Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38352467

RESUMEN

Genome editing technologies have the potential to transform our understanding of how genetic variation gives rise to complex traits through the systematic engineering and phenotypic characterization of genetic variants. However, there has yet to be a system with sufficient efficiency, fidelity, and throughput to comprehensively identify causal variants at the genome scale. Here we explored the ability of templated CRISPR editing systems to install natural variants genome-wide in budding yeast. We optimized several approaches to enhance homology-directed repair (HDR) with donor DNA templates, including donor recruitment to target sites, single-stranded donor production by bacterial retrons, and in vivo plasmid assembly. We uncovered unique advantages of each system that we integrated into a single superior system named MAGESTIC 3.0. We used MAGESTIC 3.0 to dissect causal variants residing in 112 quantitative trait loci across 32 environmental conditions, revealing an enrichment for missense variants and loci with multiple causal variants. MAGESTIC 3.0 will facilitate the functional analysis of the genome at single-nucleotide resolution and provides a roadmap for improving template-based genome editing systems in other organisms.

2.
BMC Public Health ; 21(1): 226, 2021 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-33504339

RESUMEN

BACKGROUND: As COVID-19 continues to spread around the world, understanding how patterns of human mobility and connectivity affect outbreak dynamics, especially before outbreaks establish locally, is critical for informing response efforts. In Taiwan, most cases to date were imported or linked to imported cases. METHODS: In collaboration with Facebook Data for Good, we characterized changes in movement patterns in Taiwan since February 2020, and built metapopulation models that incorporate human movement data to identify the high risk areas of disease spread and assess the potential effects of local travel restrictions in Taiwan. RESULTS: We found that mobility changed with the number of local cases in Taiwan in the past few months. For each city, we identified the most highly connected areas that may serve as sources of importation during an outbreak. We showed that the risk of an outbreak in Taiwan is enhanced if initial infections occur around holidays. Intracity travel reductions have a higher impact on the risk of an outbreak than intercity travel reductions, while intercity travel reductions can narrow the scope of the outbreak and help target resources. The timing, duration, and level of travel reduction together determine the impact of travel reductions on the number of infections, and multiple combinations of these can result in similar impact. CONCLUSIONS: To prepare for the potential spread within Taiwan, we utilized Facebook's aggregated and anonymized movement and colocation data to identify cities with higher risk of infection and regional importation. We developed an interactive application that allows users to vary inputs and assumptions and shows the spatial spread of the disease and the impact of intercity and intracity travel reduction under different initial conditions. Our results can be used readily if local transmission occurs in Taiwan after relaxation of border control, providing important insights into future disease surveillance and policies for travel restrictions.


Asunto(s)
COVID-19/epidemiología , Enfermedades Transmisibles Importadas/epidemiología , Brotes de Enfermedades , Viaje/estadística & datos numéricos , Predicción , Humanos , Modelos Biológicos , Riesgo , Medios de Comunicación Sociales , Taiwán/epidemiología , Viaje/legislación & jurisprudencia
3.
Nature ; 590(7845): 338-343, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33442057

RESUMEN

RAG endonuclease initiates Igh V(D)J recombination in progenitor B cells by binding a JH-recombination signal sequence (RSS) within a recombination centre (RC) and then linearly scanning upstream chromatin, presented by loop extrusion mediated by cohesin, for convergent D-RSSs1,2. The utilization of convergently oriented RSSs and cryptic RSSs is intrinsic to long-range RAG scanning3. Scanning of RAG from the DJH-RC-RSS to upstream convergent VH-RSSs is impeded by D-proximal CTCF-binding elements (CBEs)2-5. Primary progenitor B cells undergo a mechanistically undefined contraction of the VH locus that is proposed to provide distal VHs access to the DJH-RC6-9. Here we report that an inversion of the entire 2.4-Mb VH locus in mouse primary progenitor B cells abrogates rearrangement of both VH-RSSs and normally convergent cryptic RSSs, even though locus contraction still occurs. In addition, this inversion activated both the utilization of cryptic VH-RSSs that are normally in opposite orientation and RAG scanning beyond the VH locus through several convergent CBE domains to the telomere. Together, these findings imply that broad deregulation of CBE impediments in primary progenitor B cells promotes RAG scanning of the VH locus mediated by loop extrusion. We further found that the expression of wings apart-like protein homologue (WAPL)10, a cohesin-unloading factor, was low in primary progenitor B cells compared with v-Abl-transformed progenitor B cell lines that lacked contraction and RAG scanning of the VH locus. Correspondingly, depletion of WAPL in v-Abl-transformed lines activated both processes, further implicating loop extrusion in the locus contraction mechanism.


Asunto(s)
Linfocitos B/metabolismo , Proteínas de Unión al ADN/metabolismo , Endonucleasas/metabolismo , Proteínas de Homeodominio/metabolismo , Cadenas Pesadas de Inmunoglobulina/genética , Conformación de Ácido Nucleico , Animales , Linfocitos B/citología , Linfocitos B/enzimología , Línea Celular , Células Cultivadas , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/genética , Regulación hacia Abajo , Endonucleasas/deficiencia , Endonucleasas/genética , Puntos de Control de la Fase G1 del Ciclo Celular , Secuenciación de Nucleótidos de Alto Rendimiento , Proteínas de Homeodominio/genética , Ratones , Ratones Endogámicos C57BL , Proteínas/genética , Proteínas/metabolismo , Recombinación V(D)J/genética
4.
medRxiv ; 2020 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-32817972

RESUMEN

Background As COVID-19 continues to spread around the world, understanding how patterns of human mobility and connectivity affect outbreak dynamics, especially before outbreaks establish locally, is critical for informing response efforts. In Taiwan, most cases to date were imported or linked to imported cases. Methods In collaboration with Facebook Data for Good, we characterized changes in movement patterns in Taiwan since February 2020, and built metapopulation models that incorporate human movement data to identify the high risk areas of disease spread and assess the potential effects of local travel restrictions in Taiwan. Results We found that mobility changed with the number of local cases in Taiwan in the past few months. For each city, we identified the most highly connected areas that may serve as sources of importation during an outbreak. We showed that the risk of an outbreak in Taiwan is enhanced if initial infections occur around holidays. Intracity travel reductions have a higher impact on the risk of an outbreak than intercity travel reductions, while intercity travel reductions can narrow the scope of the outbreak and help target resources. The timing, duration, and level of travel reduction together determine the impact of travel reductions on the number of infections, and multiple combinations of these can result in similar impact. Conclusions To prepare for the potential spread within Taiwan, we utilized Facebook's aggregated and anonymized movement and colocation data to identify cities with higher risk of infection and regional importation. We developed an interactive application that allows users to vary inputs and assumptions and shows the spatial spread of the disease and the impact of intercity and intracity travel reduction under different initial conditions. Our results can be used readily if local transmission occurs in Taiwan after relaxation of border control, providing important insights into future disease surveillance and policies for travel restrictions.

5.
Nature ; 582(7812): 421-425, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32499646

RESUMEN

The antigen-binding variable regions of the B cell receptor (BCR) and of antibodies are encoded by exons that are assembled in developing B cells by V(D)J recombination1. The BCR repertoires of primary B cells are vast owing to mechanisms that create diversity at the junctions of V(D)J gene segments that contribute to complementarity-determining region 3 (CDR3), the region that binds antigen1. Primary B cells undergo antigen-driven BCR affinity maturation through somatic hypermutation and cellular selection in germinal centres (GCs)2,3. Although most GCs are transient3, those in intestinal Peyer's patches (PPs)-which depend on the gut microbiota-are chronic4, and little is known about their BCR repertoires or patterns of somatic hypermutation. Here, using a high-throughput assay that analyses both V(D)J segment usage and somatic hypermutation profiles, we elucidate physiological BCR repertoires in mouse PP GCs. PP GCs from different mice expand public BCR clonotypes (clonotypes that are shared between many mice) that often have canonical CDR3s in the immunoglobulin heavy chain that, owing to junctional biases during V(D)J recombination, appear much more frequently than predicted in naive B cell repertoires. Some public clonotypes are dependent on the gut microbiota and encode antibodies that are reactive to bacterial glycans, whereas others are independent of gut bacteria. Transfer of faeces from specific-pathogen-free mice to germ-free mice restored germ-dependent clonotypes, directly implicating BCR selection. We identified somatic hypermutations that were recurrently selected in such public clonotypes, indicating that affinity maturation occurs in mouse PP GCs under homeostatic conditions. Thus, persistent gut antigens select recurrent BCR clonotypes to seed chronic PP GC responses.


Asunto(s)
Afinidad de Anticuerpos/genética , Centro Germinal/citología , Centro Germinal/inmunología , Ganglios Linfáticos Agregados/citología , Ganglios Linfáticos Agregados/inmunología , Receptores de Antígenos de Linfocitos B/inmunología , Receptores de Antígenos de Linfocitos B/metabolismo , Animales , Heces/microbiología , Microbioma Gastrointestinal/inmunología , Genes de las Cadenas Pesadas de las Inmunoglobulinas/genética , Vida Libre de Gérmenes , Homeostasis , Humanos , Región Variable de Inmunoglobulina/genética , Región Variable de Inmunoglobulina/inmunología , Ratones , Selección Genética , Hipermutación Somática de Inmunoglobulina/genética , Recombinación V(D)J/genética
6.
PLoS Genet ; 15(3): e1008001, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30822309

RESUMEN

We have used two different live-cell fluorescent protein markers to monitor the formation and localization of double-strand breaks (DSBs) in budding yeast. Using GFP derivatives of the Rad51 recombination protein or the Ddc2 checkpoint protein, we find that cells with three site-specific DSBs, on different chromosomes, usually display 2 or 3 foci that may coalesce and dissociate. This motion is independent of Rad52 and microtubules. Rad51-GFP, by itself, is unable to repair DSBs by homologous recombination in mitotic cells, but is able to form foci and allow repair when heterozygous with a wild type Rad51 protein. The kinetics of formation and disappearance of a Rad51-GFP focus parallels the completion of site-specific DSB repair. However, Rad51-GFP is proficient during meiosis when homozygous, similar to rad51 "site II" mutants that can bind single-stranded DNA but not complete strand exchange. Rad52-RFP and Rad51-GFP co-localize to the same DSB, but a significant minority of foci have Rad51-GFP without visible Rad52-RFP. We conclude that co-localization of foci in cells with 3 DSBs does not represent formation of a homologous recombination "repair center," as the same distribution of Ddc2-GFP foci was found in the absence of the Rad52 protein.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas de Ciclo Celular/genética , Roturas del ADN de Doble Cadena , Recombinasa Rad51/genética , Proteína Recombinante y Reparadora de ADN Rad52/genética , Proteínas de Saccharomyces cerevisiae/genética , Daño del ADN/genética , Proteínas de Unión al ADN/genética , Proteínas Fluorescentes Verdes/genética , Recombinación Homóloga/genética , Cinética , Meiosis/genética , Saccharomyces cerevisiae/genética
7.
Proc Natl Acad Sci U S A ; 115(8): 1919-1924, 2018 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-29432181

RESUMEN

We recently discovered 27 recurrent DNA double-strand break (DSB) clusters (RDCs) in mouse neural stem/progenitor cells (NSPCs). Most RDCs occurred across long, late-replicating RDC genes and were found only after mild inhibition of DNA replication. RDC genes share intriguing characteristics, including encoding surface proteins that organize brain architecture and neuronal junctions, and are genetically implicated in neuropsychiatric disorders and/or cancers. RDC identification relies on high-throughput genome-wide translocation sequencing (HTGTS), which maps recurrent DSBs based on their translocation to "bait" DSBs in specific chromosomal locations. Cellular heterogeneity in 3D genome organization allowed unequivocal identification of RDCs on 14 different chromosomes using HTGTS baits on three mouse chromosomes. Additional candidate RDCs were also implicated, however, suggesting that some RDCs were missed. To more completely identify RDCs, we exploited our finding that joining of two DSBs occurs more frequently if they lie on the same cis chromosome. Thus, we used CRISPR/Cas9 to introduce specific DSBs into each mouse chromosome in NSPCs that were used as bait for HTGTS libraries. This analysis confirmed all 27 previously identified RDCs and identified many new ones. NSPC RDCs fall into three groups based on length, organization, transcription level, and replication timing of genes within them. While mostly less robust, the largest group of newly defined RDCs share many intriguing characteristics with the original 27. Our findings also revealed RDCs in NSPCs in the absence of induced replication stress, and support the idea that the latter treatment augments an already active endogenous process.


Asunto(s)
Roturas del ADN de Doble Cadena , Animales , Encéfalo , Reparación del ADN , Eliminación de Gen , Estudio de Asociación del Genoma Completo , Secuenciación de Nucleótidos de Alto Rendimiento , Ratones , Células-Madre Neurales/metabolismo , Interferencia de ARN , Translocación Genética
8.
PLoS One ; 12(7): e0180994, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28700723

RESUMEN

Repair of a double-strand break (DSB) by an ectopic homologous donor sequence is subject to the three-dimensional arrangement of chromosomes in the nucleus of haploid budding yeast. The data for interchromosomal recombination suggest that searching for homology is accomplished by a random collision process, strongly influenced by the contact probability of the donor and recipient sequences. Here we explore how recombination occurs on the same chromosome and whether there are additional constraints imposed on repair. Specifically, we examined how intrachromosomal repair is affected by the location of the donor sequence along the 813-kb chromosome 2 (Chr2), with a site-specific DSB created on the right arm (position 625 kb). Repair correlates well with contact frequencies determined by chromosome conformation capture-based studies (r = 0.85). Moreover, there is a profound constraint imposed by the anchoring of the centromere (CEN2, position 238 kb) to the spindle pole body. Sequences at the same distance on either side of CEN2 are equivalently constrained in recombining with a DSB located more distally on one arm, suggesting that sequences on the opposite arm from the DSB are not otherwise constrained in their interaction with the DSB. The centromere constraint can be partially relieved by inducing transcription through the centromere to inactivate CEN2 tethering. In diploid cells, repair of a DSB via its allelic donor is strongly influenced by the presence and the position of an ectopic intrachromosomal donor.


Asunto(s)
Roturas del ADN de Doble Cadena , Saccharomycetales/metabolismo , Linaje , Reacción en Cadena de la Polimerasa , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales/genética
9.
Proc Natl Acad Sci U S A ; 113(2): E146-54, 2016 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-26715752

RESUMEN

Repair of a chromosomal double-strand break (DSB) by gene conversion depends on the ability of the broken ends to encounter a donor sequence. To understand how chromosomal location of a target sequence affects DSB repair, we took advantage of genome-wide Hi-C analysis of yeast chromosomes to create a series of strains in which an induced site-specific DSB in budding yeast is repaired by a 2-kb donor sequence inserted at different locations. The efficiency of repair, measured by cell viability or competition between each donor and a reference site, showed a strong correlation (r = 0.85 and 0.79) with the contact frequencies of each donor with the DSB repair site. Repair efficiency depends on the distance between donor and recipient rather than any intrinsic limitation of a particular donor site. These results further demonstrate that the search for homology is the rate-limiting step in DSB repair and suggest that cells often fail to repair a DSB because they cannot locate a donor before other, apparently lethal, processes arise. The repair efficiency of a donor locus can be improved by four factors: slower 5' to 3' resection of the DSB ends, increased abundance of replication protein factor A (RPA), longer shared homology, or presence of a recombination enhancer element adjacent to a donor.


Asunto(s)
Posicionamiento de Cromosoma , Roturas del ADN de Doble Cadena , Reparación del ADN , Saccharomyces cerevisiae/genética , Southern Blotting , Cromosomas Fúngicos , Replicación del ADN , Sitios Genéticos , Cinética , Viabilidad Microbiana , Recombinación Genética , Proteína de Replicación A/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
10.
Microbiol Spectr ; 3(2): MDNA3-0013-2014, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26104712

RESUMEN

The budding yeast Saccharomyces cerevisiae has two alternative mating types designated MATa and MATα. These are distinguished by about 700 bp of unique sequences, Ya or Yα, including divergent promoter sequences and part of the open reading frames of genes that regulate mating phenotype. Homothallic budding yeast, carrying an active HO endonuclease gene, HO, can switch mating type through a recombination process known as gene conversion, in which a site-specific double-strand break (DSB) created immediately adjacent to the Y region results in replacement of the Y sequences with a copy of the opposite mating type information, which is harbored in one of two heterochromatic donor loci, HMLα or HMRa. HO gene expression is tightly regulated to ensure that only half of the cells in a lineage switch to the opposite MAT allele, thus promoting conjugation and diploid formation. Study of the silencing of these loci has provided a great deal of information about the role of the Sir2 histone deacetylase and its associated Sir3 and Sir4 proteins in creating heterochromatic regions. MAT switching has been examined in great detail to learn about the steps in homologous recombination. MAT switching is remarkably directional, with MATa recombining preferentially with HMLα and MATα using HMRa. Donor preference is controlled by a cis-acting recombination enhancer located near HML. RE is turned off in MATα cells but in MATa binds multiple copies of the Fkh1 transcription factor whose forkhead-associated phosphothreonine binding domain localizes at the DSB, bringing HML into conjunction with MATa.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Genes del Tipo Sexual de los Hongos , Recombinación Homóloga , Saccharomyces cerevisiae/genética
11.
Genes Dev ; 28(21): 2394-406, 2014 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-25367035

RESUMEN

Recent high-resolution genome analyses of cancer and other diseases have revealed the occurrence of microhomology-mediated chromosome rearrangements and copy number changes. Although some of these rearrangements appear to involve nonhomologous end-joining, many must have involved mechanisms requiring new DNA synthesis. Models such as microhomology-mediated break-induced replication (MM-BIR) have been invoked to explain these rearrangements. We examined BIR and template switching between highly diverged sequences in Saccharomyces cerevisiae, induced during repair of a site-specific double-strand break (DSB). Our data show that such template switches are robust mechanisms that give rise to complex rearrangements. Template switches between highly divergent sequences appear to be mechanistically distinct from the initial strand invasions that establish BIR. In particular, such jumps are less constrained by sequence divergence and exhibit a different pattern of microhomology junctions. BIR traversing repeated DNA sequences frequently results in complex translocations analogous to those seen in mammalian cells. These results suggest that template switching among repeated genes is a potent driver of genome instability and evolution.


Asunto(s)
Repeticiones de Microsatélite/genética , Recombinación Genética/genética , Saccharomyces cerevisiae/genética , Reparación del ADN/genética , Replicación del ADN/genética , Evolución Molecular , Conversión Génica , Inestabilidad Genómica/genética , Proteínas de Saccharomyces cerevisiae/genética , Moldes Genéticos , Translocación Genética/genética
12.
Nat Struct Mol Biol ; 21(1): 103-9, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24336221

RESUMEN

In budding yeast, a single double-strand break (DSB) triggers extensive Tel1 (ATM)- and Mec1 (ATR)-dependent phosphorylation of histone H2A around the DSB, to form γ-H2AX. We describe Mec1- and Tel1-dependent phosphorylation of histone H2B at T129. γ-H2B formation is impaired by γ-H2AX and its binding partner Rad9. High-density microarray analyses show similar γ-H2AX and γ-H2B distributions, but γ-H2B is absent near telomeres. Both γ-H2AX and γ-H2B are strongly diminished over highly transcribed regions. When transcription of GAL7, GAL10 and GAL1 genes is turned off, γ-H2AX is restored within 5 min, in a Mec1-dependent manner; after reinduction of these genes, γ-H2AX is rapidly lost. Moreover, when a DSB is induced near CEN2, γ-H2AX spreads to all other pericentromeric regions, again depending on Mec1. Our data provide new insights in the function and establishment of phosphorylation events occurring on chromatin after DSB induction.


Asunto(s)
Daño del ADN , Histonas/metabolismo , Saccharomyces cerevisiae/metabolismo , Fosforilación , Saccharomyces cerevisiae/genética , Transcripción Genética
13.
Adv Exp Med Biol ; 752: 33-76, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24170354

RESUMEN

The Food and Agriculture Organization of the United Nations (FAO) estimates that in 2012 aquaculture production of fish will meet or exceed that of the capture fisheries for the first time. Thus, we have just turned the corner from a predominantly hunting gathering approach to meeting our nutritional needs from fish, to a farming approach. In 2012, 327 finfish species and five hybrids were covered by FAO aquaculture statistics, although farming of carps, tilapias, salmonids, and catfishes account for most of food-fish production from aquaculture. Although for most major species at least part of production is based on what might be considered domesticated animals, only limited production in most species is based on farming of improved lines of fish or is fully independent of wild seedstock. Consistent with the infancy of most aquaculture industries, much of the development and implementation of reproductive technologies over the past 100 years has been directed at completion of the life cycle in captivity in order to increase seed production and begin the process of domestication. The selection of species to farm and the emphasis of selective breeding must also take into account other ways to modify performance of an animal. Reproductive technologies have also been developed and implemented to affect many performance traits among fishes. Examples include technologies to control gender, alter time of sexual maturation, and induce sterilization. These technologies help take advantage of sexually dimorphic growth, overcome problems with growth performance and flesh quality associated with sexual maturation, and genetic containment. Reproductive technologies developed to advance aquaculture and how these technologies have been implemented to advance various sectors of the aquaculture industry are discussed. Finally, we will present some thoughts regarding future directions for reproductive technologies and their applications in finfish aquaculture.


Asunto(s)
Cruzamiento/métodos , Peces/fisiología , Técnicas Reproductivas Asistidas/normas , Técnicas Reproductivas Asistidas/tendencias , Animales , Cruzamiento/normas , Femenino , Masculino , Sitios de Carácter Cuantitativo/fisiología
14.
PLoS Genet ; 8(4): e1002630, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22496671

RESUMEN

During Saccharomyces cerevisiae mating-type switching, an HO endonuclease-induced double-strand break (DSB) at MAT is repaired by recombining with one of two donors, HMLα or HMRa, located at opposite ends of chromosome III. MATa cells preferentially recombine with HMLα; this decision depends on the Recombination Enhancer (RE), located about 17 kb to the right of HML. In MATα cells, HML is rarely used and RE is bound by the MATα2-Mcm1 corepressor, which prevents the binding of other proteins to RE. In contrast, in MATa cells, RE is bound by multiple copies of Fkh1 and a single copy of Swi4/Swi6. We report here that, when RE is replaced with four LexA operators in MATa cells, 95% of cells use HMR for repair, but expression of a LexA-Fkh1 fusion protein strongly increases HML usage. A LexA-Fkh1 truncation, containing only Fkh1's phosphothreonine-binding FHA domain, restores HML usage to 90%. A LexA-FHA-R80A mutant lacking phosphothreonine binding fails to increase HML usage. The LexA-FHA fusion protein associates with chromatin in a 10-kb interval surrounding the HO cleavage site at MAT, but only after DSB induction. This association occurs even in a donorless strain lacking HML. We propose that the FHA domain of Fkh1 regulates donor preference by physically interacting with phosphorylated threonine residues created on proteins bound near the DSB, thus positioning HML close to the DSB at MAT. Donor preference is independent of Mec1/ATR and Tel1/ATM checkpoint protein kinases but partially depends on casein kinase II. RE stimulates the strand invasion step of interchromosomal recombination even for non-MAT sequences. We also find that when RE binds to the region near the DSB at MATa then Mec1 and Tel1 checkpoint kinases are not only able to phosphorylate histone H2A (γ-H2AX) around the DSB but can also promote γ-H2AX spreading around the RE region.


Asunto(s)
Proteínas de Ciclo Celular , Elementos de Facilitación Genéticos , Factores de Transcripción Forkhead , Genes del Tipo Sexual de los Hongos , Recombinación Genética , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas Bacterianas , Puntos de Control del Ciclo Celular , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cromatina/genética , Roturas del ADN de Doble Cadena , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Regulación Fúngica de la Expresión Génica , Histonas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Fosforilación , Fosfotreonina/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Serina Endopeptidasas
15.
Proc Natl Acad Sci U S A ; 109(7): 2473-8, 2012 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-22308491

RESUMEN

Classical nonhomologous DNA end-joining (C-NHEJ), which is a major DNA double-strand break (DSB) repair pathway in mammalian cells, plays a dominant role in joining DSBs during Ig heavy chain (IgH) class switch recombination (CSR) in activated B lymphocytes. However, in B cells deficient for one or more requisite C-NHEJ factors, such as DNA ligase 4 (Lig4) or XRCC4, end-joining during CSR occurs by a distinct alternative end-joining (A-EJ) pathway. A-EJ also has been implicated in joining DSBs found in oncogenic chromosomal translocations. DNA ligase 3 (Lig3) and its cofactor XRCC1 are widely considered to be requisite A-EJ factors, based on biochemical studies or extrachromosomal substrate end-joining studies. However, potential roles for these factors in A-EJ of endogenous chromosomal DSBs have not been tested. Here, we report that Xrcc1 inactivation via conditional gene-targeted deletion in WT or XRCC4-deficient primary B cells does not have an impact on either CSR or IgH/c-myc translocations in activated B lymphocytes. Indeed, homozygous deletion of Xrcc1 does not impair A-EJ of I-SceI-induced DSBs in XRCC4-deficient pro-B-cell lines. Correspondingly, substantial depletion of Lig3 in Lig4-deficient primary B cells or B-cell lines does not impair A-EJ of CSR-mediated DSBs or formation of IgH/c-myc translocations. Our findings firmly demonstrate that XRCC1 is not a requisite factor for A-EJ of chromosomal DSBs and raise the possibility that DNA ligase 1 (Lig1) may contribute more to A-EJ than previously considered.


Asunto(s)
Reparación del ADN , Proteínas de Unión al ADN/fisiología , Animales , Linfocitos B/citología , Linaje de la Célula , Ratones , Translocación Genética , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X
16.
Methods Cell Sci ; 25(3-4): 155-66, 2003.
Artículo en Inglés | MEDLINE | ID: mdl-15801161

RESUMEN

Three cell lines were established from muscle (SHMS), heart (SHHT) and swim bladder (SHSB) of snakehead (Channa striatus). The cells grew initially at 25 degrees C in L15 medium supplemented with 20% fetal bovine serum and have been subcultured 13-18 times since their initiation on June 25, 2002. Growth of the snakehead cells was serum-dependent and plating efficiencies ranged from 22-29%. These snakehead cells grew well in RPMI 1640 and L-15 media, which are commonly used for cultivation of animal and mammalian cells and retained 95.9-96.6% cell viability following storage for 4 months in liquid nitrogen. Karyotyping indicated that these snakehead-derived cell lines remained diploid with a chromosome count of 44 at their early passage (passage 8-14). These cell lines were sensitive to CCV, VHSV, SVCV, IPN and SHRV; they were refractory to IHNV. These newly established cell lines are currently being used for the investigation of snakehead viral diseases in Hawaii and will be available for future isolation and study of snakehead viruses.


Asunto(s)
Sacos Aéreos/citología , Músculos/citología , Miocardio/citología , Perciformes/genética , Animales , Birnaviridae/patogenicidad , Birnaviridae/fisiología , Células Cultivadas , Efecto Citopatogénico Viral , Herpesviridae/patogenicidad , Herpesviridae/fisiología , Cariotipificación/métodos , Metafase , Músculos/metabolismo , Rhabdoviridae/patogenicidad , Rhabdoviridae/fisiología , Replicación Viral/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...