Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
FEBS Lett ; 596(1): 17-28, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34778969

RESUMEN

Phosphodiesterase 5 inhibition (PDE5i) activates cGMP-dependent protein kinase (PKG) and ameliorates heart failure; however, its impact on cardiac mitochondrial regulation has not been fully determined. Here, we investigated the role of the mitochondrial regulator peroxisome proliferator-activated receptor γ co-activator-1α (PGC1α) in the PDE5i-conferred cardioprotection, utilizing PGC1α null mice. In PGC1α+/+ hearts exposed to 7 weeks of pressure overload by transverse aortic constriction, chronic treatment with the PDE5 inhibitor sildenafil improved cardiac function and remodeling, with improved mitochondrial respiration and upregulation of PGC1α mRNA in the myocardium. By contrast, PDE5i-elicited benefits were abrogated in PGC1α-/- hearts. In cultured cardiomyocytes, PKG overexpression induced PGC1α, while inhibition of the transcription factor CREB abrogated the PGC1α induction. Together, these results suggest that the PKG-PGC1α axis plays a pivotal role in the therapeutic efficacy of PDE5i in heart failure.


Asunto(s)
Inhibidores de Fosfodiesterasa 5
2.
BMC Pediatr ; 21(1): 135, 2021 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-33740922

RESUMEN

BACKGROUND: Attention problems and decreased quality of life are frequently accompanied in Cerebral Palsy (CP), which can negatively affect rehabilitation of physical disability. However, the majority of affected children remain untreated in the aspects of attention or psychosocial factors. Equine-Assisted Activities and Therapies (EAAT) use horse as a therapeutic modality including grooming as well as mounted riding activities in which patients exercise and experience mounted stimulation. It is known to help improve attention in children with ADHD, so that it can be an exercise therapy that is expected to improvement of attention as well as rehabilitating effects in CP patients. EAA may be a promising strategy to address the unmet need for CP patients. This study aims to investigate the efficacy of EAA for children with CP, those with both CP and ADHD and confirm the comorbidity between CP and ADHD. METHODS: Forty-six children with cerebral palsy participated in this study. For the exercise group, they participated in a 40-min session twice a week for a 16-week period, while the control group engaged in daily life without any special treatments. Each children individually were assessed on attention and psychological wellbeing at baseline and post-treatment. Comorbidity were identified based on the Diagnostic and Statistical Manual of Mental Disorder 5th edition (DSM-5) and confirmed by Korean Kiddie-Schedule for Affective Disorders and Schizophrenia Present and Lifetime Version (K-SADS-PL). RESULTS: Perseveration rated using the Conner's Performance Test (CPT) showed a significant decrease only in the exercise group (p < .024). However, no significant improvement in children's quality of life was observed after EAA program compared with control group. Among the total participants, fifteen children (31.91%) were diagnosed with ADHD. When conducting an additional analysis with the subsample of CP patients diagnosed with ADHD, the d', commission error and perseveration showed a significant decrease only in the exercise group. Children with CP and ADHD reported an improvement in quality of life both in exercise and control group, but only in the exercise group social functioning exhibited a significant difference. CONCLUSION: The positive effects of the EAA on attention and quality of life were confirmed. Children with CP in the exercise group were more capable to sustain their attention longer. Those with CP and ADHD showed an increase in attention and perceived to have better social skills after receiving 16 weeks of EAA compared to those in the control group. Considering high comorbidity of CP and ADHD, it seems that the EAA program could be the better alternative treatment for CP with attentional problem. The results of this study will contribute to growing evidence for the efficacy of EAA in children especially with CP and ADHD. TRIAL REGISTRATION: This trial was registered on ClinicalTrials.gov ( NCT03870893 ). Registered 26 July 2017.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Parálisis Cerebral , Animales , Atención , Trastorno por Déficit de Atención con Hiperactividad/epidemiología , Trastorno por Déficit de Atención con Hiperactividad/terapia , Niño , Comorbilidad , Caballos , Humanos , Calidad de Vida
3.
Nat Commun ; 12(1): 1648, 2021 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-33712605

RESUMEN

Cardiomyocytes undergo significant structural and functional changes after birth, and these fundamental processes are essential for the heart to pump blood to the growing body. However, due to the challenges of isolating single postnatal/adult myocytes, how individual newborn cardiomyocytes acquire multiple aspects of the mature phenotype remains poorly understood. Here we implement large-particle sorting and analyze single myocytes from neonatal to adult hearts. Early myocytes exhibit wide-ranging transcriptomic and size heterogeneity that is maintained until adulthood with a continuous transcriptomic shift. Gene regulatory network analysis followed by mosaic gene deletion reveals that peroxisome proliferator-activated receptor coactivator-1 signaling, which is active in vivo but inactive in pluripotent stem cell-derived cardiomyocytes, mediates the shift. This signaling simultaneously regulates key aspects of cardiomyocyte maturation through previously unrecognized proteins, including YAP1 and SF3B2. Our study provides a single-cell roadmap of heterogeneous transitions coupled to cellular features and identifies a multifaceted regulator controlling cardiomyocyte maturation.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Miocitos Cardíacos/metabolismo , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Factores de Empalme de ARN/metabolismo , Factores de Transcripción/metabolismo , Animales , Calcio/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Diferenciación Celular , Redes Reguladoras de Genes , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Ratones , Receptores Activados del Proliferador del Peroxisoma/genética , Células Madre Pluripotentes/metabolismo , Transducción de Señal , Factores de Transcripción/genética , Transcriptoma , Proteínas Señalizadoras YAP
4.
Circ Res ; 127(4): 522-533, 2020 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-32393148

RESUMEN

RATIONALE: Stimulated PKG1α (protein kinase G-1α) phosphorylates TSC2 (tuberous sclerosis complex 2) at serine 1365, potently suppressing mTORC1 (mechanistic [mammalian] target of rapamycin complex 1) activation by neurohormonal and hemodynamic stress. This reduces pathological hypertrophy and dysfunction and increases autophagy. PKG1α oxidation at cysteine-42 is also induced by these stressors, which blunts its cardioprotective effects. OBJECTIVE: We tested the dependence of mTORC1 activation on PKG1α C42 oxidation and its capacity to suppress such activation by soluble GC-1 (guanylyl cyclase 1) activation. METHODS AND RESULTS: Cardiomyocytes expressing wild-type (WT) PKG1α (PKG1αWT) or cysteine-42 to serine mutation redox-dead (PKG1αCS/CS) were exposed to ET-1 (endothelin 1). Cells expressing PKG1αWT exhibited substantial mTORC1 activation (p70 S6K [p70 S6 kinase], 4EBP1 [elF4E binding protein-1], and Ulk1 [Unc-51-like kinase 1] phosphorylation), reduced autophagy/autophagic flux, and abnormal protein aggregation; all were markedly reversed by PKG1αCS/CS expression. Mice with global knock-in of PKG1αCS/CS subjected to pressure overload (PO) also displayed markedly reduced mTORC1 activation, protein aggregation, hypertrophy, and ventricular dysfunction versus PO in PKG1αWT mice. Cardioprotection against PO was equalized between groups by co-treatment with the mTORC1 inhibitor everolimus. TSC2-S1365 phosphorylation increased in PKG1αCS/CS more than PKG1αWT myocardium following PO. TSC2S1365A/S1365A (TSC2 S1365 phospho-null, created by a serine to alanine mutation) knock-in mice lack TSC2 phosphorylation by PKG1α, and when genetically crossed with PKG1αCS/CS mice, protection against PO-induced mTORC1 activation, cardiodepression, and mortality in PKG1αCS/CS mice was lost. Direct stimulation of GC-1 (BAY-602770) offset disparate mTORC1 activation between PKG1αWT and PKG1αCS/CS after PO and blocked ET-1 stimulated mTORC1 in TSC2S1365A-expressing myocytes. CONCLUSIONS: Oxidation of PKG1α at C42 reduces its phosphorylation of TSC2, resulting in amplified PO-stimulated mTORC1 activity and associated hypertrophy, dysfunction, and depressed autophagy. This is ameliorated by direct GC-1 stimulation.


Asunto(s)
Cardiomegalia/metabolismo , Proteína Quinasa Dependiente de GMP Cíclico Tipo I/metabolismo , Guanilato Ciclasa/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Miocitos Cardíacos/metabolismo , Animales , Aorta , Autofagia/fisiología , Benzoatos/metabolismo , Compuestos de Bifenilo/metabolismo , Constricción Patológica , Proteína Quinasa Dependiente de GMP Cíclico Tipo I/genética , Cisteína/metabolismo , Endotelina-1/farmacología , Activación Enzimática , Everolimus/farmacología , Técnicas de Sustitución del Gen , Hidrocarburos Fluorados/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/antagonistas & inhibidores , Ratones , Ratones Endogámicos C57BL , Miocitos Cardíacos/efectos de los fármacos , Oxidación-Reducción , Estrés Oxidativo , Fosforilación , Presión , Proteostasis , Ratas , Proteína 2 del Complejo de la Esclerosis Tuberosa/genética , Proteína 2 del Complejo de la Esclerosis Tuberosa/metabolismo
5.
Nature ; 566(7743): 264-269, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30700906

