Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 309
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Adv Healthc Mater ; : e2401778, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38979867

RESUMEN

Perylenequinonoid natural products are a class of photosensitizers (PSs) that exhibit high reactive oxygen species (ROS) generation and excellent activity for Type I/Type II dual photodynamic therapy. However, their limited activity against gram-negative bacteria and poor water solubility significantly restrict their potential in broad-spectrum photodynamic antimicrobial therapy (PDAT). Herein, a general approach to overcome the limitations of perylenequinonoid photosensitizers (PQPSs) in PDAT by utilizing a macrocyclic supramolecular carrier is presented. Specifically, AnBox·4Cl, a water-soluble cationic cyclophane, is identified as a universal macrocyclic host for PQPSs such as elsinochrome C, hypocrellin A, hypocrellin B, and hypericin, forming 1:1 host-guest complexes with high binding constants (≈107 m -1) in aqueous solutions. Each AnBox·4Cl molecule carries four positive charges that promote strong binding with the membrane of gram-negative bacteria. As a result, the AnBox·4Cl-PQPS complexes can effectively anchor on the surfaces of gram-negative bacteria, while the PQPSs alone cannot. In vitro and in vivo experiments demonstrate that these supramolecular PSs have excellent water solubility and high ROS generation, with broad-spectrum PDAT effect against both gram-negative and gram-positive bacteria. This work paves a new path to enhance PDAT by showcasing an efficient approach to improve PQPSs' water solubility and killing efficacy for gram-negative bacteria.

2.
Small ; : e2404129, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38940500

RESUMEN

The synthesis, crystal structure and room-temperature phosphorescence (RTP) of a 2D metal-free inorganic covalent framework ((H2en) [B5O8(OH)], named as CityU-12, and en represents for ethylenediamine) are reported. The precise structure information of CityU-12 has been disclosed through both single-crystal X-ray diffraction (SCXRD) analysis and low-dose high-resolution transmission electron microscopy (LD-HRTEM) study. The SCXRD results show that CityU-12 composes of 2D anionic B─O-based covalent inorganic frameworks with protonated ethylenediamine locating in the pore sites of 2D B─O layers while LD-HRTEM suggests that CityU-12 has an interplanar distance of 0.60 nm for (00 2 ¯ $\bar{2}$ ) crystal plane and 0.60 nm for (10 1 ¯ $\bar{1}$ ) crystal plane. The optical studies show that CityU-12 is an excellent nonconventional RTP material with the emission peak at 530 nm and a lifetime of 1.5 s. The quantum yield is 84.6% and the afterglow time is as long as 2.5 s. This work demonstrates that metal-free B─O frameworks can be promising nonconventional phosphors for RTP.

3.
Angew Chem Int Ed Engl ; : e202411018, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38932606

RESUMEN

The multiple mortise-and-tenon joint parts are the core factors to provide the structural stability and diversity of Chinese Luban locks, however, constructing such structures is very challenging. Herein, single crystals of covalent organic nanoribbon (named CityU-27) are prepared through the assembly of hexahydroxytriphenylene (HHTP), 4,4'-Vinylenedipyridine (BYE), and phenylboronic acid (BA) together via dative boron←nitrogen (B←N) bonds. The single crystal X-ray diffraction analysis indicates that CityU-27 has covalent organic nanoribbon, where each nanoribbon forms multiple and tight π-π interactions with four neighboring others to generate a Luban lock-like configuration. CityU-27 has been demonstrated as an efficient photocatalyst in a one-pot tandem reaction of hydrogen evolution reaction (HER) and semi-hydrogenation reaction of alkynes in series to produce olefins without any additional photosensitizers and co-catalysts (metal-free).

4.
J Am Chem Soc ; 2024 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-38853354

RESUMEN

A piezoelectric polymer membrane based on single metal atoms was demonstrated to be effective by anchoring isolated calcium (Ca) atoms on a composite of nitrogen-doped carbon and polyvinylidene fluoride (PVDF). The addition of Ca-atom-anchored carbon nanoparticles not only promotes the formation of the ß phase (from 29.8 to 56.3%), the most piezoelectrically active phase, in PVDF, but also introduces much higher porosity and hydrophilicity. Under ultrasonic excitation, the fabricated catalyst membrane demonstrates a record-high and stable dye decomposing rate of 0.11 min-1 and antibacterial efficiencies of 99.8%. Density functional theory calculations reveal that the primary contribution to catalytic activity arises from single-atom Ca doping and that a possible synergistic effect between PVDF and Ca atoms can improve the catalytic performance. It is shown that O2 molecules can be easily hydrogenated to produce ·OH on Ca-PVDF, and the local electric field provided by the ß-phase-PVDF might enhance the production of ·O2-. The proposed polymer membrane is expected to inspire the rational design of piezocatalysts and pave the way for the application of piezocatalysis technology for practical environmental remediation.

5.
Adv Sci (Weinh) ; : e2401664, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38704673

RESUMEN

Deep-blue multi-resonance (MR) emitters with stable and narrow full-width-at-half-maximum (FWHM) are of great importance for widening the color gamut of organic light-emitting diodes (OLEDs). However, most planar MR emitters are vulnerable to intermolecular interactions from both the host and guest, causing spectral broadening and exciton quenching in thin films. Their emission in the solid state is environmentally sensitive, and the color purity is often inferior to that in solutions. Herein, a molecular design strategy is presented that simultaneously narrows the FWHM and suppresses intermolecular interactions by combining intramolecular locking and peripheral shielding within a carbonyl/nitrogen-based MR core. Intramolecularly locking carbonyl/nitrogen-based bears narrower emission of 2,10-dimethyl-12,12-diphenyl-4H-benzo[9,1]quinolizino[3,4,5,6,7-defg]acridine-4,8(12H)-dione in solution and further with peripheral-shielding groups, deep-blue emitter (12,12-diphenyl-2,10-bis(9-phenyl-9H-fluoren-9-yl)-4H-benzo[9,1]quinolizino[3,4,5,6,7-defg]acridine-4,8(12H)-dione, DPQAO-F) exhibits ultra-pure emission with narrow FWHM (c.a., 24 nm) with minimal variations (∆FWHM ≤ 3 nm) from solution to thin films over a wide doping range. An OLED based on DPQAO-F presents a maximum external quantum efficiency (EQEmax) of 19.9% and color index of (0.134, 0.118). Furthermore, the hyper-device of DPQAO-F exhibits a record-high EQEmax of 32.7% in the deep-blue region, representing the first example of carbonyl/nitrogen-based OLED that can concurrently achieve narrow bandwidth in the deep-blue region and a high electroluminescent efficiency surpassing 30%.

6.
Adv Mater ; : e2402947, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38743762

RESUMEN

Tin (Sn) -based perovskite solar cells (PSCs) normally show low open circuit voltage due to serious carrier recombination in the devices, which can be attributed to the oxidation and the resultant high p-type doping of the perovskite active layers. Considering the grand challenge to completely prohibit the oxidation of Sn-based perovskites, a feasible way to improve the device performance is to counter-dope the oxidized Sn-based perovskites by replacing Sn2+ with trivalent cations in the crystal lattice, which however is rarely reported. Here, the introduction of Sb3+, which can effectively counter-dope the oxidized perovskite layer and improve the carrier lifetime, is presented. Meanwhile, Sb3+ can passivate deep-level defects and improve carrier mobility of the perovskite layer, which are all favorable for the photovoltaic performance of the devices. Consequently, the target devices yield a relative enhancement of the power conversion efficiency (PCE) of 31.4% as well as excellent shelf-storage stability. This work provides a novel strategy to improve the performance of Sn-based PSCs, which can be developed as a universal way to compensate for the oxidation of Sn-based perovskites in optoelectronic devices.

