Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 154
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Exp Mol Med ; 56(1): 118-128, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38200155

RESUMEN

The harmful effects of fine particulate matter ≤2.5 µm in size (PM2.5) on human health have received considerable attention. However, while the impact of PM2.5 on the respiratory and cardiovascular systems has been well studied, less is known about the effects on stem cells in the bone marrow (BM). With an emphasis on the invasive characteristics of PM2.5, this review examines the current knowledge of the health effects of PM2.5 exposure on BM-residing stem cells. Recent studies have shown that PM2.5 enters the circulation and then travels to distant organs, including the BM, to induce oxidative stress, systemic inflammation and epigenetic changes, resulting in the reduction of BM-residing stem cell survival and function. Understanding the broader health effects of air pollution thus requires an understanding of the invasive characteristics of PM2.5 and its direct influence on stem cells in the BM. As noted in this review, further studies are needed to elucidate the underlying processes by which PM2.5 disturbs the BM microenvironment and inhibits stem cell functionality. Strategies to prevent or ameliorate the negative effects of PM2.5 exposure on BM-residing stem cells and to maintain the regenerative capacity of those cells must also be investigated. By focusing on the complex relationship between PM2.5 and BM-resident stem cells, this review highlights the importance of specific measures directed at safeguarding human health in the face of rising air pollution.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Células Madre Mesenquimatosas , Humanos , Material Particulado/efectos adversos , Contaminantes Atmosféricos/efectos adversos , Médula Ósea , Contaminación del Aire/efectos adversos , Exposición a Riesgos Ambientales
2.
Aging Dis ; 15(2): 755-766, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37548936

RESUMEN

One of the most important strategies for successful aging is exercise. However, the effect of exercise can differ among individuals, even with exercise of the same type and intensity. Therefore, this study aims to confirm whether endurance training (ETR) has the same health-promoting effects on the musculoskeletal and hematopoietic systems regardless of age. Ten weeks of ETR improved endurance exercise capacity, with increased skeletal muscle mitochondrial enzymes in both young and old mice. In addition, age-related deterioration of muscle fiber size and bone microstructure was improved. The expression levels of myostatin, muscle RING-finger protein-1, and muscle atrophy F-box in skeletal muscle and peroxisome proliferator-activated receptor-γ in the femur increased with age but decreased after ETR. ETR differentially modulated hematopoietic stem cells (HSCs) depending on age; ETR induced HSC quiescence in young mice but caused HSC senescence in old mice. ETR has differential effects on modulation of the musculoskeletal and hematopoietic systems in old mice. In other words, endurance exercise is a double-edged sword for successful aging, and great effort is required to establish exercise strategies for healthy aging.


Asunto(s)
Músculo Esquelético , Factores de Transcripción , Ratones , Animales , Factores de Transcripción/metabolismo , Músculo Esquelético/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Mitocondrias/metabolismo , Envejecimiento/fisiología
3.
Materials (Basel) ; 16(9)2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-37176216

RESUMEN

The combination of scaffolds with recombinant human epidermal growth factor (rhEGF) protein can enhance defective bone healing via synergistic activation to stimulate cellular growth, differentiation, and survival. We examined the biopotentials of an rhEGF-loaded absorbable collagen scaffold (ACS) using a mouse model of calvarial defects, in which the rhEGF was produced from a plant cell suspension culture system because of several systemic advantages. Here, we showed a successful and large-scale production of plant-cell-derived rhEGF protein (p-rhEGF) by introducing an expression vector that cloned with its cDNA under the control of rice α-amylase 3D promoter into rice calli (Oryza sativa L. cv. Dongjin). Implantation with p-rhEGF (5 µg)-loaded ACSs into critical-sized calvarial defects enhanced new bone formation and the expression of osteoblast-specific markers in the defected regions greater than implantation with ACSs alone did. The potency of p-rhEGF-induced bone healing was comparable with that of Escherichia coli-derived rhEGF protein. The exogenous addition of p-rhEGF increased the proliferation of human periodontal ligament cells and augmented the induction of interleukin 8, bone morphogenetic protein 2, and vascular endothelial growth factor in the cells. Collectively, this study demonstrates the successful and convenient production of p-rhEGF, as well as its potency to enhance ACS-mediated bone regeneration by activating cellular responses that are required for wound healing.

4.
Aging Dis ; 14(3): 919-936, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37191410

RESUMEN

Ionizing irradiation (IR) causes bone marrow (BM) injury, with senescence and impaired self-renewal of hematopoietic stem cells (HSCs), and inhibiting Wnt signaling could enhance hematopoietic regeneration and survival against IR stress. However, the underlying mechanisms by which a Wnt signaling blockade modulates IR-mediated damage of BM HSCs and mesenchymal stem cells (MSCs) are not yet completely understood. We investigated the effects of osteoblastic Wntless (Wls) depletion on total body irradiation (TBI, 5 Gy)-induced impairments in hematopoietic development, MSC function, and the BM microenvironment using conditional Wls knockout mutant mice (Col-Cre;Wlsfl/fl) and their littermate controls (Wlsfl/fl). Osteoblastic Wls ablation itself did not dysregulate BM frequency or hematopoietic development at a young age. Exposure to TBI at 4 weeks of age induced severe oxidative stress and senescence in the BM HSCs of Wlsfl/fl mice but not in those of the Col-Cre;Wlsfl/fl mice. TBI-exposed Wlsfl/fl mice exhibited greater impairments in hematopoietic development, colony formation, and long-term repopulation than TBI-exposed Col-Cre;Wlsfl/fl mice. Transplantation with BM HSCs or whole BM cells derived from the mutant, but not Wlsfl/fl mice, protected against HSC senescence and hematopoietic skewing toward myeloid cells and enhanced survival in recipients of lethal TBI (10 Gy). Unlike the Wlsfl/fl mice, the Col-Cre;Wlsfl/fl mice also showed radioprotection against TBI-mediated MSC senescence, bone mass loss, and delayed body growth. Our results indicate that osteoblastic Wls ablation renders BM-conserved stem cells resistant to TBI-mediated oxidative injuries. Overall, our findings show that inhibiting osteoblastic Wnt signaling promotes hematopoietic radioprotection and regeneration.

5.
J Hazard Mater ; 452: 131293, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37002998

RESUMEN

Research on the negative impacts of PM2.5 have been focused on lung, brain, immune, and metabolism-related diseases. However, little is known about the mechanism underlying the effects of PM2.5 on the modulation of hematopoietic stem cell (HSC) fate. Maturation of the hematopoietic system and differentiation of hematopoietic stem progenitor cells (HSPCs) occurs soon after birth when infants are susceptible to external stresses. We investigated how exposure to atmospherically relevant artificial particulate matter of diameter < 2.5 µm (termed, PM2.5) affects HSPCs in newborns. The lungs of newborn mice exposed to PM2.5 exhibited higher levels of oxidative stress and inflammasome activation, which continued during aging. PM2.5 also stimulated oxidative stress and inflammasome activation in bone marrow (BM). PM2.5-exposed infant mice at 12 months but not at 6 months displayed progressive senescence of HSCs accompanied by preferential impairment of the BM microenvironment with age-related phenotypes, as evidenced by colony-forming assay and serial transplantation and animal survival experiments. Further, PM2.5-exposed middle-aged mice did not exhibit radioprotective potential. Collectively, exposure of newborns to PM2.5 causes progressive senescence of HSCs. These findings revealed a novel mechanism by which PM2.5 affects the fate of HSCs, highlighting the crucial role of early life exposure to air pollution in determining human health outcomes.


Asunto(s)
Inflamasomas , Material Particulado , Humanos , Ratones , Animales , Material Particulado/toxicidad , Células Madre Hematopoyéticas , Estrés Oxidativo , Diferenciación Celular
7.
Leukemia ; 37(4): 877-887, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36707620

RESUMEN

Studies of PrPC-derived prion disease generally focus on neurodegeneration. However, little is known regarding the modulation of hematopoietic stem progenitor cells (HSPCs) that express PrPC in prion infection. Among bone marrow (BM) hematopoietic cells, hematopoietic stem cells (HSCs) strongly express PrPC. A bioassay revealed the presence of misfolded prion protein (PrPSc) in BM cells derived from prion-infected mice; these BM cells demonstrated reproducible prion infectivity. At 5 months after infection with ME7, mice exhibited a significant decrease in the number of HSPCs. This decrease was mainly driven by increased apoptotic cell death, rather than cell cycle progression and senescence, in PrPC-positive but not PrPC-negative HSPC populations through a cell-autonomous mechanism. Notably, both PrPC-positive and PrPC-negative HSCs underwent cellular senescence, as indicated by high levels of senescence-associated factors and deficits in repopulation and self-renewal capacities at 7 months after infection. Senescence of HSCs occurred in the ME7-impaired BM microenvironment with aging phenotypes through non-cell autonomous mechanisms. These data provide novel evidence that prion infection differentially modulates HSC fate through both cell-autonomous and non-autonomous mechanisms.


Asunto(s)
Enfermedades por Prión , Priones , Ratones , Animales , Priones/metabolismo , Células Madre Hematopoyéticas/metabolismo , Enfermedades por Prión/metabolismo , Células de la Médula Ósea/metabolismo , Apoptosis
8.
ACS Appl Mater Interfaces ; 15(1): 599-616, 2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36575925

RESUMEN

Although multiple regenerative strategies are being developed for periodontal reconstruction, guided periodontal ligament (PDL) regeneration is difficult because of its cellular and fibrous complexities. Here, we manufactured four different types of PDL-mimic fibrous scaffolds on a desired single mat. These scaffolds exhibited a structure of PDL matrix and human PDL fibroblasts (PDLFs) cultured on the scaffolds resembling morphological phenotypes present in native PDLF. The scaffold-seeded PDLF exerted proliferative, osteoblastic, and osteoclastogenic potentials depending on the fiber topographical cues. Fiber surface-regulated behaviors of PDLF were correlated with the expression patterns of yes-associated protein (YAP), CD105, periostin, osteopontin, and vinculin. Transfection with si-RNA confirmed that YAP acted as the master mechanosensing regulator. Of the as-spun scaffolds, aligned or grid-patterned microscale scaffold regulated the YAP-associated behavior of PDLF more effectively than nanomicroscale or random-oriented microscale scaffold. Implantation with hydrogel complex conjugated with microscale-patterned or grid-patterned scaffold, but not other types of scaffolds, recovered the defected PDL with native PDL-mimic cellularization and fiber structure in the reformed PDL. Our results demonstrate that PDL-biomimetic scaffolds regulate topography-related and YAP-mediated behaviors of PDLF in relation to their topographies. Overall, this study may support a clinical approach of the fiber-hydrogel complex in guided PDL regenerative engineering.


Asunto(s)
Biomimética , Ligamento Periodontal , Humanos , Andamios del Tejido/química , Fibroblastos , Regeneración , Hidrogeles/metabolismo
9.
Stem Cells ; 41(1): 93-104, 2023 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-36368017

RESUMEN

While supplemental angiopoietin-1 (Ang1) improves hematopoiesis, excessive Ang1 induces bone marrow (BM) impairment, hematopoietic stem cell (HSC) senescence, and erythropoietic defect. Here, we examined how excessive Ang1 disturbs hematopoiesis and explored whether hematopoietic defects were related to its level using K14-Cre;c-Ang1 and Col2.3-Cre;c-Ang1 transgenic mice that systemically and locally overexpress cartilage oligomeric matrix protein-Ang1, respectively. We also investigated the impacts of Tie2 inhibitor and AMD3100 on hematopoietic development. Transgenic mice exhibited excessive angiogenic phenotypes, but K14-Cre;c-Ang1 mice showed more severe defects in growth and life span with higher presence of Ang1 compared with Col2.3-Cre;c-Ang1 mice. Dissimilar to K14-Cre;c-Ang1 mice, Col2.3-Cre;c-Ang1 mice did not show impaired BM retention or senescence of HSCs, erythropoietic defect, or disruption of the stromal cell-derived factor 1 (SDF-1)/CXCR4 axis. However, these mice exhibited a defect in platelet production depending on the expression of Tie2 and globin transcription factor 1 (GATA-1), but not GATA-2, in megakaryocyte progenitor (MP) cells. Treatment with Tie2 inhibitor recovered GATA-1 expression in MP cells and platelet production without changes in circulating RBC in transgenic mice. Consecutive AMD3100 administration not only induced irrecoverable senescence of HSCs but also suppressed formation of RBC, but not platelets, via correlated decreases in number of erythroblasts and their GATA-1 expression in B6 mice. Our results indicate that genetic overexpression of Ang1 impairs hematopoietic development depending on its level, in which megakaryopoiesis is preferentially impaired via activation of Ang1/Tie2 signaling, whereas erythropoietic defect is orchestrated by HSC senescence, inflammation, and disruption of the SDF-1/CXCR4 axis.


Asunto(s)
Anemia , Trombocitopenia , Ratones , Animales , Proteína de la Matriz Oligomérica del Cartílago/genética , Angiopoyetina 1/genética , Angiopoyetina 1/metabolismo , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Ratones Transgénicos , Anemia/genética , Receptor TIE-2/genética , Receptor TIE-2/metabolismo
10.
Antioxidants (Basel) ; 11(12)2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36552528

RESUMEN

Hyperglycemia has various adverse health effects, some of which are due to chronic oxidative and inflammatory impairment of bone marrow (BM), hematopoietic stem cells (HSCs), and mesenchymal stem cells (MSCs). Astaxanthin (ASTX) has been shown to ameliorate hyperglycemia-associated systemic complications and acute mortality, and this effect is partially associated with restoration of normal hematopoiesis. Here, the effects of ASTX on diabetes-induced complications in BM and BM stem cells were investigated, and the underlying molecular mechanisms were elucidated. Ten-week-old C57BL/6 mice received a single intraperitoneal injection of streptozotocin (STZ; 150 mg/kg) in combination with oral gavage of ASTX (12.5 mg/kg) for 30 or 60 consecutive days. Supplemental ASTX ameliorated acute mortality and restored the STZ-impaired bone mass accrual and BM microenvironment in STZ-injected mice. Oral gavage of ASTX suppressed osteoclast formation in the BM of STZ-injected mice. Specifically, supplementation with ASTX inhibited oxidative stress and senescence induction of BM HSCs and MSCs and ameliorated hematopoietic disorders in STZ-injected mice. These effects of ASTX were associated with BM restoration of angiopoietin 1, stromal cell-derived factor 1, ß-catenin, and Nrf2. Long-term ASTX gavage also recovered the STZ-induced dysfunction in migration, colony formation, and mineralization of BM-derived stromal cells. Further, a direct addition of ASTX exhibited direct and dose-dependent inhibition of osteoclastic activation without cytotoxic effects. Collectively, these results indicate that ASTX protects against diabetes-induced damage in the BM microenvironment in BM, HSCs, and MSCs and restores normal hematopoiesis and bone accrual in STZ-injected mice.

11.
Int J Mol Sci ; 23(12)2022 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-35743193

RESUMEN

The most prevalent chronic liver disorder in the world is fatty liver disease caused by a high-fat diet. We examined the effects of Lactiplantibacillus plantarum-KCC48 on high-fat diet-induced (HFD) fatty liver disease in mice. We used the transcriptome tool to perform a systematic evaluation of hepatic mRNA transcripts changes in high-fat diet (HFD)-fed animals and high-fat diet with L. plantarum (HFLPD)-fed animals. HFD causes fatty liver diseases in animals, as evidenced by an increase in TG content in liver tissues compared to control animals. Based on transcriptome data, 145 differentially expressed genes (DEGs) were identified in the liver of HFD-fed mice compared to control mice. Moreover, 61 genes were differentially expressed in the liver of mice fed the HFLPD compared to mice fed the HFD. Additionally, 43 common DEGs were identified between HFD and HFLPD. These genes were enriched in metabolic processes, retinol metabolism, the PPAR signaling pathway, fatty acid degradation, arachidonic metabolism, and steroid hormone synthesis. Taking these data into consideration, it can be concluded that L. plantarum-KCC48 treatment significantly regulates the expression of genes involved in hepatosteatosis caused by HFD, which may prevent fatty liver disease.


Asunto(s)
Dieta Alta en Grasa , Enfermedad del Hígado Graso no Alcohólico , Animales , Dieta Alta en Grasa/efectos adversos , Metabolismo de los Lípidos/genética , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Transcriptoma
12.
Mater Sci Eng C Mater Biol Appl ; 135: 112673, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35581065

RESUMEN

Scaffolds combined with bioactive agents can enhance bone regeneration at therapeutic sites. We explore whether combined supplementation with coumaric acid and recombinant human-cartilage oligomeric matrix protein-angiopoietin 1 (rhCOMP-Ang1) is an ideal approach for bone tissue engineering. We developed coumaric acid-conjugated absorbable collagen scaffold (CA-ACS) and investigated whether implanting CA-ACS in combination with rhCOMP-Ang1 facilitates ACS- or CA-ACS-mediated bone formation using a rat model of critically sized mandible defects. We examined the mechanisms by which coumaric acid and rhCOMP-Ang1 regulate behaviors of human periodontal ligament fibroblasts (hPLFs). The CA-ACS exhibits greater anti-degradation and mechanical strength properties than does ACS alone. Implanting CA-ACS loaded with rhCOMP-Ang1 greatly enhances bone regeneration at the defect via the activation of angiogenic, osteogenic, and anti-osteoclastic responses compared with other rat groups implanted with an ACS alone or CA-ACS. Treatment with both rhCOMP-Ang1 and coumaric acid increases proliferation, mineralization, and migration of cultured hPLFs via activation of the Ang1/Tie2 signaling axis at a greater rate than treatment with either of them alone. Collectively, this study demonstrates that CA-ACS impregnated with rhCOMP-Ang1 enhances bone regeneration at therapeutic sites, and this enhancement is associated with a synergistic interaction between rhCOMP-Ang1-mediated angiogenesis and coumaric acid-related antioxidant responses.


Asunto(s)
Angiopoyetina 1 , Antioxidantes , Angiopoyetina 1/metabolismo , Angiopoyetina 1/farmacología , Animales , Antioxidantes/farmacología , Proteína de la Matriz Oligomérica del Cartílago , Colágeno/farmacología , Ácidos Cumáricos , Mandíbula , Ratas
13.
Nutrients ; 13(10)2021 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-34684576

RESUMEN

Numerous studies highlight that astaxanthin (ASTX) ameliorates hyperglycemic condition and hyperglycemia-associated chronic complications. While periodontitis and periodontic tissue degradation are also triggered under chronic hyperglycemia, the roles of ASTX on diabetes-associated periodontal destruction and the related mechanisms therein are not yet fully understood. Here, we explored the impacts of supplemental ASTX on periodontal destruction and systemic complications in type I diabetic mice. To induce diabetes, C57BL/6 mice received a single intraperitoneal injection of streptozotocin (STZ; 150 mg/kg), and the hyperglycemic mice were orally administered with ASTX (12.5 mg/kg) (STZ+ASTX group) or vehicle only (STZ group) daily for 60 days. Supplemental ASTX did not improve hyperglycemic condition, but ameliorated excessive water and feed consumptions and lethality in STZ-induced diabetic mice. Compared with the non-diabetic and STZ+ASTX groups, the STZ group exhibited severe periodontal destruction. Oral gavage with ASTX inhibited osteoclastic formation and the expression of receptor activator of nuclear factor (NF)-κB ligand, 8-OHdG, γ-H2AX, cyclooxygenase 2, and interleukin-1ß in the periodontium of STZ-injected mice. Supplemental ASTX not only increased the levels of nuclear factor erythroid 2-related factor 2 (Nrf2) and osteogenic transcription factors in the periodontium, but also recovered circulating lymphocytes and endogenous antioxidant enzyme activity in the blood of STZ-injected mice. Furthermore, the addition of ASTX blocked advanced glycation end products-induced oxidative stress and growth inhibition in human-derived periodontal ligament cells by upregulating the Nrf2 pathway. Together, our results suggest that ASTX does not directly improve hyperglycemia, but ameliorates hyperglycemia-triggered periodontal destruction and oxidative systemic complications in type I diabetes.


Asunto(s)
Antioxidantes/metabolismo , Diabetes Mellitus Experimental/complicaciones , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo , Periodontitis/tratamiento farmacológico , Periodontitis/etiología , Estreptozocina/administración & dosificación , Adolescente , Proceso Alveolar/patología , Animales , Glucemia/metabolismo , Catalasa/sangre , Proliferación Celular , Citocinas/metabolismo , Daño del ADN , Diabetes Mellitus Experimental/sangre , Suplementos Dietéticos , Conducta Alimentaria , Productos Finales de Glicación Avanzada/metabolismo , Humanos , Hiperglucemia/complicaciones , Mediadores de Inflamación/metabolismo , Inyecciones , Linfocitos/inmunología , Masculino , Ratones Endogámicos C57BL , Osteoclastos/efectos de los fármacos , Osteoclastos/patología , Ligamento Periodontal/patología , Periodontitis/sangre , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/sangre , Regulación hacia Arriba , Xantófilas/farmacología , Xantófilas/uso terapéutico , Adulto Joven
14.
Antioxidants (Basel) ; 10(8)2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34439457

RESUMEN

While total body irradiation (TBI) is an everlasting curative therapy, the irradiation can cause long-term bone marrow (BM) injuries, along with senescence of hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs) via reactive oxygen species (ROS)-induced oxidative damages. Thus, ameliorating or preventing ROS accumulation and oxidative stress is necessary for TBI-requiring clinical treatments. Here, we explored whether administration of ferulic acid, a dietary antioxidant, protects against TBI-mediated systemic damages, and examined the possible mechanisms therein. Sublethal TBI (5 Gy) decreased body growth, lifespan, and production of circulating blood cells in mice, together with ROS accumulation, and senescence induction of BM-conserved HSCs and MSCs. TBI also impaired BM microenvironment and bone mass accrual, which was accompanied by downregulated osteogenesis and by osteoclastogenic and adipogenic activation in BM. Long-term intraperitoneal injection of ferulic acid (50 mg/kg body weight, once per day for 37 consecutive days) protected mice from TBI-mediated mortality, stem cell senescence, and bone mass loss by restoring TBI-stimulated disorders in osteogenic, osteoclastic, and adipogenic activation in BM. In vitro experiments using BM stromal cells supported radioprotective effects of ferulic acid on TBI-mediated defects in proliferation and osteogenic differentiation. Overall, treatment with ferulic acid prevented TBI-mediated liver damage and enhanced endogenous antioxidant defense systems in the liver and BM. Collectively, these results support an efficient protection of TBI-mediated systemic defects by supplemental ferulic acid, indicating its clinical usefulness for TBI-required patients.

15.
Stem Cells Transl Med ; 10(10): 1446-1453, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34160898

RESUMEN

Hematopoietic stem progenitor cells (HSPCs) mobilized to peripheral blood, rather than those remaining in the bone marrow (BM), are commonly used as stem cell source in the clinic. As reactive oxygen species (ROS) are suggested as mediator of HSPC mobilization, we examined the impacts of glucose oxidase (GO) on peripheral mobilization of BM HSPCs and the associated mechanisms. Intravenous injection of GO induced HSPC mobilization even by single treatment, and the GO-mobilized cells maintained their long-term reconstituting and differentiating potentials in conditioned recipients. GO-injected mice lived a normal life without adverse effects such as stem cell senescence, hematopoietic disorders, and blood parameter alteration. The mobilization effect of GO was even evident in animal models showing poor mobilization, such as old, 5-fluorouracil-treated, or alendronate-treated mice. Importantly, combined injection of GO with granulocyte colony-stimulating factor (G-CSF) and/or AMD3100 enhanced more greatly HSPC mobilization than did G-CSF, AMD3100, or both. The GO-stimulated HSPC mobilization was almost completely attenuated by N-acetyl-L-cysteine treatment. Collectively, our results not only highlight the potential role of GO in HSPC mobilization via ROS signaling, but also provide a GO-based new strategy to improve HSPC mobilization in poorly mobilizing allogeneic or autologous donors via combination with G-CSF and/or AMD3100.


Asunto(s)
Glucosa Oxidasa , Movilización de Célula Madre Hematopoyética , Animales , Médula Ósea/metabolismo , Glucosa Oxidasa/metabolismo , Glucosa Oxidasa/farmacología , Factor Estimulante de Colonias de Granulocitos/metabolismo , Factor Estimulante de Colonias de Granulocitos/farmacología , Células Madre Hematopoyéticas/metabolismo , Ratones
16.
Mol Cells ; 44(4): 254-266, 2021 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-33935045

RESUMEN

Numerous studies highlight the potential benefits potentials of supplemental cartilage oligomeric matrix protein-angiopoietin-1 (COMP-Ang1) through improved angiogenic effects. However, our recent findings show that excessive overexpression of COMP-Ang1 induces an impaired bone marrow (BM) microenvironment and senescence of hematopoietic stem cells (HSCs). Here, we investigated the underlying mechanisms of how excessive COMP-Ang1 affects the function of BM-conserved stem cells and hematopoiesis using K14-Cre;inducible-COMP-Ang1-transgenic mice. Excessive COMP-Ang1 induced peripheral egression and senescence of BM HSCs and mesenchymal stem cells (MSCs). Excessive COMP-Ang1 also caused abnormal hematopoiesis along with skewed differentiation of HSCs toward myeloid lineage rather than lymphoid lineage. Especially, excessive COMP-Ang1 disturbed late-stage erythroblast maturation, followed by decreased expression of stromal cell-derived factor 1 (SDF-1) and globin transcription factor 1 (GATA-1) and increased levels of superoxide anion and p-p38 kinase. However, transplantation with the mutant-derived BM cells or treatment with rhCOMP-Ang1 protein did not alter the frequency or GATA-1 expression of erythroblasts in recipient mice or in cultured BM cells. Together, our findings suggest that excessive COMP-Ang1 impairs the functions of BM HSCs and MSCs and hematopoietic processes, eventually leading to abnormal erythropoiesis via imbalanced SDF-1/CXCR4 axis and GATA-1 expression rather than Ang1/Tie2 signaling axis alterations.


Asunto(s)
Angiopoyetina 1/metabolismo , Eritrocitos/metabolismo , Hematopoyesis/genética , Animales , Diferenciación Celular , Humanos , Ratones , Ratones Transgénicos
17.
Stem Cells ; 39(1): 103-114, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33038284

RESUMEN

Although functional association between Wnt signaling and bone homeostasis has been well described through genetic ablation of Wntless (Wls), the mechanisms of how osteoblastic Wls regulates the fate of bone marrow stromal cells (BMSCs) and hematopoietic stem cells (HSCs) in relation to age are not yet understood. Here, we generated Col2.3-Cre;Wlsfl/fl mice that were free from premature lethality and investigated age-related impacts of osteoblastic Wls deficiency on hematopoiesis, BM microenvironment, and maintenance of BMSCs (also known as BM-derived mesenchymal stem/stromal cells) and HSCs. Ablation of osteoblastic Wls deteriorated BM microenvironment and bone mass accrual along with age-independent effects on functions of BMSCs. Osteoblastic Wls deletion impaired HSC repopulation and progeny with skewing toward myeloid lineage cells only at old stage. As proven by hallmarks of stem cell senescence, osteoblastic Wls ablation differentially induced senescence of BMSCs and HSCs in relation to age without alteration in their BM frequency. Our findings support that deletion of Wls in Col2.3-expressing cells induces senescence of BMSCs and impairs BM microenvironment in age-independent manner. Overall, long-term deterioration in BM microenvironment contributes to age-related HSC senescence with impaired progeny and hematopoiesis, which also suggests possible roles of osteoblastic Wls on the maintenance of BM HSCs.


Asunto(s)
Envejecimiento/metabolismo , Células de la Médula Ósea/metabolismo , Eliminación de Gen , Osteoblastos/metabolismo , Receptores Acoplados a Proteínas G/deficiencia , Células Madre/metabolismo , Animales , Ratones , Ratones Transgénicos , Receptores Acoplados a Proteínas G/metabolismo
18.
FASEB J ; 34(9): 12289-12307, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32701200

RESUMEN

Given the rising evidence that gut malfunction including changes in the gut microbiota composition, plays a major role in the development of obesity and associated metabolic diseases, the exploring of novel probiotic bacteria with potential health benefits has attracted great attention. Recently Lactobacillus spp., exert potent anti-obesity effects by regulating key transcriptional and translational factors in adipose tissues. However, the molecular mechanism behind the anti-obesity effect of probiotics is not yet fully understood. Therefore, we investigated the effect of Lactobacillus plantarum A29 on the expression of adipogenic and lipogenic genes in 3T3-L1 adipocytes and high-fat diet (HFD)-fed mice. We observed that the treatment of 3T3-L1 adipocytes with the cell-free metabolites of L plantarum inhibited their differentiation and fat depositions via downregulating the key adipogenic transcriptional factors (PPAR-γ, C/EBP-α, and C/EBP-ß) and their downstream targets (FAS, aP2, ACC, and SREBP-1). Interestingly, supplementation with L plantarum reduced the fat mass and serum lipid profile concurrently with downregulation of lipogenic gene expression in the adipocytes, resulting in reductions in the bodyweight of HFD-fed obese mice. L plantarum treatment attenuated the development of obesity in HFD-fed mice via the activation of p38MAPK, p44/42, and AMPK-α by increasing their phosphorylation. Further analysis revealed that A29 modulated gut-associated microbiota composition. Thus, A 29 potential probiotic strain may alleviate the obesity development and its associated metabolic disorders via inhibiting PPARγ through activating the p38MAPK and p44/42 signaling pathways.


Asunto(s)
Disbiosis/terapia , Microbioma Gastrointestinal , Lactobacillus plantarum/fisiología , Obesidad/terapia , Probióticos/farmacología , Células 3T3-L1 , Adipocitos/metabolismo , Animales , Diferenciación Celular , Dieta Alta en Grasa , Quinasas MAP Reguladas por Señal Extracelular/fisiología , Sistema de Señalización de MAP Quinasas/fisiología , Masculino , Ratones , Ratones Endogámicos ICR , Obesidad/metabolismo , Obesidad/microbiología , PPAR gamma/antagonistas & inhibidores , Proteínas Quinasas p38 Activadas por Mitógenos/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA