis cell. Here, we show that, in the non-pigmented mutant cell of interest, phytoene desaturase (Dgeo_0524, crtI), a key enzyme in carotenoid biosynthesis, was interrupted by transposition of an ISDge7 family member insertion sequence (IS) element. RNA-Seq analysis between wild-type and Δdgeo_0257 mutant strains revealed that the expression level of ISDge5 family transposases, but not ISDge7 family members, were substantially up-regulated in the Δdgeo_0257 mutant strain. We revealed that the non-pigmented strain resulted from the genomic integration of ISDge7 family member IS elements, which were also highly up-regulated, particularly following oxidative stress. The transposition path for both transposases is a replicative mode. When exposed to oxidative stress in the absence of the putative DNA binding protein Dgeo_0257, a reddish D. geothermalis strain became non-pigmented. This transformation was facilitated by transposition of an ISDge7 family IS element into a gene encoding a key enzyme of carotenoid biosynthesis. Further, we present evidence of additional active transposition by the ISDge5 family IS elements, a gene that was up-regulated during the stationary phase regardless of the presence of oxidative stress.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...