7.
Adv Mater ; : e2405966, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38771978

RESUMEN

Fluorescence imaging (FLI)-guided phototheranostics using emission from the second near-infrared (NIR-II) window show significant potential for cancer diagnosis and treatment. Clinical imaging-used polymethine ionic indocyanine green (ICG) dye is widely adopted for NIR fluorescence imaging-guided photothermal therapy (PTT) research due to its exceptional photophysical properties. However, ICG has limitations such as poor photostability, low photothermal conversion efficiency (PCE), short-wavelength emission peak, and liver-targeting issues, which restrict its wider use. In this study, two ionic ICG derivatives are transformed into neutral merocyanines (mCy) to achieve much-enhanced performance for NIR-II cancer phototheranostics. Initial designs of two ionic dyes show similar drawbacks as ICG in terms of poor photostability and low photothermal performance. One of the modified neutral molecules, mCy890, shows significantly improved stability, an emission peak over 1000 nm, and a high photothermal PCE of 51%, all considerably outperform ICG. In vivo studies demonstrate that nanoparticles of the mCy890 can effectively accumulate at the tumor sites for cancer photothermal therapy guided by NIR-II fluorescence imaging. This research provides valuable insights into the development of neutral merocyanines for enhanced cancer phototheranostics.

8.
Angew Chem Int Ed Engl ; 63(26): e202405426, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38641686

RESUMEN

Inspired by dative boron-nitrogen (B←N) bonds proven to be the promising dynamic linkage for the construction of crystalline covalent organic polymers/frameworks (COPs/COFs), we employed 1,4-bis(benzodioxaborole) benzene (BACT) and N,N'-Di(4-pyridyl)-1,4,5,8-naphthalenetetracarboxdiimide (DPNTCDI) as the corresponding building blocks to construct a functional COP (named as CityU-25), which had been employed as an anode in rechargeable lithium ion batteries. CityU-25 displayed an excellent reversible lithium storage capability of 455 mAh/g after 170 cycles at 0.1 A/g, and an impressive one of 673 mAh/g after 720 cycles at 0.5 A/g. These findings suggest that CityU-25 is a standout candidate for advanced battery technologies, highlighting the potential application of this type of materials.

9.
Nat Mater ; 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589543

RESUMEN

Unconventional 1T'-phase transition metal dichalcogenides (TMDs) have aroused tremendous research interest due to their unique phase-dependent physicochemical properties and applications. However, due to the metastable nature of 1T'-TMDs, the controlled synthesis of 1T'-TMD monolayers (MLs) with high phase purity and stability still remains a challenge. Here we report that 4H-Au nanowires (NWs), when used as templates, can induce the quasi-epitaxial growth of high-phase-purity and stable 1T'-TMD MLs, including WS2, WSe2, MoS2 and MoSe2, via a facile and rapid wet-chemical method. The as-synthesized 4H-Au@1T'-TMD core-shell NWs can be used for ultrasensitive surface-enhanced Raman scattering (SERS) detection. For instance, the 4H-Au@1T'-WS2 NWs have achieved attomole-level SERS detections of Rhodamine 6G and a variety of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike proteins. This work provides insights into the preparation of high-phase-purity and stable 1T'-TMD MLs on metal substrates or templates, showing great potential in various promising applications.

11.
J Am Chem Soc ; 146(13): 9413-9421, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38506128

RESUMEN

Precise control of cellular signaling events during programmed cell death is crucial yet challenging for cancer therapy. The modulation of signal transduction in cancer cells holds promise but is limited by the lack of efficient, biocompatible, and spatiotemporally controllable approaches. Here we report a photodynamic strategy that modulates both apoptotic and pyroptotic cell death by altering caspase-3 protein activity and the associated signaling crosstalk. This strategy employs a mitochondria-targeting, near-infrared activatable probe (termed M-TOP) that functions via a type-I photochemical mechanism. M-TOP is less dependent on oxygen and more effective in treating drug-resistant cancer cells, even under hypoxic conditions. Our study shows that higher doses of M-TOP induce pyroptotic cell death via the caspase-3/gasdermin-E pathway, whereas lower doses lead to apoptosis. This photodynamic method is effective across diverse gasdermin-E-expressing cancer cells. Moreover, the M-TOP mediated shift from apoptotic to pyroptotic modulation can evoke a controlled inflammatory response, leading to a robust yet balanced immune reaction. This effectively inhibits both distal tumor growth and postsurgical tumor recurrence. This work demonstrates the feasibility of modulating intracellular signaling through the rational design of photodynamic anticancer drugs.


Asunto(s)
Gasderminas , Neoplasias , Humanos , Caspasa 3/metabolismo , Apoptosis , Transducción de Señal , Mitocondrias/metabolismo , Neoplasias/metabolismo , Caspasa 8/metabolismo , Caspasa 8/farmacología , Caspasa 1/metabolismo , Caspasa 1/farmacología
12.
Adv Mater ; 36(23): e2314247, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38332496

RESUMEN

Aqueous dual-ion batteries (ADIBs) based on the cooperative redox of cations and iodine anions at the anode and cathode respectively, are attracting increasing interest because of high capacity and safety. However, the full-cell performance is limited by the sluggish iodine redox kinetics between iodide and polyiodide involving multiple electron transfer steps, and the undesirable shuttling effect of polyiodides. Here, this work reports a versatile conjugated microporous polymer functionalized with secondary amine groups as an organocatalytic cathode for ADIB, which can be positively charged and electrostatically adsorb iodide, and organocatalyze iodine redox reactions through the amine groups. Both theoretical calculations and controlled experiments confirm that the secondary amine groups confine (poly)iodide species via hydrogen bonding, which is essential for accelerating iodine redox kinetics and reducing the polyiodide shuttling effect. The ADIB achieves an ultrahigh capacity of 730 mAh g-1 with an ultrasmall overpotential of 47 mV at 1 A g-1, which also exhibits excellent rate performance and long cycling stability with a capacity retention of 74% after 5000 cycles at a high current density of 5 A g-1. This work demonstrates the promise of developing organocatalysts for accelerating electrochemical processes, which remains a virtually unexplored area in electrocatalyst design for clean energy applications.

13.
Angew Chem Int Ed Engl ; 63(14): e202318236, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38323753

RESUMEN

The controllable photocatalytic C-C coupling of methanol to produce ethylene glycol (EG) is a highly desirable but challenging objective for replacing the current energy-intensive thermocatalytic process. Here, we develop a metal-free porous boron nitride catalyst that demonstrates exceptional selectivity in the photocatalytic production of EG from methanol under mild conditions. Comprehensive experiments and calculations are conducted to thoroughly investigate the reaction mechanism, revealing that the OB3 unit in the porous BN plays a critical role in the preferential activation of C-H bond in methanol to form ⋅CH2OH via a concerted proton-electron transfer mechanism. More prominent energy barriers are observed for the further dehydrogenation of the ⋅CH2OH intermediate on the OB3 unit, inhibiting the formation of some other by-products during the catalytic process. Additionally, a small downhill energy barrier for the coupling of ⋅CH2OH in the OB3 unit promotes the selective generation of EG. This study provides valuable insights into the underlying mechanisms and can serve as a guide for the design and optimization of photocatalysts for efficient and selective EG production under mild conditions.

14.
Nat Mater ; 23(2): 196-204, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38191634

RESUMEN

The quest for electronic devices that offer flexibility, wearability, durability and high performance has spotlighted two-dimensional (2D) van der Waals materials as potential next-generation semiconductors. Especially noteworthy is indium selenide, which has demonstrated surprising ultra-high plasticity. To deepen our understanding of this unusual plasticity in 2D van der Waals materials and to explore inorganic plastic semiconductors, we have conducted in-depth experimental and theoretical investigations on metal monochalcogenides (MX) and transition metal dichalcogenides (MX2). We have discovered a general plastic deformation mode in MX, which is facilitated by the synergetic effect of phase transitions, interlayer gliding and micro-cracks. This is in contrast to crystals with strong atomic bonding, such as metals and ceramics, where plasticity is primarily driven by dislocations, twinning or grain boundaries. The enhancement of gliding barriers prevents macroscopic fractures through a pinning effect after changes in stacking order. The discovery of ultra-high plasticity and the phase transition mechanism in 2D MX materials holds significant potential for the design and development of high-performance inorganic plastic semiconductors.

15.
Adv Mater ; 36(1): e2303287, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37973198

RESUMEN

To alleviate the greenhouse effect and address the related energy crisis, solar-driven reduction of carbon dioxide (CO2 ) to value-added products is considered as a sustainable strategy. However, the insufficient separation and rapid recombination of photogenerated charge carriers during photocatalysis greatly limit their reduction efficiency and practical application potential. Here, isolated Cobalt (Co) atoms are successfully decorated into oxygen-doped boron nitride (BN) via an in situ pyrolysis method, achieving greatly improved catalytic activity and selectivity to the carbon monoxide (CO) product. X-ray absorption fine spectroscopy demonstrates that the isolated Co atoms are stabilized by the O and N atoms with an unsaturated CoO2 N1 configuration. Further experimental investigation and theoretical simulations confirm that the decorated Co atoms not only work as the real active center during the CO2 reduction process, but also perform as the electron pump to promote the electron/hole separation and transfer, resulting in greatly accelerated reaction kinetics and improved activity. In addition, the CoO2 N1 coordination geometry is favorable to the conversion from *CO2 to *COOH, which shall be considered as a selectivity-determining step for the evolution of the CO products. The surface modulation strategy at the atomic level opens a new avenue for regulating the reaction kinetics for photocatalytic CO2 reduction.

16.
Small Methods ; 8(1): e2300899, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37749953

RESUMEN

Controlling the crystallization to achieve high-quality homogeneous perovskite film is the key strategy in developing perovskite electronic devices. Here, an in situ dynamic optical probing technique is demonstrated that can monitor the fast crystallization of perovskites and effectively minimize the influence of laser excitation during the measurement. This study finds that the typical static probing technique would damage and induce phase segregation in the perovskite films during the excitation. These issues can be effectively resolved with the dynamic probing approach. It also found that the crystallization between MAPbI3 and MAPbI2 Br is strikingly different. In particular, MAPbI2 Br suffers from inefficient nucleation during the spin-coating that strongly affects the uniform crystal growth in the annealing process. The commonly used pre-heating process is found at a lower temperature not only can further promote the nucleation but also to complete the crystallization of MAPbI2 Br. The role of further annealing at a higher temperature is to facilitate ion-dissociation on the crystal surface to form a passivation layer to stabilize the MAPbI2 Br lattices. The device performance is strongly correlated with the film formation mechanism derived from the in situ results. This work demonstrates that the in situ technique can provide deep insight into the crystallization mechanism, and help to understand the growth mechanism of perovskites with different compositions and dimensionalities.

17.
J Mater Chem B ; 11(45): 10836-10844, 2023 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-37929670

RESUMEN

The efficiency of photodynamic therapy (PDT) is related to the subcellular localization of photosensitizers (PSs) because organelles are associated with many fundamental life-sustaining activities. In this work, we synthesized a PS (CN) based on curcumin (CUR) and obtained enhanced PDT efficiency by simultaneously targeting lipid droplets (LDs) and the endoplasmic reticulum (ER). Compared with CUR, CN with a D-π-A-π-D structure possessed stronger intramolecular charge transfer features, resulting in longer absorption and emission wavelengths. In cell imaging experiments of CN using a confocal laser scanning microscope, a bright green emission in LDs and a weak orange emission in the ER were simultaneously observed due to its sensitivity to polarity. Surprisingly, CN with low singlet oxygen yields (0.13) exhibited an excellent photodynamic effect. Further experimental results showed that the phototoxicity of CN resulted in apoptosis by destroying the ER and ferroptosis by oxidizing polyunsaturated fatty acids (PUFAs) in LDs. This work paves the way for developing more effective photosensitizers with superior dual-targeting specificity.


Asunto(s)
Curcumina , Fotoquimioterapia , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química , Curcumina/farmacología , Fotoquimioterapia/métodos , Retículo Endoplásmico , Oxígeno Singlete
18.
Biomaterials ; 303: 122380, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37925793

RESUMEN

Developing nanoplatforms integrating superior fluorescence imaging ability in second near-infrared (NIR-II) window and tumor microenvironment responsive multi-modal therapy holds great potential for real-time feedback of therapeutic efficacy and optimizing tumor inhibition. Herein, we developed a pH-sensitive pyrrolopyrrole aza-BODIPY-based amphiphilic molecule (PTG), which has a balanced NIR-II fluorescence brightness and photothermal effect. PTG is further co-assembled with a vascular disrupting agent (known as DMXAA) to prepare PTDG nanoparticles for combined anti-vascular/photothermal therapy and real-time monitoring of the tumor vascular disruption. Each PTG molecule has an active PT-3 core which is linked to two PEG chains via pH-sensitive ester bonds. The cleavage of ester bonds in the acidic tumor environment would tricker releases of DMXAA for anti-vascular therapy and further assemble PT-3 cores into micrometer particles for long term monitoring of the tumor progression. Furthermore, benefiting from the high brightness in the NIR-II region (119.61 M-1 cm-1) and long blood circulation time (t1/2 = 235.6 min) of PTDG nanoparticles, the tumor vascular disrupting process can be in situ visualized in real time during treatment. Overall, this study demonstrates a self-assembly strategy to build a pH-responsive NIR-II nanoplatform for real-time monitoring of tumor vascular disruption, long-term tracking tumor progression and combined anti-vascular/photothermal therapy.


Asunto(s)
Nanopartículas , Neoplasias , Humanos , Terapia Fototérmica , Neoplasias/diagnóstico por imagen , Neoplasias/terapia , Neoplasias/patología , Nanopartículas/química , Concentración de Iones de Hidrógeno , Ésteres , Línea Celular Tumoral , Fototerapia/métodos , Microambiente Tumoral
19.
Nanomicro Lett ; 16(1): 21, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37982963

RESUMEN

Massive efforts have been concentrated on the advance of eminent near-infrared (NIR) photothermal materials (PTMs) in the NIR-II window (1000-1700 nm), especially organic PTMs because of their intrinsic biological safety compared with inorganic PTMs. However, so far, only a few NIR-II-responsive organic PTMs was explored, and their photothermal conversion efficiencies (PCEs) still remain relatively low. Herein, donor-acceptor conjugated diradical polymers with open-shell characteristics are explored for synergistically photothermal immunotherapy of metastatic tumors in the NIR-II window. By employing side-chain regulation, the conjugated diradical polymer TTB-2 with obvious NIR-II absorption was developed, and its nanoparticles realize a record-breaking PCE of 87.7% upon NIR-II light illustration. In vitro and in vivo experiments demonstrate that TTB-2 nanoparticles show good tumor photoablation with navigation of photoacoustic imaging in the NIR-II window, without any side-effect. Moreover, by combining with PD-1 antibody, the pulmonary metastasis of breast cancer is high-effectively prevented by the efficient photo-immunity effect. Thus, this study explores superior PTMs for cancer metastasis theranostics in the NIR-II window, offering a new horizon in developing radical-characteristic NIR-II photothermal materials.

20.
Anal Chem ; 95(41): 15350-15356, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37784219

RESUMEN

Lipid droplets (LDs) are crucial organelles used to store lipids and participate in lipid metabolism in cells. The abnormal aggregation and polarity change of LDs are associated with the occurrence of diseases, such as steatosis. Herein, the polarity-sensitive probe TBPCPP with a donor-acceptor-π-acceptor (D-A-π-A) structure was designed and synthesized. The TBPCPP has a large Stokes shift (∼220 nm), excellent photostability, high LD targeting, and considerable two-photon absorption (TPA) cross-section (∼226 GM), enabling deep two-photon imaging (∼360 µm). In addition, the fluorescence lifetime of TBPCPP decreases linearly with increasing solvent polarity. Therefore, with the assistance of two-photon fluorescence lifetime imaging microscopy (TP-FLIM), TBPCPP has successfully achieved not only the visualization of polarity changes caused by LD accumulation in HepG-2 cells but also lipid-specific imaging and visualization of different polarities in lipid-rich regions in zebrafish for the first time. Furthermore, TP-FLIM revealed that the polarity gradually decreases during steatosis in HepG-2 cells, which provided new insights into the diagnosis of steatosis.


Asunto(s)
Gotas Lipídicas , Pez Cebra , Animales , Gotas Lipídicas/química , Microscopía Fluorescente/métodos , Fotones , Lípidos/análisis , Colorantes Fluorescentes/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...