Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Neurotrauma ; 35(3): 508-520, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29048243

RESUMEN

After spinal cord injury (SCI), blood-spinal cord barrier (BSCB) disruption and progressive hemorrhage lead to secondary injury, subsequent apoptosis and/or necrosis of neurons and glia, causing permanent neurological deficits. Growing evidence indicates that mithramycin A (MA), an anti-cancer drug, has neuroprotective effects in ischemic brain injury and Huntington's disease (HD). However, the precise mechanism underlying its protective effects is largely unknown. Here, we examined the effect of MA on BSCB breakdown and hemorrhage as well as subsequent inflammation after SCI. After moderate spinal cord contusion injury at T9, MA (150 µg/kg) was immediately injected intraperitoneally (i.p.) and further injected once a day for 5 days. Our data show that MA attenuated BSCB disruption and hemorrhage, and inhibited the infiltration of neutrophils and macrophages after SCI. Consistent with these findings, the expression of inflammatory mediators was significantly alleviated by MA. MA also inhibited the expression and activation of matrix metalloprotease-9 (MMP-9) after injury, which is known to disrupt BSCB and the degradation of tight junction (TJ) proteins. In addition, the expression of sulfonylurea receptor 1 (SUR1) and transient receptor potential melastatin 4 (TRPM4), which are known to mediate hemorrhage at an early stage after SCI, was significantly blocked by MA treatment. Finally, MA inhibited apoptotic cell death and improved functional recovery after injury. Thus, our results demonstrated that MA improves functional recovery by attenuating BSCB disruption and hemorrhage through the downregulation of SUR1/TRPM4 and MMP-9 after SCI.


Asunto(s)
Permeabilidad Capilar/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Plicamicina/análogos & derivados , Recuperación de la Función/efectos de los fármacos , Traumatismos de la Médula Espinal/patología , Animales , Hemorragia/patología , Masculino , Metaloproteinasa 9 de la Matriz/biosíntesis , Metaloproteinasa 9 de la Matriz/efectos de los fármacos , Plicamicina/farmacología , Ratas , Ratas Sprague-Dawley , Receptores de Sulfonilureas/biosíntesis , Receptores de Sulfonilureas/efectos de los fármacos , Canales Catiónicos TRPM/biosíntesis , Canales Catiónicos TRPM/efectos de los fármacos
2.
J Cereb Blood Flow Metab ; 37(12): 3695-3708, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28338398

RESUMEN

The blood-brain barrier (BBB) exhibits a highly selective permeability to support the homeostasis of the central nervous system (CNS). The tight junctions in the BBB microvascular endothelial cells seal the paracellular space to prevent diffusion. Thus, disruption of tight junctions results in harmful effects in CNS diseases and injuries. It has recently been demonstrated that glucocorticoids have beneficial effects on maintaining tight junctions in both in vitro cell and in vivo animal models. In the present study, we found that dexamethasone suppresses the expression of JMJD3, a histone H3K27 demethylase, via the recruitment of glucocorticoid receptor α (GRα) and nuclear receptor co-repressor (N-CoR) to the negative glucocorticoid response element (nGRE) in the upstream region of JMJD3 gene in brain microvascular endothelial cells subjected to TNFα treatment. The decreased JMJD3 gene expression resulted in the suppression of MMP-2, MMP-3, and MMP-9 gene activation. Dexamethasone also activated the expression of the claudin 5 and occludin genes. Collectively, dexamethasone attenuated the disruption of the tight junctions in the brain microvascular endothelial cells subjected to TNFα treatment. Therefore, glucocorticoids may help to preserve the integrity of the tight junctions in the BBB via transcriptional and post-translational regulation following CNS diseases and injuries.


Asunto(s)
Encéfalo/irrigación sanguínea , Dexametasona/farmacología , Regulación hacia Abajo/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Glucocorticoides/farmacología , Histona Demetilasas con Dominio de Jumonji/genética , Uniones Estrechas/efectos de los fármacos , Animales , Encéfalo/efectos de los fármacos , Línea Celular , Células Endoteliales/citología , Células Endoteliales/metabolismo , Ratones , Microvasos/citología , Microvasos/efectos de los fármacos , Microvasos/metabolismo , Receptores de Glucocorticoides/metabolismo , Uniones Estrechas/metabolismo , Activación Transcripcional/efectos de los fármacos , Factor de Necrosis Tumoral alfa/metabolismo
3.
Neurobiol Dis ; 95: 66-81, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27425890

RESUMEN

The disruption of the blood-spinal cord barrier (BSCB) by matrix metalloprotease (MMP) activation is a detrimental event that leads to blood cell infiltration, inflammation, and apoptosis, thereby contributing to permanent neurological disability after spinal cord injury (SCI). However, the molecular mechanisms underlying Mmp gene regulation have not been fully elucidated. Here, we demonstrated the critical role of histone H3K27 demethylase Jmjd3 in the regulation of Mmp gene expression and BSCB disruption using in vitro cellular and in vivo animal models. We found that Jmjd3 up-regulation, in cooperation with NF-κB, after SCI is required for Mmp-3 and Mmp-9 gene expressions in injured vascular endothelial cells. In addition, Jmjd3 mRNA depletion inhibited Mmp-3 and Mmp-9 gene expressions and significantly attenuated BSCB permeability and the loss of tight junction proteins. These events further led to improved functional recovery, along with decreased hemorrhage, blood cell infiltration, inflammation, and cell death of neurons and oligodendrocytes after SCI. Thus, our findings suggest that Jmjd3 regulation may serve as a potential therapeutic intervention for preserving BSCB integrity following SCI.


Asunto(s)
Regulación de la Expresión Génica/genética , Histona Demetilasas con Dominio de Jumonji/metabolismo , Metaloproteinasa 3 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/fisiopatología , Animales , Barrera Hematoencefálica , Permeabilidad Capilar/genética , Células Endoteliales/metabolismo , Masculino , FN-kappa B/metabolismo , Ratas Sprague-Dawley , Recuperación de la Función/fisiología , Médula Espinal/metabolismo , Regulación hacia Arriba
4.
Neuropharmacology ; 109: 78-87, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27256500

RESUMEN

Recently we reported that fluoxetine (10 mg/kg) improves functional recovery by attenuating blood spinal cord barrier (BSCB) disruption after spinal cord injury (SCI). Here we investigated whether a low-dose of fluoxetine (1 mg/kg) and vitamin C (100 mg/kg), separately not possessing any protective effect, prevents BSCB disruption and improves functional recovery when combined. After a moderate contusion injury at T9 in rat, a low-dose of fluoxetine and vitamin C, or the combination of both was administered intraperitoneally immediately after SCI and further treated once a day for 14 d. Co-treatment with fluoxetine and vitamin C significantly attenuated BSCB permeability at 1 d after SCI. When only fluoxetine or vitamin C was treated after injury, however, there was no effect on BSCB disruption. Co-treatment with fluoxetine and vitamin C also significantly inhibited the expression and activation of MMP-9 at 8 h and 1 d after injury, respectively, and the infiltration of neutrophils (at 1 d) and macrophages (at 5 d) and the expression of inflammatory mediators (at 2 h, 6 h, 8 h or 24 h after injury) were significantly inhibited by co-treatment with fluoxetine and vitamin C. Furthermore, the combination of fluoxetine and vitamin C attenuated apoptotic cell death at 1 d and 5 d and improved locomotor function at 5 weeks after SCI. These results demonstrate the synergistic effect combination of low-dose fluoxetine and vitamin C on BSCB disruption after SCI and furthermore support the effectiveness of the combination treatment regimen for the management of acute SCI.


Asunto(s)
Ácido Ascórbico/administración & dosificación , Barrera Hematoencefálica/efectos de los fármacos , Fluoxetina/administración & dosificación , Recuperación de la Función/efectos de los fármacos , Traumatismos de la Médula Espinal/tratamiento farmacológico , Médula Espinal/efectos de los fármacos , Animales , Antioxidantes/administración & dosificación , Barrera Hematoencefálica/metabolismo , Relación Dosis-Respuesta a Droga , Sinergismo Farmacológico , Quimioterapia Combinada , Masculino , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley , Recuperación de la Función/fisiología , Inhibidores Selectivos de la Recaptación de Serotonina/administración & dosificación , Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/fisiopatología
5.
Neurobiol Dis ; 82: 141-151, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26079709

RESUMEN

The activation of microglia after spinal cord injury (SCI) contributes to secondary damage by producing pro-inflammatory cytokines and mediators, leading to cell death of oligodendrocytes and neurons. Here, we show that matrix metalloprotease-3 (MMP-3) produced and secreted in the endothelial cells of blood vessels after SCI mediates microglial activation. MMP-3 was produced and secreted in bEnd.3 cells, a mouse brain-derived endothelial cell line, by oxygen-glucose deprivation/reoxygenation (OGD/RO). OGD/RO-induced MMP-3 expression and activity was also significantly inhibited by ghrelin, which was dependent on the ghrelin receptor GHS-R1a. Furthermore, the secreted MMP-3 from OGD/RO-induced bEnd.3 cells activated BV-2 cells, a murine microglial cell line. We also found that microglial activation after SCI was attenuated in MMP-3 knockout (KO) mice compared with wild type (WT) mice. Both p38 mitogen-activated protein kinase (MAPK) activation and pro-nerve growth factor (proNGF) production were more inhibited in MMP-3 KO than WT mice at 5d after injury. When WT mice were treated with Mmp-3 siRNA after injury, MMP-3 activity, microglial activation, p38MAPK activation and proNGF expression were significantly inhibited. Ghrelin treatment also significantly inhibited MMP-3 expression and activation after SCI, which was dependent on GHS-R1a. Finally, RhoA activation and oligodendrocyte cell death after injury were attenuated by Mmp-3 siRNA or ghrelin treatment compared with vehicle control. Thus, our study indicates that MMP-3 produced in blood vessel endothelial cells after SCI serves as an endogenous molecule for microglial activation followed by p38MAPK activation and proNGF production, and further indicates that the protective effect of ghrelin on oligodendrocytes cell death may be at least partly mediated by the inhibition of MMP-3-induced microglial activation after SCI.


Asunto(s)
Muerte Celular/fisiología , Células Endoteliales/metabolismo , Endotelio Vascular/metabolismo , Metaloproteinasa 3 de la Matriz/metabolismo , Microglía/metabolismo , Oligodendroglía/metabolismo , Traumatismos de la Médula Espinal/metabolismo , Animales , Muerte Celular/efectos de los fármacos , Línea Celular , Células Endoteliales/efectos de los fármacos , Células Endoteliales/patología , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/patología , Ghrelina/farmacología , Ratones , Microglía/efectos de los fármacos , Microglía/patología , Factores de Crecimiento Nervioso/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Oligodendroglía/efectos de los fármacos , Oligodendroglía/patología , Traumatismos de la Médula Espinal/patología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
6.
Endocrinology ; 156(5): 1838-50, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25763638

RESUMEN

Blood-spinal cord barrier (BSCB) disruption and progressive hemorrhage after spinal cord injury (SCI) lead to secondary injury and the subsequent apoptosis and/or necrosis of neuron and glia, causing permanent neurological deficits. In this study, we examined the effect of 17ß-estradiol (E2) on BSCB breakdown and hemorrhage as well as subsequent inflammation after SCI. After a moderate contusion injury at the 9th thoracic segment of spinal cord, E2 (300 µg/kg) was administered by iv injection immediately after SCI, and the same dose of E2 was then administered 6 and 24 hours after injury. Our data show that E2 attenuated BSCB permeability and hemorrhage and reduced the infiltration of neutrophils and macorphages after SCI. Consistent with this finding, the expression of inflammatory mediators was significantly reduced by E2. Furthermore, E2 treatment significantly inhibited the expression of sulfonylurea receptor 1 and transient receptor potential melastatin 4 after injury, which are known to mediate hemorrhage at an early stage after SCI. Moreover, the expression and activation of matrix metalloprotease-9 after injury, which is known to disrupt BSCB, and the degradation of tight junction proteins, such as zona occludens-1 and occludin, were significantly inhibited by E2 treatment. Furthermore, the protective effects of E2 on BSCB disruption and functional improvement were abolished by an estrogen receptor antagonist, ICI 182780 (3 mg/kg). Thus, our study provides evidence that the neuroprotective effect of E2 after SCI is, in part, mediated by inhibiting BSCB disruption and hemorrhage through the down-regulation of sulfonylurea receptor 1/transient receptor potential melastatin 4 and matrix metalloprotease-9, which is dependent on estrogen receptor.


Asunto(s)
Barrera Hematoencefálica/efectos de los fármacos , Permeabilidad Capilar/efectos de los fármacos , Estradiol/farmacología , Hemorragia/metabolismo , Metaloproteinasa 9 de la Matriz/efectos de los fármacos , Traumatismos de la Médula Espinal/metabolismo , Receptores de Sulfonilureas/efectos de los fármacos , Canales Catiónicos TRPM/efectos de los fármacos , Animales , Apoptosis , Barrera Hematoencefálica/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Estradiol/análogos & derivados , Antagonistas del Receptor de Estrógeno/farmacología , Fulvestrant , Masculino , Metaloproteinasa 9 de la Matriz/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores de Sulfonilureas/metabolismo , Canales Catiónicos TRPM/metabolismo
7.
J Neurotrauma ; 32(9): 633-44, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25366938

RESUMEN

Oligodendrocyte cell death and axon demyelination after spinal cord injury (SCI) are known to be important secondary injuries contributing to permanent neurological disability. Thus, blocking oligodendrocyte cell death should be considered for therapeutic intervention after SCI. Here, we demonstrated that fluoxetine, an antidepressant drug, alleviates oligodendrocyte cell death by inhibiting microglia activation after SCI. After injury at the T9 level with a Precision Systems and Instrumentation (Lexington, KY) device, fluoxetine (10 mg/kg, intraperitoneal) was administered once a day for the indicated time points. Immunostaining with CD11b (OX-42) antibody and quantification analysis showed that microglia activation was significantly inhibited by fluoxetine at 5 days after injury. Fluoxetine also significantly inhibited activation of p38 mitogen-activated protein kinase (p38-MAPK) and expression of pro-nerve growth factor (pro-NGF), which is known to mediate oligodendrocyte cell death through the p75 neurotrophin receptor after SCI. In addition, fluoxetine attenuated activation of Ras homolog gene family member A and decreased the level of phosphorylated c-Jun and, ultimately, alleviated caspase-3 activation and significantly reduced cell death of oligodendrocytes at 5 days after SCI. Further, the decrease of myelin basic protein, myelin loss, and axon loss in white matter was also significantly blocked by fluoxetine, as compared to vehicle control. These results suggest that fluoxetine inhibits oligodendrocyte cell death by inhibiting microglia activation and p38-MAPK activation, followed by pro-NGF production after SCI, and provide a potential usage of fluoxetine for a therapeutic agent after acute SCI in humans.


Asunto(s)
Fluoxetina/uso terapéutico , Microglía/efectos de los fármacos , Oligodendroglía/efectos de los fármacos , Inhibidores Selectivos de la Recaptación de Serotonina/uso terapéutico , Traumatismos de la Médula Espinal/tratamiento farmacológico , Traumatismos de la Médula Espinal/patología , Animales , Apoptosis/efectos de los fármacos , Modelos Animales de Enfermedad , Esquema de Medicación , Inyecciones Intraperitoneales , Activación de Macrófagos/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Factor de Crecimiento Nervioso/metabolismo , Traumatismos de la Médula Espinal/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
8.
Biochim Biophys Acta ; 1842(12 Pt A): 2403-12, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25261791

RESUMEN

Blood spinal cord barrier (BSCB) disruption after spinal cord injury (SCI) leads to secondary injury and results in apoptosis of neurons and glia, leading to permanent neurological deficits. Here, we examined the effect of ghrelin on BSCB breakdown and hemorrhage after SCI. After moderate weight-drop contusion injury at T9 spinal cord, ghrelin (80µg/kg) was administered via intraperitoneal injection immediately after SCI and then the same dose of ghrelin was treated every 6h for 1d. Our data showed that ghrelin treatment significantly inhibited the expression and activation of matrix metalloprotease-9 (MMP-9) at 1d after SCI. The increases of sulfonylurea receptor 1 (SUR1) and transient receptor potential melastatin 4 (TrpM4) expressions at 1h and 8h after SCI respectively were also alleviated by ghrelin treatment. In addition, both BSCB breakdown and hemorrhage at 1d after injury were significantly attenuated by ghrelin. In parallel, the infiltration of blood cells such as neutrophils and macrophages was inhibited by ghrelin treatment at 1d and 5d after SCI respectively. We also found that ghrelin receptor, growth hormone secretagogue receptor-1a (GHS-R1a), was expressed in the blood vessel of normal spinal tissue. Furthermore, the inhibitory effects of ghrelin on hemorrhage and BSCB disruption at 1d after SCI were blocked by GHS-R1a antagonist, [D-Lys-3]-GHRP-6 (3mg/kg). Thus, these results indicate that the neuroprotective effect by ghrelin after SCI is mediated in part by blocking BSCB disruption and hemorrhage through the down-regulation of SUR1/TrpM4 and MMP-9, which is dependent on GHS-R1a.


Asunto(s)
Ghrelina/farmacología , Metaloproteinasa 9 de la Matriz/genética , Traumatismos de la Médula Espinal/genética , Médula Espinal/efectos de los fármacos , Receptores de Sulfonilureas/genética , Canales Catiónicos TRPM/genética , Animales , Western Blotting , Permeabilidad Capilar/efectos de los fármacos , Expresión Génica/efectos de los fármacos , Ghrelina/administración & dosificación , Hemorragia/prevención & control , Inmunohistoquímica , Mediadores de Inflamación/metabolismo , Inyecciones Intraperitoneales , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Masculino , Metaloproteinasa 9 de la Matriz/metabolismo , Neutrófilos/efectos de los fármacos , Neutrófilos/metabolismo , Oligopéptidos/farmacología , Ratas Sprague-Dawley , Receptores de Ghrelina/antagonistas & inhibidores , Receptores de Ghrelina/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Médula Espinal/irrigación sanguínea , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/fisiopatología , Receptores de Sulfonilureas/metabolismo , Canales Catiónicos TRPM/metabolismo , Factores de Tiempo
9.
Neuropharmacology ; 79: 161-71, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24316161

RESUMEN

Ischemia induces blood-brain barrier (BBB) disruption by matrix metalloproteases (MMPs) activation, leading to neuronal cell death. Here, we show that fluoxetine inhibits apoptotic cell death of hippocampal neuron and memory impairment by blocking BBB disruption after transient global ischemia. Fluoxetine treatment (10 mg/kg) after global ischemia significantly inhibited mRNA expression of MMP-2 and -9 and reduced MMP-9 activity. By Evan blue assay, fluoxetine reduced ischemia-induced BBB permeability. In parallel, fluoxetine significantly attenuated the loss of occludin and laminin in the hippocampal area after ischemia. By immunostaining with occludin antibody, fluoxetine preserved the integrity of vascular networks, especially in hippocampal areas after injury. Fluoxetine also prevented the infiltration of macrophages and inhibited the mRNA expression of inflammatory mediators after injury. In addition, the activation of microglia and astrocyte in hippocampal regions was significantly attenuated by fluoxetine. Finally, fluoxetine reduced apoptotic cell death of hippocampal neurons as well as vascular endothelial cell death and improved learning and memory. Thus, our study suggests that the neuroprotective effect of fluoxetine is likely mediated by blocking MMP activation followed BBB disruption after transient global ischemia, and the drug may represent a potential therapeutic agent for preserving BBB integrity following ischemic brain injury in humans.


Asunto(s)
Barrera Hematoencefálica/efectos de los fármacos , Isquemia Encefálica/tratamiento farmacológico , Muerte Celular/efectos de los fármacos , Fluoxetina/farmacología , Hipocampo/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Animales , Astrocitos/efectos de los fármacos , Astrocitos/fisiología , Barrera Hematoencefálica/fisiopatología , Isquemia Encefálica/patología , Isquemia Encefálica/fisiopatología , Permeabilidad Capilar/efectos de los fármacos , Permeabilidad Capilar/fisiología , Muerte Celular/fisiología , Expresión Génica/efectos de los fármacos , Hipocampo/irrigación sanguínea , Hipocampo/patología , Hipocampo/fisiopatología , Laminina/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/fisiología , Masculino , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones Endogámicos , Microglía/efectos de los fármacos , Microglía/fisiología , Neuronas/efectos de los fármacos , Neuronas/fisiología , Ocludina/metabolismo , ARN Mensajero/metabolismo
10.
J Neurotrauma ; 31(6): 582-94, 2014 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-24294888

RESUMEN

Both oxidative stress and endoplasmic reticulum (ER) stress are known to contribute to secondary injury, ultimately leading to cell death after spinal cord injury (SCI). Here, we showed that valproic acid (VPA) reduced cell death of motor neurons by inhibiting cytochrome c release mediated by oxidative stress and ER stress after SCI. After SCI, rats were immediately injected with VPA (300 mg/kg) subcutaneously and further injected every 12 h for an indicated time period. Motor neuron cell death at an early time after SCI was significantly attenuated by VPA treatment. Superoxide anion (O2-) production and inducible NO synthase (iNOS) expression linked to oxidative stress was increased after injury, which was inhibited by VPA. In addition, VPA inhibited c-Jun N-terminal kinase (JNK) activation, which was activated and peaked at an early time after SCI. Furthermore, JNK activation and c-Jun phosphorylation were inhibited by a broad-spectrum reactive oxygen species (ROS) scavenger, Mn (III) tetrakis (4-benzoic acid) porphyrin (MnTBAP), indicating that ROS including O2- increased after SCI probably contribute to JNK activation. VPA also inhibited cytochrome c release and caspase-9 activation, which was significantly inhibited by SP600125, a JNK inhibitor. The levels of phosphorylated Bim and Mcl-1, which are known as downstream targets of JNK, were significantly reduced by SP600125. On the other hand, VPA treatment inhibited ER stress-induced caspase-12 activation, which is activated in motor neurons after SCI. In addition, VPA increased the Bcl-2/Bax ratio and inhibited CHOP expression. Taken together, our results suggest that cell death of motor neurons after SCI is mediated through oxidative stress and ER stress-mediated cytochrome c release and VPA-inhibited cytochrome c release by attenuating ROS-induced JNK activation followed by Mcl-1 and Bim phosphorylation and ER stress-coupled CHOP expression.


Asunto(s)
Muerte Celular/efectos de los fármacos , Citocromos c/metabolismo , Estrés del Retículo Endoplásmico/efectos de los fármacos , Neuronas Motoras/efectos de los fármacos , Fármacos Neuroprotectores/uso terapéutico , Estrés Oxidativo/efectos de los fármacos , Traumatismos de la Médula Espinal/tratamiento farmacológico , Ácido Valproico/uso terapéutico , Animales , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Masculino , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Fármacos Neuroprotectores/farmacología , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/patología , Ácido Valproico/farmacología
11.
Glia ; 61(11): 1807-21, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24038428

RESUMEN

Inflammation induced by microglial activation plays a pivotal role in progressive degeneration after traumatic spinal cord injury (SCI). Voltage-gated sodium channels (VGSCs) are also implicated in microglial activation following injury. However, direct evidence that VGSCs are involved in microglial activation after injury has not been demonstrated yet. Here, we show that the increase in VGSC inward current elicited microglial activation followed inflammatory responses, leading to cell death after injury in vitro and in vivo. Isoforms of sodium channel, Nav 1.1, Nav 1.2, and Nav 1.6 were expressed in primary microglia, and the inward current of VGSC was increased by LPS treatment, which was blocked by a sodium channel blocker, tetrodotoxin (TTX). TTX inhibited LPS-induced NF-κB activation, expression of TNF-α, IL-1ß and inducible nitric oxide synthase, and NO production. LPS-induced p38MAPK activation followed pro-nerve growth factor (proNGF) production was inhibited by TTX, whereas LPS-induced JNK activation was not. TTX also inhibited caspase-3 activation and cell death of primary cortical neurons in neuron/microglia co-cultures by inhibiting LPS-induced microglia activation. Furthermore, TTX attenuated caspase-3 activation and oligodendrocyte cell death at 5 d after SCI by inhibiting microglia activation and p38MAPK activation followed proNGF production, which is known to mediate oligodendrocyte cell death. Our study thus suggests that the increase in inward current of VGSC appears to be an early event required for microglia activation after injury.


Asunto(s)
Microglía/metabolismo , Neuronas/metabolismo , Canales de Sodio/metabolismo , Traumatismos de la Médula Espinal/metabolismo , Animales , Muerte Celular/efectos de los fármacos , Células Cultivadas , Modelos Animales de Enfermedad , Inflamación/metabolismo , Microglía/efectos de los fármacos , FN-kappa B/metabolismo , Ratas , Ratas Sprague-Dawley , Bloqueadores de los Canales de Sodio/farmacología , Traumatismos de la Médula Espinal/patología , Tetrodotoxina/farmacología , Factor de Necrosis Tumoral alfa/metabolismo
12.
PLoS One ; 8(9): e73948, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24040124

RESUMEN

Acupuncture (AP) has been used worldwide to relieve pain. However, the mechanism of action of AP is poorly understood. Here, we found that AP relieved neuropathic pain (NP) by inhibiting Jun-N-terminal kinase (JNK) activation in astrocytes after spinal cord injury (SCI). After contusion injury which induces the below-level (L4-L5) NP, Shuigou (GV26) and Yanglingquan (GB34) acupoints were applied. At 31 d after injury, both mechanical allodynia and thermal hyperalgesia were significantly alleviated by AP applied at GV26 and GB34. Immunocytochemistry revealed that JNK activation was mainly observed in astrocytes after injury. AP inhibited JNK activation in astrocytes at L4-L5 level of spinal cord. The level of p-c-Jun known, a downstream molecule of JNK, was also decreased by AP. In addition, SCI-induced GFAP expression, a marker for astrocytes, was decreased by AP as compared to control groups. Especially, the number of hypertrophic, activated astrocytes in laminae I-II of dorsal horn at L4-5 was markedly decreased by AP treatment when compared with vehicle and simulated AP-treated groups. When animals treated with SP600125, a specific JNK inhibitor, after SCI, both mechanical allodynia and thermal hyperalgesia were significantly attenuated by the inhibitor, suggesting that JNK activation is likely involved in SCI-induced NP. Also, the expression of chemokines which is known to be mediated through JNK pathway was significantly decreased by AP and SP600125 treatment. Therefore, our results indicate that analgesic effect of AP is mediated in part by inhibiting JNK activation in astrocytes after SCI.


Asunto(s)
Terapia por Acupuntura , Anestesia/métodos , Astrocitos/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/terapia , Animales , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Quimiocina CCL20/genética , Quimiocina CCL20/metabolismo , Activación Enzimática , Regulación de la Expresión Génica , Proteínas Quinasas JNK Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Inflamatorias de Macrófagos/genética , Proteínas Inflamatorias de Macrófagos/metabolismo , Neuralgia/etiología , Neuralgia/metabolismo , Neuralgia/terapia , Proteínas Proto-Oncogénicas c-jun/metabolismo , Ratas , Traumatismos de la Médula Espinal/genética
13.
Brain ; 135(Pt 8): 2375-89, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22798270

RESUMEN

After spinal cord injury, the disruption of blood-spinal cord barrier by activation of matrix metalloprotease is a critical event leading to infiltration of blood cells, inflammatory responses and neuronal cell death, contributing to permanent neurological disability. Recent evidence indicates that fluoxetine, an anti-depressant drug, is shown to have neuroprotective effects in ischaemic brain injury, but the precise mechanism underlying its protective effects is largely unknown. Here, we show that fluoxetine prevented blood-spinal cord barrier disruption via inhibition of matrix metalloprotease activation after spinal cord injury. After a moderate contusion injury at the T9 level of spinal cord with an infinite horizon impactor in the mouse, fluoxetine (10 mg/kg) was injected intraperitoneally and further administered once a day for indicated time points. Fluoxetine treatment significantly inhibited messenger RNA expression of matrix metalloprotease 2, 9 and 12 after spinal cord injury. By zymography and fluorimetric enzyme activity assay, fluoxetine also significantly reduced matrix metalloprotease 2 and matrix metalloprotease 9 activities after injury. In addition, fluoxetine inhibited nuclear factor kappa B-dependent matrix metalloprotease 9 expression in bEnd.3, a brain endothelial cell line, after oxygen-glucose deprivation/reoxygenation. Fluoxetine also attenuated the loss of tight junction molecules such as zona occludens 1 and occludin after injury in vivo as well as in bEnd.3 cultures. By immunofluorescence staining, fluoxetine prevented the breakdown of the tight junction integrity in endothelial cells of blood vessel after injury. Furthermore, fluoxetine inhibited the messenger RNA expression of chemokines such as Groα, MIP1α and 1ß, and prevented the infiltration of neutrophils and macrophages, and reduced the expression of inflammatory mediators after injury. Finally, fluoxetine attenuated apoptotic cell death and improved locomotor function after injury. Thus, our results indicate that fluoxetine improved functional recovery in part by inhibiting matrix metalloprotease activation and preventing blood-spinal cord barrier disruption after spinal cord injury. Furthermore, our study suggests that fluoxetine may represent a potential therapeutic agent for preserving blood-brain barrier integrity following ischaemic brain injury and spinal cord injury in humans.


Asunto(s)
Barrera Hematoencefálica/efectos de los fármacos , Fluoxetina/uso terapéutico , Inhibidores de la Metaloproteinasa de la Matriz , Fármacos Neuroprotectores/uso terapéutico , Traumatismos de la Médula Espinal/tratamiento farmacológico , Médula Espinal/efectos de los fármacos , Animales , Barrera Hematoencefálica/enzimología , Línea Celular , Activación Enzimática/efectos de los fármacos , Activación Enzimática/fisiología , Fluoxetina/farmacología , Masculino , Metaloproteinasa 12 de la Matriz/metabolismo , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Metaloproteinasas de la Matriz/metabolismo , Ratones , Ratones Endogámicos C57BL , Fármacos Neuroprotectores/farmacología , Médula Espinal/enzimología , Traumatismos de la Médula Espinal/enzimología
14.
Endocrinology ; 153(8): 3815-27, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22700771

RESUMEN

A delayed oligodendrocyte cell death after spinal cord injury (SCI) contributes to chronic demyelination of spared axons, leading to a permanent neurological deficit. Therefore, therapeutic approaches to prevent oligodendrocyte cell death after SCI should be considered. Estrogens are well known to have a broad neuroprotective effect, but the protective effect of estrogens on oligodendrocytes after injury is largely unknown. Here, we demonstrated that 17ß-estradiol attenuates apoptosis of oligodendrocytes by inhibiting RhoA and c-Jun-N-terminal kinase activation after SCI. Estrogen receptor (ER)-α and -ß were expressed in oligodendrocytes of the spinal cord, and 17ß-estradiol treatment significantly inhibited oligodendrocyte cell death at 7 d after injury as compared with vehicle (cyclodextrin) control. 17ß-Estradiol also attenuated caspase-3 and -9 activation at 7 d and reduced the loss of axons from progressive degeneration. In addition, 17ß-estradiol inhibited RhoA and JNK3 activation, which were activated and peaked at 3 and/or 5 d after injury. Furthermore, administration of Rho inhibitor, PEP-1-C3 exoenzyme, inhibited RhoA and JNK3 activation, and decreased phosphorylated c-Jun level at 5 d after injury. Additionally, the attenuation of RhoA and JNK3 activation as well as oligodendrocyte cell death by 17ß-estradiol was reversed by ER antagonist, ICI182780. Our results thus indicate that 17ß-estradiol treatment improves functional recovery after SCI in part by reducing oligodendrocyte cell death via inhibition of RhoA and JNK3 activation, which were ER dependent. Furthermore, improvement of hindlimb motor function by posttreatment of 17ß-estradiol suggests its potential as a therapeutic agent for SCI patients.


Asunto(s)
Estradiol/farmacología , Estradiol/uso terapéutico , Proteína Quinasa 10 Activada por Mitógenos/metabolismo , Oligodendroglía/citología , Oligodendroglía/metabolismo , Traumatismos de la Médula Espinal/tratamiento farmacológico , Traumatismos de la Médula Espinal/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Animales , Apoptosis/efectos de los fármacos , Conducta Animal , Western Blotting , Caspasa 3/metabolismo , Caspasa 9/metabolismo , Células Cultivadas , Activación Enzimática/efectos de los fármacos , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Receptor beta de Estrógeno/genética , Receptor beta de Estrógeno/metabolismo , Etiquetado Corte-Fin in Situ , Masculino , Proteína Quinasa 10 Activada por Mitógenos/genética , Oligodendroglía/efectos de los fármacos , Ratas Sprague-Dawley , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteína de Unión al GTP rhoA/genética
15.
Exp Neurol ; 236(2): 268-82, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22634758

RESUMEN

Acupuncture (AP) is currently used worldwide to relieve pain. However, little is known about its mechanisms of action. We found that after spinal cord injury (SCI), AP inhibited the production of superoxide anion (O(2)·), which acted as a modulator for microglial activation, and the analgesic effect of AP was attributed to its anti-microglial activating action. Direct injection of a ROS scavenger inhibited SCI-induced NP. After contusion injury which induces the below-level neuropathic pain (NP), Shuigou and Yanglingquan acupoints were applied. AP relieved mechanical allodynia and thermal hyperalgesia, while vehicle and simulated AP did not. AP also decreased the proportion of activated microglia, and inhibited both p38MAPK and ERK activation in microglia at the L4-5. Also, the level of prostaglandin E(2) (PGE2), which is produced via ERK signaling and mediates the below-level pain through PGE2 receptor, was reduced by AP. Injection of p38MAPK or ERK inhibitors attenuated NP and decreased PGE2 production. Furthermore, ROS produced after injury-induced p38MAPK and ERK activation in microglia, and mediated mechanical allodynia and thermal hyperalgesia, which were inhibited by AP or a ROS scavenger. AP also inhibited the expression of inflammatory mediators. Therefore, our results suggest that the analgesic effect of AP may be partly mediated by inhibiting ROS-induced microglial activation and inflammatory responses after SCI and provide the possibility that AP can be used effectively as a non-pharmacological intervention for SCI-induced chronic NP in patients.


Asunto(s)
Terapia por Acupuntura/métodos , Quinasas MAP Reguladas por Señal Extracelular/antagonistas & inhibidores , Microglía/enzimología , Neuralgia/enzimología , Especies Reactivas de Oxígeno/antagonistas & inhibidores , Traumatismos de la Médula Espinal/enzimología , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores , Animales , Enfermedad Crónica , Modelos Animales de Enfermedad , Activación Enzimática/fisiología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Masculino , Microglía/patología , Neuralgia/etiología , Neuralgia/terapia , Dimensión del Dolor/métodos , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/administración & dosificación , Traumatismos de la Médula Espinal/complicaciones , Traumatismos de la Médula Espinal/terapia , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
16.
J Neurochem ; 121(5): 818-29, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22409448

RESUMEN

The disruption of blood-spinal cord barrier (BSCB) after spinal cord injury (SCI) elicits an intensive local inflammation by the infiltration of blood cells such as neutrophils and macrophages, leading to cell death and permanent neurological disability. SCI activates matrix metalloprotease-9 (MMP-9), which is known to induce BSCB disruption. Here, we examined whether valproic acid (VPA), a histone deacetylase inhibitor, would attenuate BSCB disruption by inhibiting MMP-9 activity, leading to improvement of functional outcome after SCI. After moderate spinal cord contusion injury at T9, VPA (300 mg/kg) were immediately injected subcutaneously and further injected every 12 h for 5 days. Our data show that VPA inhibited MMP-9 activity after injury, and attenuated BSCB permeability and degradation of tight junction molecules such as occludin and ZO-1. In addition, VPA reduced the expression of inflammatory mediators including tumor necrosis factor-α. Furthermore, VPA increased the levels of acetylated histone 3, pAkt, and heat-shock protein 27 and 70, which have anti-apoptotic functions after SCI. Finally, VPA inhibited apoptotic cell death and caspase 3 activation, reduced the lesion volume and improved functional recovery after injury. Thus, our results demonstrated that VPA improves functional recovery by attenuating BSCB disruption via inhibition of MMP-9 activity after SCI.


Asunto(s)
Permeabilidad Capilar/efectos de los fármacos , Metaloproteinasa 9 de la Matriz/metabolismo , Fármacos Neuroprotectores/farmacología , Recuperación de la Función/efectos de los fármacos , Traumatismos de la Médula Espinal/enzimología , Ácido Valproico/farmacología , Animales , Western Blotting , Ensayo de Inmunoadsorción Enzimática , Inhibidores de Histona Desacetilasas/farmacología , Inmunohistoquímica , Etiquetado Corte-Fin in Situ , Masculino , Ratas , Ratas Sprague-Dawley , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Traumatismos de la Médula Espinal/patología
17.
Endocrinology ; 152(6): 2377-86, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21467197

RESUMEN

Here, we examined the protective effect of ghrelin on apoptotic cell death induced by hydrogen peroxide (H2O2) in primary oligodendrocyte cultures. Ghrelin receptor, growth hormone secretagogue receptor 1a, was expressed in mature oligodendrocytes. H2O2 (1 mm) treatment induced apoptotic cell death of oligodendrocytes, which was significantly inhibited by ghrelin treatment. Ghrelin also reduced cytochrome c release, and caspase-3 activation increased by H2O2 treatment. Furthermore, the protective effect of ghrelin against H2O2-induced oligodendrocyte cell death was mediated through growth hormone secretagogue receptor 1a. Both ERK and p38MAPK were activated (peaked at 8 h in ERK and 1 h in p38MAPK) by H2O2 treatment, whereas c-Jun N-terminal kinase and Akt were not. Interestingly, ghrelin further increased ERK activation and decreased p38MAPK activation after H2O2 treatment. Next, we tried to elucidate the role of ERK and p38MAPK activation in H2O2-induced apoptotic cell death of oligodendrocytes using pharmacological inhibitors. We found that the inhibition of apoptotic cell death of oligodendrocytes by ghrelin was abolished by ERK inhibitor, PD98059 (20 µM), whereas cell survival was increased by p38MAPK inhibitor, SB203580 (10 µM). These results thus indicate that ghrelin inhibits H2O2 -induced oligodendrocytes cell death in part by increasing ERK activation and decreasing p38MAPK activation, and ghrelin may represent a potential therapeutic agent for protecting oligodendrocytes in central nervous system injuries.


Asunto(s)
Apoptosis/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Ghrelina/metabolismo , Peróxido de Hidrógeno/toxicidad , Sistema de Señalización de MAP Quinasas , Oligodendroglía/efectos de los fármacos , Oligodendroglía/metabolismo , Sustancias Protectoras/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Animales , Células Cultivadas , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Oligodendroglía/citología , Oligodendroglía/enzimología , Ratas , Ratas Sprague-Dawley
18.
Endocrinology ; 151(8): 3815-26, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20444938

RESUMEN

Spinal cord injury (SCI) induces massive cell death, leading to permanent neurological disability. No satisfactory treatment is currently available. Ghrelin, a gastric hormone, is known to stimulate GH release from the hypothalamus and pituitary gland. Here, we report that ghrelin administration improves functional recovery after SCI in part by inhibiting apoptosis of neurons and oligodendrocytes. Ghrelin was not detected in normal, uninjured spinal cords, but spinal cord neurons and oligodendrocytes expressed the ghrelin receptor. Ghrelin significantly inhibited apoptotic cell death of neurons and oligodendrocytes, release of mitochondrial cytochrome c, and activation of caspase-3 after moderate contusion SCI. Ghrelin also significantly increased the level of phosphorylated ERK but decreased the level of phosphorylated p38MAPK. In addition, ghrelin increased the level of ERK-dependent brain-derived neurotrophic factor expression and decreased the level of pronerve growth factor expression. Furthermore, the neuroprotective effects of ghrelin were mediated through the ghrelin receptor. Finally, ghrelin significantly improved functional recovery and reduced the size of the lesion volume and the loss of axons and myelin after injury. These results suggest that ghrelin may represent a potential therapeutic agent after acute SCI in humans.


Asunto(s)
Apoptosis/efectos de los fármacos , Ghrelina/farmacología , Recuperación de la Función/efectos de los fármacos , Traumatismos de la Médula Espinal/rehabilitación , Animales , Caspasa 3/metabolismo , Inhibidores de Caspasas , Muerte Celular/efectos de los fármacos , Citocromos c/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Ghrelina/uso terapéutico , Masculino , Ratones , Neuronas/efectos de los fármacos , Neuronas/patología , Oligodendroglía/efectos de los fármacos , Oligodendroglía/patología , Ratas , Ratas Sprague-Dawley , Médula Espinal/efectos de los fármacos , Médula Espinal/patología , Traumatismos de la Médula Espinal/tratamiento farmacológico , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/patología
19.
Neurobiol Dis ; 39(3): 272-82, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20382225

RESUMEN

Here, we first demonstrated the neuroprotective effect of acupuncture after SCI. Acupuncture applied at two specific acupoints, Shuigou (GV26) and Yanglingquan (GB34) significantly alleviated apoptotic cell death of neurons and oligodendrocytes, thereby leading to improved functional recovery after SCI. Acupuncture also inhibited caspase-3 activation and reduced the size of lesion cavity and extent of loss of axons. We also found that the activation of both p38 mitogen-activated protein kinase and resident microglia after injury are significantly attenuated by acupuncture. In addition, acupuncture significantly reduced the expression or activation of pro-nerve growth factor, proinflammatory factors such as tumor necrosis factor-alpha, interleukin-1beta, interleukin-6, nitric oxide synthase, cycloxygenase-2, and matrix metalloprotease-9 after SCI. Thus, our results suggest that the neuroprotection by acupuncture may be partly mediated via inhibition of inflammation and microglial activation after SCI and acupuncture can be used as a potential therapeutic tool for treating acute spinal injury in human.


Asunto(s)
Terapia por Acupuntura , Inflamación/terapia , Actividad Motora/fisiología , Traumatismos de la Médula Espinal/terapia , Médula Espinal/metabolismo , Análisis de Varianza , Animales , Western Blotting , Caspasa 3/metabolismo , Citocinas/metabolismo , Inflamación/metabolismo , Inflamación/patología , Inflamación/fisiopatología , Masculino , Metaloproteinasa 9 de la Matriz/metabolismo , Microglía/metabolismo , Microglía/patología , Neuronas/metabolismo , Neuronas/patología , Oligodendroglía/metabolismo , Oligodendroglía/patología , Ratas , Ratas Sprague-Dawley , Recuperación de la Función , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal , Médula Espinal/patología , Médula Espinal/fisiopatología , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/patología , Traumatismos de la Médula Espinal/fisiopatología , Vértebras Torácicas , Resultado del Tratamiento
20.
J Neurochem ; 110(4): 1276-87, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19519665

RESUMEN

Inflammation has been known to play an important role in the pathogenesis after spinal cord injury (SCI). Microglia are activated after injury and produce a variety of proinflammatory factors such as tumor necrosis factor-alpha, interleukin-1beta, cyclooxygenase-2, and reactive oxygen species leading to apoptosis of neurons and oligodendrocytes. In this study, we examined the neuroprotective effects of total ethanol extract of Scutellaria baicalensis (EESB), after SCI. Using primary microglial cultures, EESB treatment significantly inhibited lipopolysaccharide-induced expression of such inflammatory mediators as tumor necrosis factor-alpha, IL-1beta, IL-6, cyclooxygenase-2, and inducible nitric oxide synthase. Furthermore, reactive oxygen species and nitric oxide production were significantly attenuated by EESB treatment. For in vivo study, rats that had received a moderate spinal cord contusion injury at T9 received EESB orally at a dose of 100 mg/kg. EESB inhibited expression of proinflammatory factors and protein carbonylation and nitration after SCI. EESB also inhibited microglial activation at 4 h after injury. Furthermore, EESB significantly inhibited apoptotic cell death of neurons and oligodendrocytes and improved functional recovery after SCI. Lesion cavity and myelin loss were also reduced following EESB treatment. Thus, our data suggest that EESB significantly improve functional recovery by inhibiting inflammation and oxidative stress after injury.


Asunto(s)
Antiinflamatorios/farmacología , Mielitis/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Extractos Vegetales/farmacología , Traumatismos de la Médula Espinal/tratamiento farmacológico , Animales , Animales Recién Nacidos , Antiinflamatorios/uso terapéutico , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Muerte Celular/efectos de los fármacos , Muerte Celular/fisiología , Células Cultivadas , Citocinas/efectos de los fármacos , Citocinas/metabolismo , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/fisiología , Gliosis/tratamiento farmacológico , Gliosis/etiología , Gliosis/fisiopatología , Mediadores de Inflamación/antagonistas & inhibidores , Mediadores de Inflamación/metabolismo , Masculino , Microglía/efectos de los fármacos , Microglía/metabolismo , Microglía/patología , Mielitis/etiología , Mielitis/fisiopatología , Fármacos Neuroprotectores/uso terapéutico , Óxido Nítrico Sintasa de Tipo I/efectos de los fármacos , Óxido Nítrico Sintasa de Tipo I/metabolismo , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología , Extractos Vegetales/uso terapéutico , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/antagonistas & inhibidores , Especies Reactivas de Oxígeno/metabolismo , Recuperación de la Función/efectos de los fármacos , Recuperación de la Función/fisiología , Scutellaria baicalensis , Médula Espinal/efectos de los fármacos , Médula Espinal/patología , Médula Espinal/fisiopatología , Traumatismos de la Médula Espinal/patología , Traumatismos de la Médula Espinal/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...