RESUMEN
Topoisomerase II (topo II) enzymes are essential enzymes known to resolve topological entanglements during DNA processing. Curiously, while yeast expresses a single topo II, humans express two topo II isozymes, topo IIα and topo IIß, which share a similar catalytic domain but differ in their intrinsically disordered C-terminal domains (CTDs). During mitosis, topo IIα and condensin I constitute the most abundant chromosome scaffolding proteins essential for chromosome condensation. However, how topo IIα enables this function is poorly understood. Here, we discovered a new and functionally distinct role for human topo IIα - it condenses DNA and chromatin at a low topo IIα concentration (100 pM or less) during a polymer-collapse phase transition. The removal of the topo IIα CTDs effectively abolishes its condensation ability, indicating that the condensation is mediated by the CTDs. Although topo IIß can also perform condensation, it is about 4-fold less effective. During the condensation, topo IIα-DNA condensates form along DNA, working against a DNA tension of up to 1.5 pN, greater than that previously reported for yeast condensin. In addition, this condensation does not require ATP and thus is independent of topo IIα's catalytic activity. We also found that condensation and catalysis can concurrently proceed with minimal mutual interference. Our findings suggest topo IIα may directly participate in chromosome condensation during mitosis.
RESUMEN
Innate immune responses such as phagocytosis are critically linked to the generation of adaptive immune responses against the neoantigens in cancer and the efferocytosis that is essential for homeostasis in diseases characterized by lung injury, inflammation, and remodeling as in chronic obstructive pulmonary disease (COPD). Chitinase 3-like-1 (CHI3L1) is induced in many cancers where it inhibits adaptive immune responses by stimulating immune checkpoint molecules (ICPs) and portends a poor prognosis. CHI3L1 is also induced in COPD where it regulates epithelial cell death. In this study, we demonstrate that pulmonary melanoma metastasis inhibits macrophage phagocytosis by stimulating the CD47-SIRPα and CD24-Siglec10 phagocytosis checkpoint pathways while inhibiting macrophage "eat me" signals from calreticulin and HMGB1. We also demonstrate that these effects on macrophage phagocytosis are associated with CHI3L1 stimulation of the SHP-1 and SHP-2 phosphatases and inhibition of the accumulation and phosphorylation of cytoskeleton-regulating nonmuscle myosin IIa. This inhibition of innate immune responses such as phagocytosis provides a mechanistic explanation for the ability of CHI3L1 to stimulate ICPs and inhibit adaptive immune responses in cancer and diseases such as COPD. The ability of CHI3L1 to simultaneously inhibit innate immune responses, stimulate ICPs, inhibit T cell costimulation, and regulate a number of other oncogenic and inflammation pathways suggests that CHI3L1-targeted therapeutics are promising interventions in cancer, COPD, and other disorders.
Asunto(s)
Antígeno CD47 , Proteína 1 Similar a Quitinasa-3 , Inmunidad Innata , Fagocitosis , Receptores Inmunológicos , Animales , Fagocitosis/inmunología , Ratones , Antígeno CD47/inmunología , Antígeno CD47/metabolismo , Inmunidad Innata/inmunología , Proteína 1 Similar a Quitinasa-3/metabolismo , Proteína 1 Similar a Quitinasa-3/inmunología , Receptores Inmunológicos/inmunología , Receptores Inmunológicos/metabolismo , Ratones Endogámicos C57BL , Macrófagos/inmunología , Antígeno CD24/inmunología , Antígeno CD24/metabolismo , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/patología , Antígenos de Diferenciación/inmunología , Humanos , Lectinas/metabolismo , Lectinas/inmunología , Línea Celular TumoralRESUMEN
OBJECTIVE: To understand current practices and challenges for collecting author feedback for English-language, industry-sponsored publications in Asia-Pacific (APAC), and the implications for adherence to international publication guidelines. METHODS: A cross-sectional, internet-based survey of industry ('internal') authors (17 questions) and publication professionals (18 questions) supporting publications in APAC, conducted between November 18 and December 4, 2022. RESULTS: Overall, 142 survey responses were received, of which 94 (66%) were complete and included in the analysis (33 internal authors, 61 publication professionals). Almost half (45%) of internal authors preferred a non-English language for providing feedback on publications, and most (70%) would use this language whenever possible. Internal authors favored written (91%) versus spoken (73%) English, and email was the preferred mode of communication. Publication professionals said they have observed qualitative differences when authors provide feedback in a preferred non-English language versus English. Many agreed that authors tend to provide more substantive or critical feedback when they can respond in their preferred non-English language. Internal authors had low self-assessed familiarity with key publication guidelines, while most publication professionals had a moderate or high self-assessed familiarity. The main barriers to application of publication guidelines, as rated by publication professionals, were that external authors in APAC are not familiar with global publication guidelines and do not always provide feedback/responses in writing. CONCLUSION: It is important to consider the diverse language, cultural, and communication preferences of individuals involved in English-language publication development in APAC, and to ensure that authors are aware of current publication guidelines and best practices.
Asunto(s)
Autoria , Lenguaje , Estudios Transversales , Humanos , Asia , Encuestas y Cuestionarios , Comunicación , Edición/normas , Edición/estadística & datos numéricos , Guías como Asunto , Publicaciones/estadística & datos numéricos , Publicaciones/normasRESUMEN
Purpose: Stereotactic body radiation therapy (SBRT) is a promising treatment for oligometastatic disease in bone because of its delivery of high dose to target tissue and minimal dose to surrounding tissue. The purpose of this study is to assess the efficacy and toxicity of this treatment in patients with previously unirradiated oligometastatic bony disease. Methods and Materials: In this prospective phase II trial, patients with oligometastatic bone disease, defined as ≤3 active sites of disease, were treated with SBRT at Brigham and Women's Hospital/Dana Farber Cancer Center and Beth Israel Deaconess Medical Center between December 2016 and May 2019. SBRT dose and fractionation regimen were not protocol mandated. Local progression-free survival, progression-free survival, prostatic specific antigen progression, and overall survival were reported. Treatment-related toxicity was also reported. Results: A total of 98 patients and 126 lesions arising from various tumor histologies were included in this study. The median age of patients enrolled was 72.8 years (80.6% male, 19.4% female). Median follow-up was 26.7 months. The most common histology was prostate cancer (68.4%, 67/98). The most common dose prescriptions were 27/30 Gy in 3 fractions (27.0%, 34/126), 30 Gy in 5 fractions (16.7%, 21/126), or 30/35 Gy in 5 fractions (16.7%, 21/126). Multiple doses per treatment regimen reflect dose painting employing the lower dose to the clinical target volume and higher dose to the gross tumor volume. Four patients (4.1%, 4/98) experienced local progression at 1 site for each patient (3.2%, 4/126). Among the entire cohort, 2-year local progression-free survival (including death without local progression) was 84.8%, 2-year progression-free survival (including deaths as well as local, distant, and prostatic specific antigen progression) was 47.5%, and 2-year overall survival was 87.3%. Twenty-six patients (26.5%, 26/98) developed treatment-related toxicities. Conclusions: Our study supports existing literature in showing that SBRT is effective and tolerable in patients with oligometastatic bone disease. Larger phase III trials are necessary and reasonable to determine long-term efficacy and toxicities.
RESUMEN
Type IIA topoisomerases are essential DNA processing enzymes that must robustly and reliably relax DNA torsional stress in vivo. While cellular processes constantly create different degrees of torsional stress, how this stress feeds back to control type IIA topoisomerase function remains obscure. Using a suite of single-molecule approaches, we examined the torsional impact on supercoiling relaxation of both naked DNA and chromatin by eukaryotic topoisomerase II (topo II). We observed that topo II was at least ~ 50-fold more processive on plectonemic DNA than previously estimated, capable of relaxing > 6000 turns. We further discovered that topo II could relax supercoiled DNA prior to plectoneme formation, but with a ~100-fold reduction in processivity; strikingly, the relaxation rate in this regime decreased with diminishing torsion in a manner consistent with the capture of transient DNA loops by topo II. Chromatinization preserved the high processivity of the enzyme under high torsional stress. Interestingly, topo II was still highly processive (~ 1000 turns) even under low torsional stress, consistent with the predisposition of chromatin to readily form DNA crossings. This work establishes that chromatin is a major stimulant of topo II function, capable of enhancing function even under low torsional stress.
RESUMEN
Type IIA topoisomerases are essential DNA processing enzymes that must robustly and reliably relax DNA torsional stress. While cellular processes constantly create varying torsional stress, how this variation impacts type IIA topoisomerase function remains obscure. Using multiple single-molecule approaches, we examined the torsional dependence of eukaryotic topoisomerase II (topo II) activity on naked DNA and chromatin. We observed that topo II is ~50-fold more processive on buckled DNA than previously estimated. We further discovered that topo II relaxes supercoiled DNA prior to plectoneme formation, but with processivity reduced by ~100-fold. This relaxation decreases with diminishing torsion, consistent with topo II capturing transient DNA loops. Topo II retains high processivity on buckled chromatin (~10,000 turns) and becomes highly processive even on chromatin under low torsional stress (~1000 turns), consistent with chromatin's predisposition to readily form DNA crossings. This work establishes that chromatin is a major stimulant of topo II function.
Asunto(s)
ADN-Topoisomerasas de Tipo II , ADN , ADN-Topoisomerasas de Tipo II/metabolismo , Cromatina , ADN-Topoisomerasas de Tipo I/metabolismo , Células Eucariotas/metabolismoRESUMEN
Lower-grade gliomas exhibit a high prevalence of isocitrate dehydrogenase 1 (IDH1) mutations, but faithful models for studying these tumors are lacking. Here, we present a protocol to establish a genetically engineered mouse (GEM) model of grade 3 astrocytoma driven by the Idh1R132H oncogene. We describe steps for breeding compound transgenic mice and intracranially delivering adeno-associated virus particles, followed by post-surgical surveillance via magnetic resonance imaging. This protocol enables the generation and use of a GEM to study lower-grade IDH-mutant gliomas. For complete details on the use and execution of this protocol, please refer to Shi et al. (2022).1.
RESUMEN
Transforming growth factor-ß (TGF-ß) has a strong impact on the pathogenesis of pulmonary fibrosis. Therefore, in this study, we investigated whether derrone promotes anti-fibrotic effects on TGF-ß1-stimulated MRC-5 lung fibroblast cells and bleomycin-induced lung fibrosis. Long-term treatment with high concentrations of derrone increased the cytotoxicity of MRC-5 cells; however, substantial cell death was not observed at low concentrations of derrone (below 0.05 µg/mL) during a three-day treatment. In addition, derrone significantly decreased the expressions of TGF-ß1, fibronectin, elastin, and collagen1α1, and these decreases were accompanied by downregulation of α-SMA expression in TGF-ß1-stimulated MRC-5 cells. Severe fibrotic histopathological changes in infiltration, alveolar congestion, and alveolar wall thickness were observed in bleomycin-treated mice; however, derrone supplementation significantly reduced these histological deformations. In addition, intratracheal administration of bleomycin resulted in lung collagen accumulation and high expression of α-SMA and fibrotic genes-including TGF-ß1, fibronectin, elastin, and collagen1α1-in the lungs. However, fibrotic severity in intranasal derrone-administrated mice was significantly less than that of bleomycin-administered mice. Molecular docking predicted that derrone potently fits into the ATP-binding pocket of the TGF-ß receptor type 1 kinase domain with stronger binding scores than ATP. Additionally, derrone inhibited TGF-ß1-induced phosphorylation and nuclear translocations of Smad2/3. Overall, derrone significantly attenuated TGF-ß1-stimulated lung inflammation in vitro and bleomycin-induced lung fibrosis in a murine model, indicating that derrone may be a promising candidate for preventing pulmonary fibrosis.
Asunto(s)
Fibrosis Pulmonar , Ratones , Animales , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Bleomicina/toxicidad , Elastina/metabolismo , Fibronectinas/metabolismo , Simulación del Acoplamiento Molecular , Pulmón/patología , Transducción de Señal , Fibroblastos/metabolismo , Adenosina Trifosfato/metabolismo , Ratones Endogámicos C57BLRESUMEN
Etoposide is a broadly employed chemotherapeutic and eukaryotic topoisomerase II poison that stabilizes cleaved DNA intermediates to promote DNA breakage and cytotoxicity. How etoposide perturbs topoisomerase dynamics is not known. Here we investigated the action of etoposide on yeast topoisomerase II, human topoisomerase IIα and human topoisomerase IIß using several sensitive single-molecule detection methods. Unexpectedly, we found that etoposide induces topoisomerase to trap DNA loops, compacting DNA and restructuring DNA topology. Loop trapping occurs after ATP hydrolysis but before strand ejection from the enzyme. Although etoposide decreases the innate stability of topoisomerase dimers, it increases the ability of the enzyme to act as a stable roadblock. Interestingly, the three topoisomerases show similar etoposide-mediated resistance to dimer separation and sliding along DNA but different abilities to compact DNA and chirally relax DNA supercoils. These data provide unique mechanistic insights into the functional consequences of etoposide on topoisomerase II dynamics.
Asunto(s)
ADN-Topoisomerasas de Tipo II , Inhibidores de Topoisomerasa II , Humanos , Etopósido/farmacología , Inhibidores de Topoisomerasa II/farmacología , ADN-Topoisomerasas de Tipo II/genética , ADNRESUMEN
Type II topoisomerases modulate chromosome supercoiling, condensation, and catenation by moving one double-stranded DNA segment through a transient break in a second duplex. How DNA strands are chosen and selectively passed to yield appropriate topological outcomes - for example, decatenation vs. catenation - is poorly understood. Here, we show that at physiological enzyme concentrations, eukaryotic type IIA topoisomerases (topo IIs) readily coalesce into condensed bodies. DNA stimulates condensation and fluidizes these assemblies to impart liquid-like behavior. Condensation induces both budding yeast and human topo IIs to switch from DNA unlinking to active DNA catenation, and depends on an unstructured C-terminal region, the loss of which leads to high levels of knotting and reduced catenation. Our findings establish that local protein concentration and phase separation can regulate how topo II creates or dissolves DNA links, behaviors that can account for the varied roles of the enzyme in supporting transcription, replication, and chromosome compaction.
Asunto(s)
ADN-Topoisomerasas de Tipo II , Eucariontes , Humanos , ADN , Células EucariotasRESUMEN
Mutations affecting isocitrate dehydrogenase (IDH) enzymes are prevalent in glioma, leukemia, and other cancers. Although mutant IDH inhibitors are effective against leukemia, they seem to be less active in aggressive glioma, underscoring the need for alternative treatment strategies. Through a chemical synthetic lethality screen, we discovered that IDH1-mutant glioma cells are hypersensitive to drugs targeting enzymes in the de novo pyrimidine nucleotide synthesis pathway, including dihydroorotate dehydrogenase (DHODH). We developed a genetically engineered mouse model of mutant IDH1-driven astrocytoma and used it and multiple patient-derived models to show that the brain-penetrant DHODH inhibitor BAY 2402234 displays monotherapy efficacy against IDH-mutant gliomas. Mechanistically, this reflects an obligate dependence of glioma cells on the de novo pyrimidine synthesis pathway and mutant IDH's ability to sensitize to DNA damage upon nucleotide pool imbalance. Our work outlines a tumor-selective, biomarker-guided therapeutic strategy that is poised for clinical translation.
Asunto(s)
Neoplasias Encefálicas , Glioma , Leucemia , Animales , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Inhibidores Enzimáticos/uso terapéutico , Glioma/tratamiento farmacológico , Glioma/genética , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/metabolismo , Ratones , Mutación , Pirimidinas/farmacología , Pirimidinas/uso terapéutico , Salicilanilidas , TriazolesRESUMEN
Pulmonary fibrosis is a devastating lung disease with few therapeutic options. CHIT1 (chitinase 1), an 18 glycosyl hydrolase family member, contributes to the pathogenesis of pulmonary fibrosis through the regulation of TGF-ß (transforming growth factor-ß) signaling and effector function. Therefore, CHIT1 is a potential therapeutic target for pulmonary fibrosis. This study aimed to identify and characterize a druggable CHIT1 inhibitor with strong antifibrotic activity and minimal toxicity for therapeutic application to pulmonary fibrosis. Extensive screening of small molecule libraries identified the aminoglycoside antibiotic kasugamycin (KSM) as a potent CHIT1 inhibitor. Elevated concentrations of CHIT1 were detected in the lungs of patients with pulmonary fibrosis. In in vivo bleomycin- and TGF-ß-stimulated murine models of pulmonary fibrosis, KSM showed impressive antifibrotic effects in both preventive and therapeutic conditions. In vitro studies also demonstrated that KSM inhibits fibrotic macrophage activation, fibroblast proliferation, and myofibroblast transformation. Null mutation of TGFBRAP1 (TGF-ß-associated protein 1), a recently identified CHIT1 interacting signaling molecule, phenocopied antifibrotic effects of KSM in in vivo lungs and in vitro fibroblasts responses. KSM inhibits the physical association between CHIT1 and TGFBRAP1, suggesting that the antifibrotic effect of KSM is mediated through regulation of TGFBRAP1, at least in part. These studies demonstrate that KSM is a novel CHIT1 inhibitor with a strong antifibrotic effect that can be further developed as an effective and safe therapeutic drug for pulmonary fibrosis.
Asunto(s)
Aminoglicósidos , Antifibróticos , Quitinasas , Fibrosis Pulmonar , Aminoglicósidos/farmacología , Aminoglicósidos/uso terapéutico , Animales , Antifibróticos/farmacología , Antifibróticos/uso terapéutico , Bleomicina/farmacología , Quitinasas/antagonistas & inhibidores , Fibroblastos/metabolismo , Humanos , Pulmón/efectos de los fármacos , Pulmón/patología , Ratones , Ratones Endogámicos C57BL , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/tratamiento farmacológico , Factor de Crecimiento Transformador beta/metabolismoRESUMEN
IMPORTANCE: Non-communicable chronic diseases (NCDs) such as obesity, type 2 diabetes, heart disease, and cancer were rare among non-western populations with traditional diets and lifestyles. As populations transitioned toward industrialized diets and lifestyles, NCDs developed. OBJECTIVE: We performed a systematic literature review to examine the effects of diet and lifestyle transitions on NCDs. EVIDENCE REVIEW: We identified 22 populations that underwent a nutrition transition, eleven of which had sufficient data. Of these, we chose four populations with diverse geographies, diets and lifestyles who underwent a dietary and lifestyle transition and explored the relationship between dietary changes and health outcomes. We excluded populations with features overlapping with selected populations or with complicating factors such as inadequate data, subgroups, and different study methodologies over different periods. The selected populations were Yemenite Jews, Tokelauans, Tanushimaru Japanese, and Maasai. We also review transition data from seven excluded populations (Pima, Navajo, Aboriginal Australians, South African Natal Indians and Zulu speakers, Inuit, and Hadza) to assess for bias. FINDINGS: The three groups that replaced saturated fats (SFA) from animal (Yemenite Jews, Maasai) or plants (Tokelau) with refined carbohydrates had negative health outcomes (e.g., increased obesity, diabetes, heart disease). Yemenites reduced SFA consumption by >40% post-transition but men's BMI increased 19% and diabetes increased ~40-fold. Tokelauans reduced fat, dramatically reduced SFA, and increased sugar intake: obesity and diabetes rose. The Tanushimaruans transitioned to more fats and less carbohydrates and used more anti-hypertensive medications; stroke and breast cancer declined while heart disease was stable. The Maasai transitioned to lower fat, SFA and higher carbohydrates and had increased BMI and diabetes. Similar patterns were observed in the seven other populations. CONCLUSION: The nutrient category most strongly associated with negative health outcomes - especially obesity and diabetes - was sugar (increased 600-650% in Yemenite Jews and Tokelauans) and refined carbohydrates (among Maasai, total carbohydrates increased 39% in men and 362% in women), while increased calories was less strongly associated with these disorders. Across 11 populations, NCDs were associated with increased refined carbohydrates more than increased calories, reduced activity or other factors, but cannot be attributed to SFA or total fat consumption.
RESUMEN
Topoisomerase II (topo II) is essential for disentangling newly replicated chromosomes. DNA unlinking involves the physical passage of one duplex through another and depends on the transient formation of double-stranded DNA breaks, a step exploited by frontline chemotherapeutics to kill cancer cells. Although anti-topo II drugs are efficacious, they also elicit cytotoxic side effects in normal cells; insights into how topo II is regulated in different cellular contexts is essential to improve their targeted use. Using chemical fractionation and mass spectrometry, we have discovered that topo II is subject to metabolic control through the TCA cycle. We show that TCA metabolites stimulate topo II activity in vitro and that levels of TCA flux modulate cellular sensitivity to anti-topo II drugs in vivo. Our work reveals an unanticipated connection between the control of DNA topology and cellular metabolism, a finding with ramifications for the clinical use of anti-topo II therapies.
Asunto(s)
Antineoplásicos , Inhibidores de Topoisomerasa II , Antineoplásicos/farmacología , ADN/metabolismo , ADN-Topoisomerasas de Tipo II/metabolismo , Inhibidores de Topoisomerasa II/farmacologíaRESUMEN
C-Circles, self-primed telomeric C-strand templates for rolling circle amplification, are the only known alternative-lengthening-of-telomeres (ALT)-specific molecule. However, little is known about the biology of C-Circles and if they may be clinically useful. Here we show that C-Circles are secreted by ALT+ cancer cells inside exosomes, and that a blood-based C-Circle Assay (CCA) can provide an accurate diagnostic for ALT activity. Extracellular vesicles were isolated by differential centrifugation from the growth media of lung adenocarcinoma, glioblastoma, neuroblastoma, osteosarcoma, and soft tissue sarcoma cell lines, and C-Circles were detected in the exosome fraction from all eleven ALT+ cancer cell lines and not in any extracellular fraction from the eight matching telomerase positive cancer cell lines or the normal fibroblast strain. The existence of C-Circles in ALT+ exosomes was confirmed with exosomes isolated by iodixanol gradient separation and CD81-immunoprecipitation, and C-Circles in the exosomes were protected from nucleases. On average, 0.4% of the total ALT+ intracellular C-Circles were secreted in the exosomes every 24 h. Comparing the serum-based and tumor-based CCAs in 35 high risk neuroblastoma patients divided randomly into ALT+ threshold derivation and validation groups, we found the serum-based CCA to have 100% sensitivity (6/6), 70% specificity (7/10), and 81% concordance (13/16). We conclude that the secretion of C-Circles by ALT+ cancer cells in the exosomes provides a stable blood-based biomarker and a potential clinical diagnostic for ALT activity.
RESUMEN
We reviewed data on the American diet from 1800 to 2019. Methods: We examined food availability and estimated consumption data from 1800 to 2019 using historical sources from the federal government and additional public data sources. Results: Processed and ultra-processed foods increased from <5 to >60% of foods. Large increases occurred for sugar, white and whole wheat flour, rice, poultry, eggs, vegetable oils, dairy products, and fresh vegetables. Saturated fats from animal sources declined while polyunsaturated fats from vegetable oils rose. Non-communicable diseases (NCDs) rose over the twentieth century in parallel with increased consumption of processed foods, including sugar, refined flour and rice, and vegetable oils. Saturated fats from animal sources were inversely correlated with the prevalence of NCDs. Conclusions: As observed from the food availability data, processed and ultra-processed foods dramatically increased over the past two centuries, especially sugar, white flour, white rice, vegetable oils, and ready-to-eat meals. These changes paralleled the rising incidence of NCDs, while animal fat consumption was inversely correlated.
RESUMEN
Importance: The true incidence of sudden unexplained death in childhood (SUDC), already the fifth leading category of death among toddlers by current US Centers for Disease Control and Prevention estimates, is potentially veiled by the varied certification processes by medicolegal investigative offices across the United States. Objective: To evaluate the frequency of SUDC incidence, understand its epidemiology, and assess the consistency of death certification among medical examiner and coroner offices in the US death investigation system. Design, Setting, and Participants: In this case series, 2 of 13 forensic pathologists (FPs) conducted masked reviews of 100 cases enrolled in the SUDC Registry and Research Collaborative (SUDCRRC). Children who died aged 11 months to 18 years from 36 US states, Canada, and the United Kingdom had been posthumously enrolled in the SUDCRRC by family members from 2014 to 2017. Comprehensive data from medicolegal investigative offices, clinical offices, and family members were reviewed. Data analysis was conducted from December 2014 to June 2020. Main Outcomes and Measures: Certified cause of death (COD) characterized as explained (accidental or natural) or unexplained, as determined by SUDCRRC masked review process. Results: In this study of 100 cases of SUDC (mean [SD] age, 32.1 [31.8] months; 58 [58.0%] boys; 82 [82.0%] White children; 92 [92.0%] from the United States), the original pathologist certified 43 cases (43.0%) as explained COD and 57 (57.0%) as unexplained COD. The SUDCRRC review process led to the following certifications: 16 (16.0%) were explained, 7 (7.0%) were undetermined because of insufficient data, and 77 (77.0%) were unexplained. Experts disagreed with the original COD in 40 cases (40.0%). These data suggest that SUDC incidence is higher than the current Centers for Disease Control and Prevention estimate (ie, 392 deaths in 2018). Conclusions and Relevance: To our knowledge, this is the first comprehensive masked forensic pathology review process of sudden unexpected pediatric deaths, and it suggests that SUDC may often go unrecognized in US death investigations. Some unexpected pediatric deaths may be erroneously attributed to a natural or accidental COD, negatively affecting surveillance, research, public health funding, and medical care of surviving family members. To further address the challenges of accurate and consistent death certification in SUDC, future studies are warranted.
Asunto(s)
Síndrome de Brugada/etiología , Causas de Muerte/tendencias , Certificado de Defunción , Síndrome de Brugada/epidemiología , Canadá/epidemiología , Preescolar , Testimonio de Experto , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Oportunidad Relativa , Factores de Riesgo , Estados Unidos/epidemiologíaRESUMEN
Type II topoisomerases are ubiquitous enzymes in all branches of life that can alter DNA superhelicity and unlink double-stranded DNA segments during processes such as replication and transcription. In cells, type II topoisomerases are particularly useful for their ability to disentangle newly-replicated sister chromosomes. Growing lines of evidence indicate that eukaryotic topoisomerase II (topo II) activity is monitored and regulated throughout the cell cycle. Here, we discuss the various roles of topo II throughout the cell cycle, as well as mechanisms that have been found to govern and/or respond to topo II function and dysfunction. Knowledge of how topo II activity is controlled during cell cycle progression is important for understanding how its misregulation can contribute to genetic instability and how modulatory pathways may be exploited to advance chemotherapeutic development.
Asunto(s)
Ciclo Celular/fisiología , ADN-Topoisomerasas de Tipo II/metabolismo , ADN-Topoisomerasas de Tipo II/fisiología , Animales , Ciclo Celular/genética , Puntos de Control del Ciclo Celular , División Celular , Cromosomas/metabolismo , ADN/metabolismo , Replicación del ADN/genética , Replicación del ADN/fisiología , ADN-Topoisomerasas de Tipo II/genética , Células Eucariotas/metabolismo , Humanos , Mitosis/fisiología , Inhibidores de Topoisomerasa IIRESUMEN
DNA replication in eukaryotes generates DNA supercoiling, which may intertwine (braid) daughter chromatin fibers to form precatenanes, posing topological challenges during chromosome segregation. The mechanisms that limit precatenane formation remain unclear. By making direct torque measurements, we demonstrate that the intrinsic mechanical properties of chromatin play a fundamental role in dictating precatenane formation and regulating chromatin topology. Whereas a single chromatin fiber is torsionally soft, a braided fiber is torsionally stiff, indicating that supercoiling on chromatin substrates is preferentially directed in front of the fork during replication. We further show that topoisomerase II relaxation displays a strong preference for a single chromatin fiber over a braided fiber. These results suggest a synergistic coordination-the mechanical properties of chromatin inherently suppress precatenane formation during replication elongation by driving DNA supercoiling ahead of the fork, where supercoiling is more efficiently removed by topoisomerase II. VIDEO ABSTRACT.
Asunto(s)
Cromatina/química , ADN-Topoisomerasas de Tipo II/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Torque , Cromatina/metabolismo , Replicación del ADN , ADN Superhelicoidal/química , Células HeLa , Humanos , Pinzas Ópticas , Saccharomyces cerevisiaeRESUMEN
Importance: Sudden unexplained death in childhood (SUDC) is the fifth leading category of death among toddlers but remains underrecognized and inadequately studied. Objective: To assess the potential role of febrile seizures (FS) and other risk factors associated with SUDC and describe the epidemiology, mechanisms, and prevention of SUDC. Design, Setting, and Participants: This case series study reviewed 622 consecutive sudden child death cases aged 1 to 17 years from 2001 to 2017 from 18 countries. Data were collected from family members of children who died suddenly; these families voluntarily registered with the SUDC Foundation. Data analysis was conducted from November 2017 to February 2019. Main Outcome Measures: Certified manner of death characterized as accident, natural, or undetermined. Results: A total of 391 families with decedents aged 1 to 6 years completed a comprehensive interview on medical and social histories, and circumstances of death with forensic evaluations revealing a cause of death (sudden explained death in childhood [SEDC]) or no cause of death (SUDC). Of these children, 231 (59.1%) were male, the mean (SD) age at death was 24.9 (12.8) months, and 104 (26.6%) had a history of FS. Compared with the general population FS prevalence (2%-5%), FS prevalence among SUDC (28.8%; 95% CI, 23.3%-34.2%) and SEDC (22.1%; 95% CI, 14.8%-29.3%) were elevated. The odds of death during sleep was 4.6-fold higher in SUDC than in SEDC cases (odds ratio, 4.61; 95% CI, 1.92-11.09; adjusted P = .008). The siblings of SUDC cases were followed up for 3144 life-years, and none died prematurely from SUDC. Conclusions and Relevance: This analysis of the largest SUDC cohort confirmed an increased FS rate and found significantly increased rates of FS among SEDC. This study suggests that seizures may contribute to some SUDC and SEDC deaths. The risk of sudden death in a sibling was low. To develop and assess preventive strategies, population-based studies are needed to define the epidemiology and spectrum of risk factors and identify biomarkers of patients with FS at high risk of sudden death.