RESUMEN
BACKGROUND: Panax ginseng Meyer is cultivated because of its medicinal effects on the immune system, blood pressure, and cancer. Major ginsenosides in fresh ginseng are converted to minor ginsenosides by structural changes such as hydrolysis and dehydration. The transformed ginsenosides are generally more bioavailable and bioactive than the primary ginsenosides. Therefore, in this study, hydrothermal processing was applied to ginseng preparation to increase the yields of the transformed ginsenosides, such as 20(S)-Rg3, Rk1, and Rg5, and enhance antioxidant activities in an effective way. METHODS: Ginseng extract was hydrothermally processed using batch reactors at 100-160°C with differing reaction times. Quantitative analysis of the ginsenoside yields was performed using HPLC, and the antioxidant activity was qualitatively analyzed by evaluating 2,2'-azino-bis radical cation scavenging, 2,2-diphenyl-1-picrylhydrazyl radical scavenging, and phenolic antioxidants. Red ginseng and sun ginseng were prepared by conventional steaming as the control group. RESULTS: Unlike steaming, the hydrothermal process was performed under homogeneous conditions. Chemical reaction, heat transfer, and mass transfer are generally more efficient in homogeneous reactions. Therefore, maximum yields for the hydrothermal process were 2.5-25 times higher than those for steaming, and the antioxidant activities showed 1.6-4-fold increases for the hydrothermal process. Moreover, the reaction time was decreased from 3 h to 15-35 min using hydrothermal processing. CONCLUSION: Therefore, hydrothermal processing offers significant improvements over the conventional steaming process. In particular, at temperatures over 140°C, high yields of the transformed ginsenosides and increased antioxidant activities were obtained in tens of minutes.
RESUMEN
Lignocellulosic biomass, a promising renewable resource, can be converted into numerous valuable chemicals post enzymatic saccharification. However, the efficacy of enzymatic saccharification of lignocellulosic biomass is low; therefore, pretreatment is necessary to improve the efficiency. Here, a kinetic analysis was carried out on xylan hydrolysis, after hot compressed water pretreatment of the lignocellulosic biomass conducted at 180-220°C for 5-30min, and on subsequent xylooligosaccharide hydrolysis. The weight ratio of fast-reacting xylan to slow-reacting xylan was 5.25 in tulip tree. Our kinetic results were applied to three different reaction systems to improve the pretreatment efficiency. We found that semi-continuous reactor is promising. Lower reaction temperatures and shorter space times in semi-continuous reactor are recommended for improving xylan conversion and xylooligosaccharide yield. In the theoretical calculation, 95% of xylooligosaccharide yield and xylan conversion were achieved simultaneously with high selectivity (desired product/undesired product) of 100 or more.
Asunto(s)
Biotecnología/métodos , Liriodendron/química , Xilanos/química , Biomasa , Reactores Biológicos , Biotecnología/instrumentación , Hidrólisis , Cinética , Oligosacáridos/química , Oligosacáridos/metabolismo , Temperatura , Agua , Xilanos/metabolismoRESUMEN
Tulip tree sawdust was pretreated using hot compressed water with different pretreatment severities (LogR0, 3.05-5.01) by varying reaction temperatures (180-220°C) and residence time (1-30 min). It is found that the chemical composition and physicochemical properties of the pretreated products can be characterized and correlated with severity. Removal of most of the xylan and other hemicellulosic sugars from the raw material was observed at a severity of 4.5. Thus, the residual solids were recovered with increased cellulose and lignin contents. Nearly complete glucan conversion was achieved after 48 h of hydrolysis with 10 FPU/g of wet residual solid obtained above a severity of 4.8. The characteristics of the pretreated solids according to the pretreatment severity were strongly related with the glucose yield. The removal of structural barriers to the enzyme attack was the dominant factor affecting enzyme accessibility to the substrate.
Asunto(s)
Metabolismo de los Hidratos de Carbono/efectos de los fármacos , Celulasa/metabolismo , Calor , Liriodendron/química , Agua/farmacología , Madera/efectos de los fármacos , beta-Glucosidasa/metabolismo , Celulosa/metabolismo , Glucosa/metabolismo , Concentración de Iones de Hidrógeno/efectos de los fármacos , Hidrólisis/efectos de los fármacos , Lignina/metabolismo , Polisacáridos/metabolismoRESUMEN
A novel method was developed for fractionating cellulose microfibrils from forest residue (tulip tree sawdust) to enhance cellulose digestibility, particularly at minimum enzyme loadings. This method involved three main stages: selective hemicellulose solubilization by subcritical water (SCW) pretreatment, delignification of the SCW-pretreated solids using the Formosolv process, and deformylation/bleaching of the cellulose pulp with alkaline hydrogen peroxide solution. This process produced nearly 98% white cellulose microfibrils with 23-fold higher conversion to glucose as compared to the raw substrate after 72 h of enzymatic hydrolysis. This study showed that cellulose swelling had the greatest effect on the enzymatic hydrolysis efficiency of delignified pulp obtained by the Formosolv process.