RESUMEN

The mechanistic target of rapamycin complex-1 (mTORC1) coordinates regulation of growth, metabolism, protein synthesis and autophagy1. Its hyperactivation contributes to disease in numerous organs, including the heart1,2, although broad inhibition of mTORC1 risks interference with its homeostatic roles. Tuberin (TSC2) is a GTPase-activating protein and prominent intrinsic regulator of mTORC1 that acts through modulation of RHEB (Ras homologue enriched in brain). TSC2 constitutively inhibits mTORC1; however, this activity is modified by phosphorylation from multiple signalling kinases that in turn inhibits (AMPK and GSK-3ß) or stimulates (AKT, ERK and RSK-1) mTORC1 activity3-9. Each kinase requires engagement of multiple serines, impeding analysis of their role in vivo. Here we show that phosphorylation or gain- or loss-of-function mutations at either of two adjacent serine residues in TSC2 (S1365 and S1366 in mice; S1364 and S1365 in humans) can bidirectionally control mTORC1 activity stimulated by growth factors or haemodynamic stress, and consequently modulate cell growth and autophagy. However, basal mTORC1 activity remains unchanged. In the heart, or in isolated cardiomyocytes or fibroblasts, protein kinase G1 (PKG1) phosphorylates these TSC2 sites. PKG1 is a primary effector of nitric oxide and natriuretic peptide signalling, and protects against heart disease10-13. Suppression of hypertrophy and stimulation of autophagy in cardiomyocytes by PKG1 requires TSC2 phosphorylation. Homozygous knock-in mice that express a phosphorylation-silencing mutation in TSC2 (TSC2(S1365A)) develop worse heart disease and have higher mortality after sustained pressure overload of the heart, owing to mTORC1 hyperactivity that cannot be rescued by PKG1 stimulation. However, cardiac disease is reduced and survival of heterozygote Tsc2S1365A knock-in mice subjected to the same stress is improved by PKG1 activation or expression of a phosphorylation-mimicking mutation (TSC2(S1365E)). Resting mTORC1 activity is not altered in either knock-in model. Therefore, TSC2 phosphorylation is both required and sufficient for PKG1-mediated cardiac protection against pressure overload. The serine residues identified here provide a genetic tool for bidirectional regulation of the amplitude of stress-stimulated mTORC1 activity.


Asunto(s)
Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Cardiopatías/prevención & control , Cardiopatías/fisiopatología , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteína 2 del Complejo de la Esclerosis Tuberosa/química , Proteína 2 del Complejo de la Esclerosis Tuberosa/metabolismo , Animales , Autofagia , Células Cultivadas , Progresión de la Enfermedad , Activación Enzimática , Everolimus/farmacología , Femenino , Técnicas de Sustitución del Gen , Células HEK293 , Cardiopatías/genética , Cardiopatías/patología , Humanos , Hipertrofia/tratamiento farmacológico , Hipertrofia/patología , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/antagonistas & inhibidores , Ratones , Mutación , Miocitos Cardíacos/patología , Fosforilación , Fosfoserina/metabolismo , Presión , Ratas , Ratas Wistar , Serina/genética , Serina/metabolismo , Proteína 2 del Complejo de la Esclerosis Tuberosa/genética
6.
JCI Insight ; 3(15)2018 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-30089721

RESUMEN

MicroRNAs (miRs) posttranscriptionally regulate mRNA and its translation into protein, and are considered master controllers of genes modulating normal physiology and disease. There is growing interest in how miRs change with drug treatment, and leveraging this for precision guided therapy. Here we contrast 2 closely related therapies, inhibitors of phosphodiesterase type 5 or type 9 (PDE5-I, PDE9-I), given to mice subjected to sustained cardiac pressure overload (PO). Both inhibitors augment cyclic guanosine monophosphate (cGMP) to activate protein kinase G, with PDE5-I regulating nitric oxide (NO) and PDE9-I natriuretic peptide-dependent signaling. While both produced strong phenotypic improvement of PO pathobiology, they surprisingly showed binary differences in miR profiles; PDE5-I broadly reduces more than 120 miRs, including nearly half those increased by PO, whereas PDE9-I has minimal impact on any miR (P < 0.0001). The disparity evolves after pre-miR processing and is organ specific. Lastly, even enhancing NO-coupled cGMP by different methods leads to altered miR regulation. Thus, seemingly similar therapeutic interventions can be barcoded by profound differences in miR signatures, and reversing disease-associated miR changes is not required for therapy success.


Asunto(s)
3',5'-AMP Cíclico Fosfodiesterasas/antagonistas & inhibidores , Cardiopatías/tratamiento farmacológico , MicroARNs/metabolismo , Inhibidores de Fosfodiesterasa 5/farmacología , Procesamiento Postranscripcional del ARN/efectos de los fármacos , 3',5'-AMP Cíclico Fosfodiesterasas/metabolismo , Animales , GMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 5/metabolismo , Modelos Animales de Enfermedad , Cardiopatías/etiología , Humanos , Masculino , Ratones , Péptidos Natriuréticos/metabolismo , Óxido Nítrico/metabolismo , Inhibidores de Fosfodiesterasa 5/uso terapéutico , Transducción de Señal
7.
Neurobiol Aging ; 65: 217-234, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29505961

RESUMEN

3',5'-Cyclic nucleotide phosphodiesterases (PDEs) degrade 3',5' cyclic adenonosine monophosphate (cAMP) and 3',5' cyclic guanosine monophosphate (cGMP), with PDE9A having the highest affinity for cGMP. We show PDE9A6 and 3 novel PDE9 isoforms (PDE9X-100, PDE9X-120, and PDE9X-175) are reliably detected in the brain and lung of mice, whereas PDE9A2 and other isoforms are found elsewhere. PDE9A localizes to the membrane in all organs except the bladder, where it is cytosolic. Brain additionally shows PDE9 in the nuclear fraction. PDE9A mRNA expression/localization dramatically changes across neurodevelopment in a manner that is strikingly consistent between mice and humans (i.e., decreased expression in the hippocampus and cortex and inverted-U in the cerebellum). Study of the 4 PDE9 isoforms in the mouse brain from postnatal day 7 through 24 months similarly identifies dramatic effects of age on expression and subcellular compartmentalization that are isoform specific and brain region specific. Finally, PDE9A mRNA is elevated in the aged human hippocampus with dementia when there is a history of traumatic brain injury. Thus, brain PDE9 is localized to preferentially regulate nuclear- and membrane-proximal pools of cGMP, and its function likely changes across the life span.


Asunto(s)
3',5'-AMP Cíclico Fosfodiesterasas/genética , 3',5'-AMP Cíclico Fosfodiesterasas/metabolismo , Envejecimiento/genética , Envejecimiento/metabolismo , Encéfalo/citología , Encéfalo/metabolismo , Compartimento Celular/genética , Expresión Génica , Fracciones Subcelulares/metabolismo , Animales , GMP Cíclico/metabolismo , Humanos , Ratones Endogámicos C57BL , Ratones Noqueados , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
8.
J Glaucoma ; 26(3): 283-291, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28079653

RESUMEN

PURPOSE OF THE STUDY: The purpose of the study was to investigate the relationship between vision-related quality of life (VRQOL) and mean deviation (MD) of the monocular visual field and integrated binocular visual field (IBVF). METHODS: One hundred eighty VFs (90 pairs) obtained from 90 patients with normal tension glaucoma were included. VRQOL was evaluated using the 25-item National Eye Institute Visual Function Questionnaire (NEI VFQ-25). IBVF was calculated using maximal sensitivity and binocular summation and IBVF MD was calculated. Multiple linear regression analysis was used to assess the impact of IBVF deficit on VRQOL after adjusting for confounding factors. These results were compared to those of monocular visual field. RESULTS: Mean subject age was 59.4 years. The average MD of maximal sensitivity was significantly higher than that of binocular summation, the better eye, and the worse eye (-3.27, -3.78, -3.96, and -8.66 dB, respectively, P<0.001). Rasch-analyzed NEI VFQ-25 subscales and composite scores were significantly correlated with IBVF deficit. The impact that IBVF had on VRQOL was similar to that of the better eye (R of 0.431, 0.422, and 0.422 for MD of the better eye, binocular summation, and maximal sensitivity, respectively). In contrast, the worse eye showed the least correlation with VRQOL (0.363). CONCLUSIONS: The impact of IBVF on VRQOL was similar to that of the better eye irrespective of integration method. Therefore, better eye MD could be a good indicator for VRQOL.


Asunto(s)
Glaucoma de Baja Tensión/fisiopatología , Glaucoma de Baja Tensión/psicología , Calidad de Vida , Trastornos de la Visión/psicología , Visión Binocular/fisiología , Campos Visuales/fisiología , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Análisis de Regresión , Perfil de Impacto de Enfermedad , Estados Unidos , Trastornos de la Visión/fisiopatología , Pruebas del Campo Visual
9.
Clin Ophthalmol ; 10: 145-50, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26848257

RESUMEN

OBJECTIVE: To report the physiological monitoring of intraocular pressure (IOP) during the postoperative periods after orbital decompression surgery and ascertain the correlation between the clinical factors and IOP changes. METHODS: The medical records of 113 orbits from 60 patients who underwent orbital decompression surgery were reviewed retrospectively. IOP measurement during the postoperative periods was classified based on the postoperative day: week 1 (1-7 days), month 1 (8-41 days), month 2 (42-70 days), month 3 (71-97 days), month 4 (98-126 days), and final (after 127 days). The mean postoperative follow-up was 286.5 days for orbits with at least 6 months of follow-up. Univariate and multivariate linear regression analyses were performed to assess the correlation between the IOP reduction percentage and clinical factors. RESULTS: The mean IOP increased from 16.9 to 18.6 mmHg (10.1%) at postoperative week 1 and decreased to 14.4 mmHg (14.5%) after 2 months. Minimal little changes were observed postoperatively in the IOP after 2 months. Preoperative IOP had a significant positive effect on the reduction percentage both at postoperative week 1 (ß=2.51, P=0.001) and after 2 months (ß=1.07, P=0.029), and the spherical equivalent showed a positive correlation with the reduction level at postoperative week 1 (ß=1.71, P=0.021). CONCLUSION: Surgical decompression caused a significant reduction in the IOP in thyroid-associated orbitopathy, and the amount of reduction was closely related to preoperative IOP; however, it may also cause a transient elevation in the IOP during the early postoperative phase in highly myopic eyes.

10.
Elife ; 3: e02164, 2014 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-24843018

RESUMEN

Cardiac progenitor cells (CPCs) must control their number and fate to sustain the rapid heart growth during development, yet the intrinsic factors and environment governing these processes remain unclear. Here, we show that deletion of the ancient cell-fate regulator Numb (Nb) and its homologue Numblike (Nbl) depletes CPCs in second pharyngeal arches (PA2s) and is associated with an atrophic heart. With histological, flow cytometric and functional analyses, we find that CPCs remain undifferentiated and expansive in the PA2, but differentiate into cardiac cells as they exit the arch. Tracing of Nb- and Nbl-deficient CPCs by lineage-specific mosaicism reveals that the CPCs normally populate in the PA2, but lose their expansion potential in the PA2. These findings demonstrate that Nb and Nbl are intrinsic factors crucial for the renewal of CPCs in the PA2 and that the PA2 serves as a microenvironment for their expansion.DOI: http://dx.doi.org/10.7554/eLife.02164.001.


Asunto(s)
Eliminación de Gen , Proteínas de la Membrana/fisiología , Miocitos Cardíacos/citología , Proteínas del Tejido Nervioso/fisiología , Células Madre/citología , Animales , Linaje de la Célula , Corazón/embriología , Péptidos y Proteínas de Señalización Intracelular , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Mosaicismo , Proteínas del Tejido Nervioso/genética
11.
Anal Chem ; 86(8): 3825-33, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24673125

RESUMEN

Cathepsin B has been suggested to be a prognostic marker of melanoma, glioma, and a variety of cancers such as brain, breast, colon, esophageal, gastric, lung, ovarian, and thyroid cancers. Cathepsin B inhibitors have also been considered as anticancer drug candidates; hence, there has been a growing need for a probe which enables the selective and simple detection of cathepsin B and its inhibitors. For the purpose of selective assay, a cathepsin B-specific substrate, N,N'-diBoc-dityrosine-glycine-phenylalanine-3-(methylthio)propylamine (DBDY-Gly-Phe-MTPA) was synthesized in this study. Phe-MTPA, which was produced via cathepsin B-catalyzed hydrolysis of DBDY-Gly-Phe-MTPA, allowed aggregation of gold nanoparticles (AuNPs) leading to a color change from red to blue. When tested for cathepsins B, L, and S, this assay method exhibited AuNPs color change only in reaction to cathepsin B. The limits of detection for cathepsin B was 10 and 5 nM in the 1 and 2 h hydrolysis reactions, respectively. The efficiency of cathepsin B inhibitors such as leupeptin, antipain, and chymostatin was easily compared by the degree of color change. Moreover, IC50 values of leupeptin, antipain, and chymostatin were found to be 0.11, 0.48, and 1.78 µM, respectively, which were similar to the results of previous studies. Therefore the colorimetric assay of cathepsin B and cathepsin B inhibitors using DBDY-Gly-Phe-MTPA and AuNPs allowed not only the selective but also the simple assay of cathepsin B and its inhibitors, which was possible with the naked eye.


Asunto(s)
Catepsina B/antagonistas & inhibidores , Catepsina B/análisis , Colorimetría/métodos , Inhibidores de Cisteína Proteinasa/análisis , Oro/química , Nanopartículas del Metal/química , Biomarcadores de Tumor/análisis , Indicadores y Reactivos , Oligopéptidos/metabolismo
12.
Circ Res ; 114(8): 1246-57, 2014 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-24573206

RESUMEN

RATIONALE: Wound healing after myocardial infarction involves a highly regulated inflammatory response that is initiated by the appearance of neutrophils to clear out dead cells and matrix debris. Neutrophil infiltration is controlled by multiple secreted factors, including the master regulator transforming growth factor ß (TGFß). Broad inhibition of TGFß early postinfarction has worsened post-myocardial infarction remodeling; however, this signaling displays potent cell specificity, and targeted suppression particularly in the myocyte could be beneficial. OBJECTIVE: Our aims were to test the hypothesis that targeted suppression of myocyte TGFß signaling ameliorates postinfarct remodeling and inflammatory modulation and to identify mechanisms by which this may be achieved. METHODS AND RESULTS: Mice with TGFß receptor-coupled signaling genetically suppressed only in cardiac myocytes (conditional TGFß receptor 1 or 2 knockout) displayed marked declines in neutrophil recruitment and accompanying metalloproteinase 9 activation after infarction and were protected against early-onset mortality due to wall rupture. This is a cell-specific effect, because broader inhibition of TGFß signaling led to 100% early mortality due to rupture. Rather than by altering fibrosis or reducing the generation of proinflammatory cytokines/chemokines, myocyte-selective TGFß inhibition augmented the synthesis of a constellation of highly protective cardiokines. These included thrombospondin 4 with associated endoplasmic reticulum stress responses, interleukin-33, follistatin-like 1, and growth and differentiation factor 15, which is an inhibitor of neutrophil integrin activation and tissue migration. CONCLUSIONS: These data reveal a novel role of myocyte TGFß signaling as a potent regulator of protective cardiokine and neutrophil-mediated infarct remodeling.


Asunto(s)
Movimiento Celular/fisiología , Citoprotección/fisiología , Infarto del Miocardio/mortalidad , Miocitos Cardíacos/metabolismo , Neutrófilos/patología , Transducción de Señal/fisiología , Factor de Crecimiento Transformador beta/antagonistas & inhibidores , Animales , Modelos Animales de Enfermedad , Proteínas Relacionadas con la Folistatina/metabolismo , Factor 15 de Diferenciación de Crecimiento/metabolismo , Interleucina-33 , Interleucinas/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Ratas , Ratas Sprague-Dawley , Tasa de Supervivencia , Trombospondinas/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
13.
Proc Natl Acad Sci U S A ; 111(4): 1551-6, 2014 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-24453217

RESUMEN

Chronic neurohormonal and mechanical stresses are central features of heart disease. Increasing evidence supports a role for the transient receptor potential canonical channels TRPC3 and TRPC6 in this pathophysiology. Channel expression for both is normally very low but is increased by cardiac disease, and genetic gain- or loss-of-function studies support contributions to hypertrophy and dysfunction. Selective small-molecule inhibitors remain scarce, and none target both channels, which may be useful given the high homology among them and evidence of redundant signaling. Here we tested selective TRPC3/6 antagonists (GSK2332255B and GSK2833503A; IC50, 3-21 nM against TRPC3 and TRPC6) and found dose-dependent blockade of cell hypertrophy signaling triggered by angiotensin II or endothelin-1 in HEK293T cells as well as in neonatal and adult cardiac myocytes. In vivo efficacy in mice and rats was greatly limited by rapid metabolism and high protein binding, although antifibrotic effects with pressure overload were observed. Intriguingly, although gene deletion of TRPC3 or TRPC6 alone did not protect against hypertrophy or dysfunction from pressure overload, combined deletion was protective, supporting the value of dual inhibition. Further development of this pharmaceutical class may yield a useful therapeutic agent for heart disease management.


Asunto(s)
Cardiomegalia/genética , Canales Catiónicos TRPC/antagonistas & inhibidores , Animales , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fosforilación , Ratas , Canales Catiónicos TRPC/genética , Canal Catiónico TRPC6
14.
Circ Res ; 114(5): 823-32, 2014 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-24449818

RESUMEN

RATIONALE: The heart is exquisitely sensitive to mechanical stimuli to adapt rapidly to physiological demands. In muscle lacking dystrophin, such as Duchenne muscular dystrophy, increased load during contraction triggers pathological responses thought to worsen the disease. The relevant mechanotransducers and therapies to target them remain unclear. OBJECTIVES: We tested the role of transient receptor potential canonical (TRPC) channels TRPC3 and TRPC6 and their modulation by protein kinase G (PKG) in controlling cardiac systolic mechanosensing and determined their pathophysiological relevance in an experimental model of Duchenne muscular dystrophy. METHODS AND RESULTS: Contracting isolated papillary muscles and cardiomyocytes from controls and mice genetically lacking either TRPC3 or TRPC6 were subjected to auxotonic load to induce stress-stimulated contractility (SSC, gradual rise in force and intracellular Ca(2+)). Incubation with cGMP (PKG activator) markedly blunted SSC in controls and Trpc3(-/-); whereas in Trpc6(-/-), the resting SSC response was diminished and cGMP had no effect. In Duchenne muscular dystrophy myocytes (mdx/utrophin deficient), the SSC was excessive and arrhythmogenic. Gene deletion or selective drug blockade of TRPC6 or cGMP/PKG activation reversed this phenotype. Chronic phosphodiesterase 5A inhibition also normalized abnormal mechanosensing while blunting progressive chamber hypertrophy in Duchenne muscular dystrophy mice. CONCLUSIONS: PKG is a potent negative modulator of cardiac systolic mechanosignaling that requires TRPC6 as the target effector. In dystrophic hearts, excess SSC and arrhythmia are coupled to TRPC6 and are ameliorated by its targeted suppression or PKG activation. These results highlight novel therapeutic targets for this disease.


Asunto(s)
Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Corazón/fisiología , Distrofia Muscular de Duchenne/fisiopatología , Canales Catiónicos TRPC/metabolismo , Animales , Proteínas Quinasas Dependientes de GMP Cíclico/genética , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 5/metabolismo , Distrofina/genética , Femenino , Corazón/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Contracción Miocárdica/efectos de los fármacos , Contracción Miocárdica/fisiología , Miocitos Cardíacos/fisiología , Músculos Papilares/fisiología , Inhibidores de Fosfodiesterasa 5/farmacología , Estrés Mecánico , Sístole/efectos de los fármacos , Sístole/fisiología , Canales Catiónicos TRPC/genética , Canal Catiónico TRPC6
15.
Anal Biochem ; 435(2): 166-73, 2013 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-23348078

RESUMEN

The increasing number of reports for disease-related proteases has necessitated materials for the fast, sensitive, and specific assessment of protease activities. The purpose of this study was to synthesize and test a dityrosine-based substrate for the selective assay of a specific cysteine cathepsin. DBDY-Gly-INH)2 was synthesized from the conjugation of N,N'-diBoc-dityrosine (DBDY) with two molecules of glycine and isoniazid (INH) for this purpose. The fluorescence of DBDY (λex=284-320nm, λem=400-420nm) disappeared due to the quenching effect of INH. However, the protease-catalyzed hydrolysis resulted in the release of INH and recovered the fluorescence of DBDY. When reacted with 13 proteases, DBDY-Gly-INH)2 was hydrolyzed by the cysteine proteases only. Meeting the growing need to discriminate cysteine cathepsins (e.g., cathepsins B, L, and S found at high levels in various cancers), DBDY-Gly-INH)2 was tested as a substrate for cathepsins B, L, and S. Only cathepsin B catalyzed the hydrolysis reaction among the three cathepsins. The reaction rate followed the Michaelis-Menten kinetics, and the KM and kcat/KM values were 2.88µM and 3.87×10(3)M(-1)s(-1), respectively, which were comparable to those for the materials reported for the selective assay of cathepsin B. Considering the simple preparation of DBDY-(Gly-INH)2, DBDY-(Gly-INH)2 is believed to be valuable for the sensitive and selective assay of cathepsin B activity.


Asunto(s)
Catepsina B/metabolismo , Dipéptidos/metabolismo , Isoniazida/análogos & derivados , Espectrometría de Fluorescencia , Tirosina/análogos & derivados , Cisteína Endopeptidasas/metabolismo , Dipéptidos/síntesis química , Dipéptidos/química , Isoniazida/síntesis química , Isoniazida/química , Isoniazida/metabolismo , Cinética , Especificidad por Sustrato , Tirosina/síntesis química , Tirosina/química , Tirosina/metabolismo
16.
Circulation ; 126(8): 942-51, 2012 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-22829024

RESUMEN

BACKGROUND: In the normal heart, phosphodiesterase type 5 (PDE5) hydrolyzes cGMP coupled to nitric oxide- (specifically from nitric oxide synthase 3) but not natriuretic peptide (NP)-stimulated guanylyl cyclase. PDE5 is upregulated in hypertrophied and failing hearts and is thought to contribute to their pathophysiology. Because nitric oxide signaling declines whereas NP-derived cGMP rises in such diseases, we hypothesized that PDE5 substrate selectivity is retargeted to blunt NP-derived signaling. METHODS AND RESULTS: Mice with cardiac myocyte inducible PDE5 overexpression (P5(+)) were crossed to those lacking nitric oxide synthase 3 (N3(-)), and each model, the double cross, and controls were subjected to transaortic constriction. P5(+) mice developed worse dysfunction and hypertrophy and enhanced NP stimulation, whereas N3(-) mice were protected. However, P5(+)/N3(-) mice behaved similarly to P5(+) mice despite the lack of nitric oxide synthase 3-coupled cGMP generation, with protein kinase G activity suppressed in both models. PDE5 inhibition did not alter atrial natriuretic peptide-stimulated cGMP in the resting heart but augmented it in the transaortic constriction heart. This functional retargeting was associated with PDE5 translocation from sarcomeres to a dispersed distribution. P5(+) hearts exhibited higher oxidative stress, whereas P5(+)/N3(-) hearts had low levels (likely owing to the absence of nitric oxide synthase 3 uncoupling). This highlights the importance of myocyte protein kinase G activity as a protection for pathological remodeling. CONCLUSIONS: These data provide the first evidence for functional retargeting of PDE5 from one compartment to another, revealing a role for natriuretic peptide-derived cGMP hydrolysis by this esterase in diseased heart myocardium. Retargeting likely affects the pathophysiological consequence and the therapeutic impact of PDE5 modulation in heart disease.


Asunto(s)
Factor Natriurético Atrial/metabolismo , Cardiomegalia/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 5/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Transducción de Señal/fisiología , Animales , Cardiomegalia/patología , GMP Cíclico/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 5/genética , Modelos Animales de Enfermedad , Femenino , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Miocardio/enzimología , Miocardio/patología , Miocitos Cardíacos/enzimología , Miocitos Cardíacos/patología , Óxido Nítrico Sintasa de Tipo III/genética , Estrés Oxidativo/fisiología , Especies Reactivas de Oxígeno/metabolismo , Remodelación Ventricular/fisiología
17.
Anal Chim Acta ; 723: 101-7, 2012 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-22444580

RESUMEN

N,N'-diBoc-dityrosine (DBDY), which was synthesized by the oxidative C-C coupling of 2 N-Boc-L-tyrosine molecules, was conjugated with two isoniazid (INH) molecules. Due to the quenching effect of INH, DBDY-(INH)(2) lacks the fluorescence of DBDY. As such, it was tested for use in the detection of proteases by measuring fluorescence recovery. In this study, serine proteases (chymotrypsin, trypsin, subtilisin, and proteinase K), metalloproteases (thermolysin and carboxypeptidase A, dispase, and collagenase), aspartic proteases (pepsin and aspergillopepsin) and cysteine proteases (papain and chymopapain) were chosen. Reported optimum assay conditions were chosen for each enzyme. Only papain and chymopapain catalyzed the hydrolysis of DBDY-(INH)(2) and led to fluorescence recovery, possibly due to their extensive binding sites and the INH-mediated inhibition of metalloproteases and aspartic proteases.


Asunto(s)
Quimopapaína/metabolismo , Pruebas de Enzimas , Papaína/metabolismo , Tirosina/análogos & derivados , Biocatálisis , Concentración de Iones de Hidrógeno , Hidrólisis , Espectrometría de Fluorescencia , Especificidad por Sustrato , Temperatura , Tirosina/síntesis química , Tirosina/química
18.
Circ Res ; 109(12): 1410-4, 2011 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-22034490

RESUMEN

RATIONALE: One of the physiological mechanisms by which the heart adapts to a rise in blood pressure is by augmenting myocyte stretch-mediated intracellular calcium, with a subsequent increase in contractility. This slow force response was first described over a century ago and has long been considered compensatory, but its underlying mechanisms and link to chronic adaptations remain uncertain. Because levels of the matricellular protein thrombospondin-4 (TSP4) rapidly rise in hypertension and are elevated in cardiac stress overload and heart failure, we hypothesized that TSP4 is involved in this adaptive mechanism. OBJECTIVE: To determine the mechano-transductive role that TSP4 plays in cardiac regulation to stress. METHODS AND RESULTS: In mice lacking TSP4 (Tsp4⁻/⁻), hearts failed to acutely augment contractility or activate stretch-response pathways (ERK1/2 and Akt) on exposure to acute pressure overload. Sustained pressure overload rapidly led to greater chamber dilation, reduced function, and increased heart mass. Unlike controls, Tsp4⁻/⁻ cardiac trabeculae failed to enhance contractility and cellular calcium after a stretch. However, the contractility response was restored in Tsp4⁻/⁻ muscle incubated with recombinant TSP4. Isolated Tsp4⁻/⁻ myocytes responded normally to stretch, identifying a key role of matrix-myocyte interaction for TSP4 contractile modulation. CONCLUSION: These results identify TSP4 as myocyte-interstitial mechano-signaling molecule central to adaptive cardiac contractile responses to acute stress, which appears to play a crucial role in the transition to chronic cardiac dilatation and failure.


Asunto(s)
Contracción Miocárdica/fisiología , Miocitos Cardíacos/fisiología , Estrés Fisiológico/fisiología , Trombospondinas/fisiología , Animales , Insuficiencia Cardíaca/fisiopatología , Hipertensión/fisiopatología , Sistema de Señalización de MAP Quinasas/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Animales , Miocitos Cardíacos/citología , Proteínas Proto-Oncogénicas c-akt/fisiología , Ratas , Trombospondinas/deficiencia , Trombospondinas/genética
19.
Nanotechnology ; 20(34): 345204, 2009 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-19652271

RESUMEN

Current-voltage (I-V) measurements on Al/fullerene (C(60)) molecules embedded in polymethyl methacrylate/Al devices at 300 K showed a current bistability due to the existence of the C(60) molecules. The on/off ratio of the current bistability for the memory devices was as large as 10(3). The retention time of the devices was above 2.5 x 10(4) s at room temperature, and cycling endurance tests on these devices indicated that the ON and OFF currents showed no degradation until 50,000 cycles. Carrier transport mechanisms for the nonvolatile bistable devices are described on the basis of the I-V experimental and fitting results.

20.
J Hazard Mater ; 155(1-2): 334-41, 2008 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-18241984

RESUMEN

With increasing concern about the contamination of aquatic environments by estrogenic pollutants, removal of synthetic estrogens such as 17alpha-ethinylestradiol (EE2) has been widely studied, especially with respect to the treatment methods. However, the degradation products have rarely been identified. The purpose of this study was to identify structurally the oxidation products of EE2. Mn(III) was used as an oxidizing agent. To obtain sufficient oxidation products for HPLC, LC-MS and NMR spectroscopy, a highly concentrated solution of EE2 (1mM) was prepared in a mixture of water and a water-miscible organic solvent. From HPLC of the reaction products, a single compound (I) was found to be predominant. From LC-MS, its molecular mass was found to be 294, and two hydrogens were believed to have been removed from EE2 (M.W. 296) to form a C=C . The structure of compound I (position of the double bond) was determined using 1H NMR, 13C NMR, H-H COSY, HSQC and HMBC. As minor products, isomeric dimers (M.W. 590) of EE2, as well as the products (M.W. 588) in which EE2 was coupled to compound I were also formed during the Mn(III)-mediated oxidation of EE2.


Asunto(s)
Estrógenos/química , Etinilestradiol/química , Manganeso/química , Oxidantes/química , Contaminantes Químicos del Agua/química , Oxidación-Reducción , Eliminación de Residuos Líquidos/métodos , Purificación del Agua/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA