Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38697182

RESUMEN

BACKGROUND: Advanced hybrid closed loop (AHCL) therapy can improve glycaemic control in pregnant women with type 1 diabetes. However, data are needed on the efficacy and safety of AHCL systems as these systems, such as the MiniMed 780G, are not currently approved for use in pregnant women. We aimed to investigate whether the MiniMed 780G can improve glycaemic control with less hypoglycaemia in pregnant women with type 1 diabetes. METHODS: CRISTAL was a double-arm, parallel-group, open-label, randomised controlled trial conducted in secondary and tertiary care specialist endocrinology centres at 12 hospitals (11 in Belgium and one in the Netherlands). Pregnant women aged 18-45 years with type 1 diabetes were randomly assigned (1:1) to AHCL therapy (MiniMed 780G) or standard insulin therapy (standard of care) at a median of 10·1 (IQR 8·6-11·6) weeks of gestation. Randomisation was done centrally with minimisation dependent on baseline HbA1c, insulin administration method, and centre. Participants and study teams were not masked to group allocation. The primary outcome was proportion of time spent in the pregnancy-specific target glucose range (3·5-7·8 mmol/L), measured by continuous glucose monitoring (CGM) at 14-17 weeks, 20-23 weeks, 26-29 weeks, and 33-36 weeks. Key secondary outcomes were overnight time in target range, and time below glucose range (<3·5 mmol/L) overall and overnight. Analyses were conducted on an intention-to-treat basis. This trial is registered with ClinicalTrials.gov (NCT04520971). FINDINGS: Between Jan 15, 2021 and Sept 30, 2022, 101 participants were screened, and 95 were randomly assigned to AHCL therapy (n=46) or standard insulin therapy (n=49). 43 patients assigned to AHCL therapy and 46 assigned to standard insulin therapy completed the study. At baseline, 91 (95·8%) participants used insulin pumps, and the mean HbA1c was 6·5% (SD 0·6). The mean proportion of time spent in the target range (averaged over four time periods) was 66·5% (SD 10·0) in the AHCL therapy group compared with 63·2% (12·4) in the standard insulin therapy group (adjusted mean difference 1·88 percentage points [95% CI -0·82 to 4·58], p=0·17). Overnight time in the target range was higher (adjusted mean difference 6·58 percentage points [95% CI 2·31 to 10·85], p=0·0026), and time below range overall (adjusted mean difference -1·34 percentage points [95% CI, -2·19 to -0·49], p=0·0020) and overnight (adjusted mean difference -1·86 percentage points [95% CI -2·90 to -0·81], p=0·0005) were lower with AHCL therapy than with standard insulin therapy. Participants assigned to AHCL therapy reported higher treatment satisfaction. No unanticipated safety events occurred with AHCL therapy. INTERPRETATION: In pregnant women starting with tighter glycaemic control, AHCL therapy did not improve overall time in target range but improved overnight time in target range, reduced time below range, and improved treatment satisfaction. These data suggest that the MiniMed 780G can be safely used in pregnancy and provides some additional benefits compared with standard insulin therapy; however, it will be important to refine the algorithm to better align with pregnancy requirements. FUNDING: Diabetes Liga Research Fund and Medtronic.

3.
Heliyon ; 10(3): e25499, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38333854

RESUMEN

The extract of mulberry leaf and its active ingredients have already been reported to have anti-diabetic effects; however, further studies are required to obtain better quality extracts and higher yields of active ingredients. Reducose® is a commercially available aqueous extract of mulberry leaves with a high content of active ingredients. In this study, the biological activities of Reducose®, 1-deoxynojirimycin, and l-leucine were evaluated using a glucose-stimulated insulin secretion (GSIS) assay. The GSIS assay results were expressed as the glucose-stimulated index (GSI). Considering the pharmacological safety in pancreatic ß-cells, the appropriate non-toxic concentrations were selected by screening for cytotoxicity of Reducose®, 1-deoxynojirimycin, and l-leucine before the GSIS assay. The effect of Reducose®, 1-deoxynojirimycin, and l-leucine on glucose-stimulated insulin secretion in INS-1 cells was compared. Reducose®, 1-deoxynojirimycin, and l-leucine increased the GSI values more effectively than gliclazide (positive control). This was associated with an increase in protein expression, such as peroxisome proliferator-activated receptor-γ, insulin receptor substrate-2, activated pancreatic and duodenal homeobox-1, which are related to the regulation of pancreatic ß-cell function and survival. In order to elucidate the effect of Reducose® in anti-diabetic effects, blood glucose levels, insulin levels, and liver and lipid concentrations were investigated in a Sprague-Dawley rat model of high-fat diet/streptozotocin-induced diabetes. We observed that administration of Reducose® can decrease fasting blood glucose levels and reduce the production of AST, ALT, TG, and TC to a similar extent as metformin (positive control). These results suggested that Reducose® play a role in promoting GSIS but not enough to show that the content and proportion of 1-deoxynojirimycin and l-leucine play an important role in the GSIS activity of Reducose®.

4.
J Mater Chem B ; 12(2): 525-539, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38113029

RESUMEN

Fluorescence-based bioimaging is an imperative approach with high clinical relevance in healthcare applications and biomedical research. The field of bioimaging plays an indispensable role in gaining insight into the internal architecture of cells/tissues and comprehending the physiological functions associated with biological systems. With the utility of piezoelectric nanomaterials, the bioelectric interface has been significantly investigated, leading to remarkable clinical relevance. Herein, we have developed barium titanate nanoparticle (BT) coated gold nanoclusters (AuNCs) in the presence and absence of an electromagnetic field (EMF). In this work, the effect of low (0.6 G) and high (2.0 G) EMFs on the structural arrangement of these piezoelectric nanocomposites (ABT) has been extensively studied with the help of X-ray diffraction (XRD), high diffraction resolution transmission electron microscopy (HR-TEM) and X-ray photoelectron spectroscopy (XPS). Furthermore, the two derivatives of ABT i.e. 0.6 ABT and 2.0 ABT have been evaluated for electrochemical behavior for their applicability as a candidate for exploring the bioelectric interface. Additionally, ABT, 0.6 ABT, and 2.0 ABT have been explored for cytocompatibility and bioimaging applications. The proposed piezoelectric nanocomposite, as a multifunctional platform, has enormous proficiency in the field of bioimaging and the capability to be utilized across the bioelectric interface.


Asunto(s)
Nanocompuestos , Nanopartículas , Bario , Oro/química , Nanocompuestos/química
5.
J Ginseng Res ; 47(4): 572-582, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37397416

RESUMEN

Background: Free fatty acid-induced lipotoxicity is considered to play an important role in pancreatic ß-cell dysfunction. The effect of ginsenosides on palmitic acid-induced pancreatic beta-cells cell death and failure of glucose-stimulated secretion of insulin (GSIS) was evaluated in this study. Methods: Enzyme-linked immunosorbent assay kit for a rat insulin was used to quantify glucose-stimulated insulin secretion. Protein expression was examined by western blotting analysis. Nuclear condensation was measured by staining with Hoechst 33342 stain. Apoptotic cell death was assessed by staining with Annexin V. Oil Red O staining was used to measure lipid accumulation. Results: We screened ginsenosides to prevent palmitic acid-induced cell death and impairment of GSIS in INS-1 pancreatic ß-cells and identified protopanaxadiol (PPD) as a potential therapeutic agent. The protection effect of PPD was likely due to a reduction in apoptosis and lipid accumulation. PPD attenuated the palmitic acid-induced increase in the levels of B-cell lymphoma-2-associated X/B-cell lymphoma 2, poly (ADP-ribose) polymerase and cleaved caspase-3. Moreover, PPD prevented palmitic acid-induced impairment of insulin secretion, which was accompanied by an increase in the activation of phosphatidylinositol 3-kinase, peroxisome proliferator-activated receptor γ, insulin receptor substrate-2, serine-threonine kinase, and pancreatic and duodenal homeobox-1. Conclusion: Our results suggest that the protective effect of PPD on lipotoxicity and lipid accumulation induced by palmitic acid in pancreatic ß-cells.

6.
Nutrients ; 15(14)2023 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-37513511

RESUMEN

Breast cancer ranks among the most prevalent malignancies affecting women worldwide, and apoptosis-targeting drugs are attractive candidates for the treatment of cancer. In the current study, we investigated the in vitro cytotoxicity of the mushroom Calvatia nipponica in human breast cancer cells (MDA-MB-231), identified potential antitumor compounds through bioactivity-guided isolation, and elucidated the antitumor, pro-apoptotic molecular mechanisms of the identified bioactive compounds. C. nipponica is edible when young, and it has been used as a food source as well as a traditional medicine in wound dressings. However, only a limited number of studies have reported its chemical composition and biological activities. In the screening test, the methanol extract of C. nipponica fruiting bodies exhibited cytotoxicity against MDA-MB-231 cells. Bioactivity-guided fractionation of the methanol (MeOH) extract and chemical investigation of the active fractions resulted in the isolation of fourteen compounds (1-14), including six alkaloids (1-3, 5, 7, and 8), two phenolic compounds (4 and 6), one fatty acid (9), and five steroids (10-14). The structures of the isolated compounds were determined using NMR spectroscopic methods, liquid chromatography-mass spectrometry, and comparison of data with previously reported values. The isolated compounds (1-14) were tested for cytotoxicity against MDA-MB-231 cells, where compound 1, i.e., N,N-dimethyl-anthranilic acid, exhibited the most significant cytotoxicity against MDA-MB-231 cells, with an IC50 value of 90.28 ± 4.23 µM and apoptotic cell death of 56.01% ± 2.64% at 100 µM. Treatment with compound 1 resulted in an upregulation of protein levels, including cleaved caspase-8, cleaved poly (ADP-ribose) polymerase, Bcl-2-associated X protein (Bax), cleaved caspase-3, cleaved caspase-9, Bad, and Cytochrome c, but decreased the levels of B-cell lymphoma 2 (Bcl-2). Overall, these results indicate that N,N-dimethyl-anthranilic acid (1) may have anti-breast cancer activity and is probably involved in the induction of apoptosis mediated by extrinsic and intrinsic signaling pathways.


Asunto(s)
Agaricales , Neoplasias de la Mama , Humanos , Femenino , Metanol/farmacología , Línea Celular Tumoral , Apoptosis , Neoplasias de la Mama/metabolismo , Agaricales/química , Poli(ADP-Ribosa) Polimerasas/metabolismo , Cuerpos Fructíferos de los Hongos , Proliferación Celular
7.
Pharmaceutics ; 15(4)2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-37111724

RESUMEN

The aim of this study was to discover bioactive constituents of Angelica reflexa that improve glucose-stimulated insulin secretion (GSIS) in pancreatic ß-cells. Herein, three new compounds, namely, koseonolin A (1), koseonolin B (2), and isohydroxylomatin (3), along with 28 compounds (4-31) were isolated from the roots of A. reflexa by chromatographic methods. The chemical structures of new compounds (1-3) were elucidated through spectroscopic/spectrometric methods such as NMR and HRESIMS. In particular, the absolute configuration of the new compounds (1 and 3) was performed by electronic circular dichroism (ECD) studies. The effects of the root extract of A. reflexa (KH2E) and isolated compounds (1-31) on GSIS were detected by GSIS assay, ADP/ATP ratio assay, and Western blot assay. We observed that KH2E enhanced GSIS. Among the compounds 1-31, isohydroxylomatin (3), (-)-marmesin (17), and marmesinin (19) increased GSIS. In particular, marmesinin (19) was the most effective; this effect was superior to treatment with gliclazide. GSI values were: 13.21 ± 0.12 and 7.02 ± 0.32 for marmesinin (19) and gliclazide at a same concentration of 10 µM, respectively. Gliclazide is often performed in patients with type 2 diabetes (T2D). KH2E and marmesinin (19) enhanced the protein expressions associated with pancreatic ß-cell metabolism such as peroxisome proliferator-activated receptor γ, pancreatic and duodenal homeobox 1, and insulin receptor substrate-2. The effect of marmesinin (19) on GSIS was improved by an L-type Ca2+ channel agonist and K+ channel blocker and was inhibited by an L-type Ca2+ channel blocker and K+ channel activator. Marmesinin (19) may improve hyperglycemia by enhancing GSIS in pancreatic ß-cells. Thus, marmesinin (19) may have potential use in developing novel anti-T2D therapy. These findings promote the potential application of marmesinin (19) toward the management of hyperglycemia in T2D.

8.
J Ginseng Res ; 47(2): 246-254, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36926606

RESUMEN

Background: Here, we aimed to assess the inhibitory effect of a new compound from Panax ginseng on the migration of human ovarian cancer cells and tube formation of human umbilical vein endothelial cells (HUVECs). Methods: A new compound, ginsenglactone A (1), was isolated from ginseng roots, together with seven known compounds (2-8). Spectroscopic data were used to elucidate the chemical structure of 1. The tubular structure formation in HUVECs was assessed by Mayer's hematoxylin staining. The migration of A2780 cells was evaluated using the scratch wound healing assay. Results: HUVECs treated with 1 had the statistically significant decrease in tubular structure formation compared to the HUVECs treated with compounds 2-8. This effect was enhanced by co-treatment with inhibitors for phosphatidylinositol 3-kinase (PI3K) (LY294002) and extracellular signal-regulated kinase (ERK) (U0126). Treatment with 1 decreased the expression of phosphorylation of ERK, PI3K, vascular endothelial growth factor receptor2 (VEGFR2), Akt, and mammalian target of rapamycin (mTOR). In addition, the ability of A2780 cells to cover the scratched area were also decreased. This effect was enhanced by co-treatment with U0126. Lastly, treatment with 1 decreased the phosphorylation of ERK, matrix metalloproteinase-9 (MMP-9), and MMP-2. Conclusion: These results suggest that ginsenglactone A is a potential inhibitor of HUVEC tubular structure formation and A2780 cellular migration, which may be helpful for understanding its anticancer mechanism.

9.
Bioorg Chem ; 134: 106466, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36934691

RESUMEN

Actinidia polygama has been used as a traditional medicine for treating various diseases. In the present study, 13 compounds, including three new monoterpenoids (1-3), were isolated from the leaves of A. polygama to investigate the bioactive constituents of the plant. The structures were characterized by analyzing spectroscopic and chiroptical data. These compounds were preliminarily screened for their ability to increase insulin secretion levels after glucose stimulation. Of these, 3-O-coumaroylmaslinic acid (4) and jacoumaric acid (5) showed activity. In further biological studies, these compounds exhibited increased glucose-stimulated insulin secretion (GSIS) activity without cytotoxicity in rat INS-1 pancreatic ß-cells as well as α-glucosidase inhibitory activity. Furthermore, both compounds increased insulin receptor substrate-2 (IRS-2), phosphatidylinositol 3-kinase (PI3K), protein kinase B (Akt), pancreatic and duodenal homeobox-1 (PDX-1), and peroxisome proliferator-activated receptor-γ (PPAR-γ) expression. Hence, these compounds may be developed as potential antidiabetic agents.


Asunto(s)
Actinidia , alfa-Glucosidasas , Ratas , Animales , Secreción de Insulina , alfa-Glucosidasas/metabolismo , Actinidia/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Glucosa/metabolismo , Insulina/metabolismo
10.
BMC Pregnancy Childbirth ; 23(1): 180, 2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36927458

RESUMEN

BACKGROUND: Despite increasing use of continuous glucose monitoring (CGM) and continuous subcutaneous insulin infusion (CSII, insulin pumps) in type 1 diabetes (T1D) in pregnancy, achieving recommended pregnancy glycaemic targets (3.5-7.8 mmol/L or 63-140 mg/dL) remains challenging. Consequently, the risk of adverse pregnancy outcomes remains high. Outside pregnancy, hybrid closed-loop (HCL) insulin delivery systems have led to a paradigm shift in the management of T1D, with 12% higher time in glucose target range (TIR) compared to conventional CSII. However, most commercially available HCL systems are currently not approved for use in pregnancy. This study aims to evaluate the efficacy, safety and cost-effectiveness of the MiniMed™ 780G HCL system (Medtronic) in T1D in pregnancy. METHODS: In this international, open-label, randomized controlled trial (RCT), we will compare the MiniMed™ 780G HCL system to standard of care (SoC) in T1D in pregnancy. Women aged 18-45 years with T1D diagnosis of at least one year, HbA1c ≤ 86 mmol/mol (≤ 10%), and confirmed singleton pregnancy up to 11 weeks 6 days will be eligible. After providing written informed consent, all participants will wear a similar CGM system (Guardian™ 3 or Guardian™ 4 CGM) during a 10-day run-in phase. After the run-in phase, participants will be randomised 1:1 to 780G HCL (intervention) or SoC [control, continuation of current T1D treatment with multiple daily injections (MDI) or CSII and any type of CGM] stratified according to centre, baseline HbA1c (< 53 vs. ≥ 53 mmol/mol or < 7 vs. ≥ 7%), and method of insulin delivery (MDI or CSII). The primary outcome will be the time spent within the pregnancy glucose target range, as measured by the CGM at four time points in pregnancy: 14-17, 20-23, 26-29, and 33-36 weeks. Prespecified secondary outcomes will be overnight TIR, time below range (TBR: <3.5 mmol/L or < 63 mg/dL), and overnight TBR. Other outcomes will be exploratory. The planned sample size is 92 participants. The study will end after postpartum discharge from hospital. Analyses will be performed according to intention-to-treat as well as per protocol. DISCUSSION: This large RCT will evaluate a widely used commercially available HCL system in T1D in pregnancy. Recruitment began in January 2021 and was completed in October 2022. Study completion is expected in May 2023. TRIAL REGISTRATION: ClinicalTrials.gov: NCT04520971. Registration date: August 20, 2020. https://clinicaltrials.gov/ct2/show/NCT04520971.


Asunto(s)
Diabetes Mellitus Tipo 1 , Insulina , Femenino , Embarazo , Humanos , Insulina/efectos adversos , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Hipoglucemiantes/efectos adversos , Mujeres Embarazadas , Hemoglobina Glucada , Glucemia/análisis , Automonitorización de la Glucosa Sanguínea , Glucosa , Ensayos Clínicos Controlados Aleatorios como Asunto , Estudios Multicéntricos como Asunto
11.
Plants (Basel) ; 12(3)2023 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-36771665

RESUMEN

Alpinia galanga have been widely used as spice or traditional medicine in East Asia, commonly known as Thai ginger. In the present study, seven major phenylpropanoids, (±)-1'-hydoxychavicol acetate (1; HCA), (1'S)-1'-acetoxychavicol acetate (2; ACA), (1'S)-1'-acetoxyeugenol acetate (3; AEA), eugenyl acetate (4), trans-p-coumaraldehyde (5), trans-p-acetoxycinnamyl alcohol (6), and trans-p-coumaryl diacetate (7), were isolated from the 95% EtOH and hot water extracts of the rhizomes of A. galanga by chromatographic method. Phenylpropanoids 1-7 were evaluated for glucose-stimulated insulin secretion (GSIS) effect and α-glucosidase inhibitory activity. Phenylpropanoids 1-4 increase GSIS effect without cytotoxicity in rat INS-1 pancreatic ß-cells. In addition, INS-1 cells were treated with AEA (3) to determine a plausible mechanism of ß-cell function and insulin secretion through determining the activation of insulin receptor substrate-2 (IRS-2), phosphatidylinositol 3-kinase (PI3K), Akt, and pancreatic and duodenal homeobox-1 (PDX-1). Upon treatment with AEA (3), INS-1 cells showed an increase in these protein expressions. Meanwhile, AEA (3) exhibited α-glucosidase inhibitory activity. On the basis of the above findings, we suggest AEA (3) as a potential antidiabetic agent.

12.
Bioorg Med Chem Lett ; 83: 129186, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36781148

RESUMEN

Pancreatic ß-cell function and insulin secretion are important in antidiabetic drug development. In an effort to discover small molecules to regulate insulin secretion, an endophytic fungus, Penicillium sp. SSP-1CLG, was selected for chemical investigation. Large scale cultures of the strain followed by extraction and chromatographic analysis led to the isolation of 10 anthraquinone and alkaloid-type compounds. The isolated compounds were identified by comprehensive analysis of NMR, MS, and ECD data. The effect of compounds 1-10 on insulin secretion in INS-1 cells was investigated. 2,3-Dihydrosorbicillin (1), chrysophanol (2), and glandicolin B (10) at non-cytotoxic concentrations resulted in an increase of glucose-stimulated insulin secretion (GSIS) in rat INS-1 pancreatic ß-cells. Furthermore, we investigated the signaling pathway involved in 2,3-dihydrosorbicillin (1) and chrysophanol (2) action in the activation of peroxisome proliferator-activated receptor γ (PPARγ), pancreatic and duodenal homeobox-1 (PDX-1), insulin receptor substrate-2 (IRS-2), phosphatidylinositol 3-kinase (PI3K), and Akt. Treatment of INS-1 cells with 2,3-dihydrosorbicillin (1) and chrysophanol (2) increased the expression of these proteins. Our findings indicate that 2,3-dihydrosorbicillin and chrysophanol may play roles in the regulation of insulin secretion in pancreatic ß-cells, at least in part, by targeting PPARγ and PDX-1 via the IRS-2/PI3K/Akt signaling pathway.


Asunto(s)
Células Secretoras de Insulina , Insulina , Animales , Ratas , Glucosa/metabolismo , Insulina/metabolismo , Secreción de Insulina , Fosfatidilinositol 3-Quinasa , Fosfatidilinositol 3-Quinasas/metabolismo , PPAR gamma/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo
13.
Bioorg Med Chem Lett ; 80: 129114, 2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-36574854

RESUMEN

This study aimed to explore the renoprotective effects of oxime derivatives against cisplatin-mediated cell death in LLC-PK1 porcine kidney epithelial cells. Treatment with compounds 161-A and 161-F improved cisplatin-mediated LLC-PK1 cell damage and increased cell viability by more than 80% of the control value when compared with that of cisplatin-treated cells. In addition, 161-A and 161-F reduced cisplatin-induced apoptosis. Analysis of the molecular mechanisms underlying the effects exerted by these compounds revealed that treatment with 161-A and 161-B inhibited the protein expression of extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) and cleaved caspase-3 in cisplatin-treated LLC-PK1 cells. Thus, these findings provide in vitro scientific evidence that oxime derivatives may be useful as pharmacological candidates for the prevention of cisplatin-mediated nephrotoxicity.


Asunto(s)
Cisplatino , Riñón , Animales , Porcinos , Cisplatino/farmacología , Células LLC-PK1 , Riñón/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Apoptosis
14.
Plants (Basel) ; 11(24)2022 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-36559664

RESUMEN

The suppressive effects of flavonoids on macrophage-associated adipocyte inflammation in a differentiated murine preadipocyte cell line (3T3-L1) co-cultured with a murine macrophage cell line (RAW264.7) were evaluated. Extracellular lipid accumulation was investigated via Oil Red O staining. The expression levels of adipogenesis- and inflammation-associated proteins, including CCAAT/enhancer-binding protein (C/EBP)-α, inducible nitric oxide synthase (iNOS), C/EBPß, peroxisome proliferator-activated receptor γ (PPARγ), and cyclooxygenase-2 (COX-2), were determined via Western blotting. Proinflammatory cytokines, including monocyte chemoattractant protein 1 (MCP-1) and interleukin-6 (IL-6), were assessed using enzyme-linked immunosorbent assay kits. We found that silybin, formononetin, and diosmetin inhibited lipid accumulation and production of proinflammatory cytokines in the co-cultures of 3T3-L1 and RAW264.7 cells. Moreover, they inhibited the protein expression of PPARγ, C/EBPα, COX-2, C/EBPß, and iNOS in the co-cultures of 3T3-L1 and RAW264.7 cells. These data support that silybin, formononetin, and diosmetin inhibit macrophage-associated adipocyte inflammation and lipid accumulation.

15.
Plants (Basel) ; 11(24)2022 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-36559672

RESUMEN

Many species in the genus Guettarda are known to exert anti-inflammatory effects and are used as traditional medicinal plants to treat various inflammatory symptoms. However, no studies on the inflammatory activities of Guettarda crispiflora Vahl have been reported. The aim of the study was to investigate in vitro and in vivo the anti-inflammatory effects of a methanol extract of Guettarda crispiflora Vahl (Gc-ME). To determine the anti-inflammatory activity of Gc-ME, lipopolysaccharide (LPS)-, poly(I:C)-, or Pam3CSK4-treated RAW264.7 cells, HCl/EtOH- and LPS-treated mice were employed for in vitro and in vivo tests. LPS-induced nitric oxide production in RAW264.7 cells was determined by Griess assays and cytokine gene expression in LPS-activated RAW264.7 cells, confirmed by RT- and real-time PCR. Transcriptional activation was evaluated by luciferase reporter gene assay. Target protein validation was assessed by Western blot analysis and cellular thermal shift assays (CETSA) with LPS-treated RAW264.7 and gene-transfected HEK293 cells. Using both a HCl/EtOH-induced gastritis model and an LPS-induced lung injury model, inflammatory states were checked by scoring or evaluating gastric lesions, lung edema, and lung histology. Phytochemical fingerprinting of Gc-ME was observed by using liquid chromatography-mass spectrometry. Nitric oxide production induced by LPS and Pam3CSK4 in RAW264.7 cells was revealed to be reduced by Gc-ME. The LPS-induced upregulation of iNOS, COX-2, IL-6, and IL-1ß was also suppressed by Gc-ME treatment. Gc-ME downregulated the promotor activities of AP-1 and NF-κB triggered by MyD88- and TRIF induction. Upstream signaling proteins for NF-κB activation, namely, p-p50, p-p65, p-IκBα, and p-Src were all downregulated by Ch-EE. Moreover, Src was revealed to be directly targeted by Gc-ME. This extract, orally treated strongly, attenuated the inflammatory symptoms in HCl/EtOH-treated stomachs and LPS-treated lungs. Therefore, these results strongly imply that Guettarda crispiflora can be developed as a promising anti-inflammatory remedy with Src-suppressive properties.

16.
Medicina (Kaunas) ; 58(12)2022 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-36557064

RESUMEN

Background and objective: Fever is a common symptom in patients with traumatic brain injury (TBI). However, the effect of fever on the clinical outcomes of patients with TBI is not well characterized. Our study aims to determine the impact of fever on the clinical outcomes of patients with TBI and test the interaction effect of fever on study outcomes according to age group. Materials and methods: Our retrospective study included adult patients with TBI who were transported to a level 1 trauma center by the emergency medical services (EMS) team. The main exposure is fever, defined as a body temperature of 38 °C or above, in the emergency department (ED). The primary outcome was mortality at hospital discharge. We conducted a multivariable logistic regression analysis to estimate the effect sizes of fever on study outcomes. We also conducted an interaction analysis between fever and age group on study outcomes. Results: In multivariable logistic regression analysis, patients with TBI who had fever showed no significant difference in mortality at hospital discharge (aOR, 95% CIs: 1.24 (0.57−3.02)). Fever significantly increased the mortality of elderly patients (>65 years) with TBI (1.39 (1.13−1.50)), whereas there was no significant effect on mortality in younger patients (18−64 years) (0.85 (0.51−1.54)). Conclusions: Fever was associated with mortality only in elderly patients with TBI.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Servicios Médicos de Urgencia , Adulto , Humanos , Anciano , Estudios Retrospectivos , Lesiones Traumáticas del Encéfalo/complicaciones , Fiebre/etiología , Servicio de Urgencia en Hospital
17.
Antioxidants (Basel) ; 11(9)2022 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-36139835

RESUMEN

Hepatocellular carcinoma (HCC) is the fastest-growing tumor capable of spreading to other organs via blood vessels formed by endothelial cells. Apoptosis and angiogenesis-targeting therapies are attractive for cancer treatment. In this study, we aimed to study the in vitro cytotoxicity of Withania somnifera against human HCC (HepG2) cells, identify potential antitumoral withanolide glycosides from the active fraction, and elucidate cytotoxic molecular mechanisms of identified bioactive compounds. W. somnifera (Solanaceae), well-known as 'ashwagandha', is an Ayurvedic medicinal plant used to promote health and longevity, and the MeOH extract of W. somnifera root exhibited cytotoxicity against HepG2 cells during initial screening. Bioactivity-guided fractionation of the MeOH extract and subsequent phytochemical investigation of the active n-BuOH-soluble fraction resulted in the isolation of five withanolide glycosides (1-5), including one new metabolite, withanoside XIII (1), aided by liquid chromatography-mass spectrometry-based analysis. The new compound structure was determined by 1D and 2D nuclear magnetic resonance spectroscopy, high-resolution electrospray ionization mass spectroscopy, electronic circular dichroism, and enzymatic hydrolysis. In addition, withanoside XIIIa (1a) was identified as the new aglycone (1a) of 1. Isolated withanolide glycosides 1-5 and 1a were cytotoxic toward HepG2 cells; withagenin A diglucoside (WAD) (3) exhibited the most potent cytotoxicity against HepG2 cells, with cell viability less than 50% at 100 µM. WAD cytotoxicity was mediated by both extrinsic and intrinsic apoptosis pathways. Treatment with WAD increased protein expression levels of cleaved caspase-8, cleaved caspase-9, cleaved caspase-3, Bcl-2-associated X protein (Bax), and cleaved poly(ADP-ribose) polymerase (cleaved PARP) but decreased expression levels of B-cell lymphoma 2 (Bcl-2). Moreover, WAD inhibited tubular structure formation in human umbilical vein endothelial cells (HUVECs) by inhibiting the protein expression of vascular endothelial growth factor receptor 2 and its downstream pathways, including extracellular signal-regulated kinase (ERK), phosphoinositide 3-kinase (PI3K), Akt, and mammalian target of rapamycin (mTOR). These effects were also enhanced by co-treatment with ERK and PI3K inhibitors. Overall, these results indicate that WAD (3) induced HepG2 apoptosis and inhibited HUVEC tube formation, suggesting its potential application in treating liver cancers.

18.
Int J Mol Sci ; 23(18)2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-36142515

RESUMEN

Reactive oxygen species (ROS), which are exceptionally high in IBD lesions, are known to cause abnormal immune responses to inflammatory reactions in inflammatory bowel diseases (IBD) through damage to the intestinal mucosal linings. Moreover, they are theorized to be an agent of IBD development. Vitamin C is widely known to be an effective antioxidant for its ability to regulate inflammatory responses through its ROS scavenging effect. Therefore, we examined vitamin C's influence on the development and progression of IBD in Gulo(-/-) mice, which cannot synthesize vitamin C like humans due to a defect in the expression of L-gulono-γ-lactone oxidase, an essential enzyme for vitamin C production. First, we found extensive oxidative stress and an inflammation increase in the colon of vitamin C-insufficient Gulo(-/-) mice. We also found decreased IL-22 production and NKp46(+) cell recruitment and the impaired activation of the p38MAPK pathway. Additionally, comparing vitamin C-insufficient Gulo(-/-) mice to vitamin C-sufficient Gulo(-/-) mice and wild-type mice, the insufficient group faced a decrease in mucin-1 expression, accompanied by an increase in IL-6 production, followed by the activation of the STAT3 and Akt pathways. The results suggest that vitamin C insufficiency induces severe colitis, meaning vitamin C could also take on a preventative role by regulating the production of cytokines and the induction of inflammation.


Asunto(s)
Colitis , Enfermedades Inflamatorias del Intestino , Mustelidae , Animales , Antioxidantes/farmacología , Ácido Ascórbico/farmacología , Colitis/patología , Citocinas , Sulfato de Dextran/toxicidad , Humanos , Inflamación , Interleucina-6/efectos adversos , Interleucinas , L-Gulonolactona Oxidasa , Ratones , Ratones Endogámicos C57BL , Mucina-1 , Mustelidae/metabolismo , Proteínas Proto-Oncogénicas c-akt , Especies Reactivas de Oxígeno/metabolismo , Vitaminas , Interleucina-22
19.
Plants (Basel) ; 11(13)2022 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-35807611

RESUMEN

Brevilin A, which has anticancer activities against a range of cancers, is an abundant constituent of the medicinal herb Centipeda minima (L.) A. Braun & Asch, which has also been reported to have anticancer activity against breast cancer cells. However, the anticancer activities of C. minima and brevilin A against human gastric cancer have yet to be reported. In this study, we aimed to evaluate the cytotoxicity and molecular basis underlying the anticancer activities of extracts of C. minima (CMX) and brevilin A against human gastric cancer (AGS) cells. We deduced the potential targets and mechanisms underlying the anticancer activity of brevilin A based on a network pharmacology approach. CCND1, CDK4, and BCL2L1 were identified as the key anticancer genes targeted by brevilin A. Cytotoxicity analyses revealed that CMX and brevilin A reduced the viability of AGS cells to levels below 50% (9.73 ± 1.29 µg/mL and 54.69 ± 1.38 µM, respectively). Furthermore, Hoechst 33342, annexin V, and propidium iodide staining and western blot analyses revealed that CMX and brevilin A promoted a significant induction of apoptotic cell death by upregulating the expression of cleaved caspase-8 and cleaved caspase-3 and reducing the ratio of Bax to Bcl-2, which is partially consistent with the findings of our network pharmacology analysis. Collectively, our observations indicate that CMX and brevilin A are novel sources of herbal medicine with potential utility as effective agents for the treatment of gastric cancer.

20.
Plants (Basel) ; 11(13)2022 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-35807667

RESUMEN

Methylnissolin-3-O-ß-d-glucopyranoside (MNG) is a pterocarpan analog, which protects EA.hy926 cells against oxidative damage through the Nrf2/HO-1 pathway. However, the effects of MNG on obesity-induced inflammatory responses in adipocyte-macrophage co-culture remain unclear. A differentiated murine preadipocyte cell line (3T3-L1) was co-cultured with a murine macrophage cell line (RAW264.7). Intracellular lipid accumulation was determined using Oil Red O staining. Western blotting was performed to investigate the expression of adipogenesis- and inflammation-associated proteins. Cell culture supernatants were assayed using ELISA kits to measure the levels of proinflammatory cytokines such as interleukin 6 (IL-6) and monocyte chemoattractant protein-1 (MCP-1). MNG inhibited lipid accumulation and the production of IL-6 and MCP-1 in the 3T3-L1 and RAW264.7 cell co-culture. Moreover, MNG inhibited the protein expression of CCAAT/enhancer-binding protein alpha (C/EBPα), C/EBPß, peroxisome proliferator-activated receptor γ (PPARγ), cyclooxygenase 2 (COX-2), and inducible nitric oxide synthase (iNOS) under the same co-culture conditions. MNG also inhibited IL-6 and MCP-1 production compared with the co-culture control. These findings demonstrate that MNG inhibited lipid accumulation and inflammatory response by downregulating IL-6 and MCP-1 production and protein expression of C/EBPß, C/EBPα, PPARγ, COX-2, and iNOS in co-culture conditions with 3T3-L1 and RAW264.7 cells. These results suggest that MNG may be beneficial in preventing obesity-related inflammatory status.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA