Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 243
Filtrar
1.
Int J Med Sci ; 21(9): 1649-1660, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39006841

RESUMEN

Graft-versus-host disease (GVHD) is a common complication following hematopoietic stem cell transplantation and can be life-threatening. Mesenchymal stem cells (MSCs), adult stem cells with immunomodulatory properties, have been used as therapeutic agents in a variety of ways and have demonstrated efficacy against acute GVHD (aGVHD); however, variability in MSC pro- and anti-inflammatory properties and the limitation that they only exhibit immunosuppressive effects at high levels of inflammation have prevented their widespread clinical use. The outcomes of GVHD treated with MSCs in the clinic have been variable, and the underlying mechanisms remain unclear. Therefore, the unique biological effects of Toll-like receptor 5 (TLR5) agonists led us to compare and validate the efficacy of MSCs primed with KMRC011, a TLR5 agonist. KMRC011 is a stimulant that induces the secretion of cytokines, which play an important role in immune regulation. In this study, we found that MSCs pretreated with KMRC011 increased the secretion of immunosuppressive cytokines indoleamine 2,3-dioxygenase (IDO) and cyclooxygenase-2 (COX2) and increased the expression of M2 macrophage polarizing cytokines macrophage colony-stimulating factor (M-CSF) and interleukin 10 (IL-10) in vitro. We investigated the immunosuppressive effects of TLR5 agonist (KMRC011)-primed MSCs on lymphocytes and their preventive and therapeutic effects on an in vivo mouse aGVHD model. In vitro experiments showed that KMRC011-primed MSCs had enhanced immunosuppressive effects on lymphocyte proliferation. In vivo experiments showed that KMRC011-primed MSCs ameliorated GVHD severity in a mouse model of induced GVHD disease. Finally, macrophages harvested from the spleens of mice treated with KMRC011-primed MSCs showed a significant increase in the anti-inflammatory M2 phenotype. Overall, the results suggest that KMRC011-primed MSCs attenuated GVHD severity in mice by polarizing macrophages to the M2 phenotype and increasing the proportion of anti-inflammatory cells, opening new horizons for GVHD treatment.


Asunto(s)
Modelos Animales de Enfermedad , Enfermedad Injerto contra Huésped , Macrófagos , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Receptor Toll-Like 5 , Animales , Enfermedad Injerto contra Huésped/tratamiento farmacológico , Ratones , Macrófagos/inmunología , Macrófagos/efectos de los fármacos , Trasplante de Células Madre Mesenquimatosas/métodos , Receptor Toll-Like 5/agonistas , Humanos , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Citocinas/metabolismo , Ratones Endogámicos BALB C
2.
Anim Cells Syst (Seoul) ; 28(1): 353-366, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39040684

RESUMEN

Taste buds, the neuroepithelial organs responsible for the detection of gustatory stimuli in the oral cavity, arise from stem/progenitor cells among nearby basal keratinocytes. Using genetic lineage tracing, Lgr5 and Lgr6 were suggested as the specific markers for the stem/progenitor cells of taste buds, but recent evidence implied that taste buds may arise even in the absence of these markers. Thus, we wanted to verify the genetic lineage tracing of lingual Lgr5- and Lgr6-expressing cells. Unexpectedly, we found that antibody staining revealed more diverse Lgr5-expressing cells inside and outside the taste buds of circumvallate papillae than was previously suggested. We also found that, while tamoxifen-induced genetic recombination occurred only in cells expressing the Lgr5 reporter GFP, we did not see any increase in the number of recombined daughter cells induced by consecutive injections of tamoxifen. Similarly, we found that cells expressing Lgr6, another stem/progenitor cell marker candidate and an analog of Lgr5, also do not generate recombined clones. In contrast, Lgr5-expressing cells in fungiform papillae can transform into Lgr5-negative progeny. Together, our data indicate that lingual Lgr5- and Lgr6-expressing cells exhibit diversity in their capacity to transform into Lgr5- and Lgr6-negative cells, depending on their location. Our results complement previous findings that did not distinguish this diversity.

3.
Int J Mol Sci ; 25(12)2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38928436

RESUMEN

Chronic graft-versus-host disease (cGVHD) is a long-term complication of allogeneic hematopoietic stem cell transplantation associated with poor quality of life and increased morbidity and mortality. Currently, there are several approved treatments for patients who do not respond to steroids, such as ruxolitinib. Nevertheless, a significant proportion of patients fail second-line treatment, indicating the need for novel approaches. Mesenchymal stem cells (MSCs) have been considered a potential treatment approach for steroid-refractory cGVHD. To evaluate the safety and efficacy of repeated infusions of MSCs, we administered intravenous MSCs every two weeks to ten patients with severe steroid-refractory cGVHD in a prospective phase I clinical trial. Each patient received a total of four doses, with each dose containing 1 × 106 cells/kg body weight from the same donor and same passage. Patients were assessed for their response to treatment using the 2014 National Institutes of Health (NIH) response criteria during each visit. Ten patients with diverse organ involvement were enrolled, collectively undergoing 40 infusions as planned. Remarkably, the MSC infusions were well tolerated without severe adverse events. Eight weeks after the initial MSC infusion, all ten patients showed partial responses characterized by the amelioration of clinical symptoms and enhancement of their quality of life. The overall response rate was 60%, with a complete response rate of 20% and a partial response (PR) rate of 40% at the last follow-up. Overall survival was 80%, with a median follow-up of 381 days. Two patients died due to relapse of their primary disease. Immunological analyses revealed a reduction in inflammatory markers, including Suppression of Tumorigenicity 2 (ST2), C-X-C motif chemokine ligand (CXCL)10, and Secreted phosphoprotein 1(SPP1), following the MSC treatment. Repeated MSC infusions proved to be both feasible and safe, and they may be an effective salvage therapy in patients with steroid-refractory cGVHD. Further large-scale clinical studies with long-term follow-up are needed in the future to determine the role of MSCs in cGVHD.


Asunto(s)
Enfermedad Injerto contra Huésped , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Humanos , Enfermedad Injerto contra Huésped/etiología , Enfermedad Injerto contra Huésped/terapia , Masculino , Adulto , Femenino , Persona de Mediana Edad , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/metabolismo , Estudios Prospectivos , Enfermedad Crónica , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Trasplante de Células Madre Hematopoyéticas/métodos , Resultado del Tratamiento , Esteroides/uso terapéutico , Adulto Joven , Calidad de Vida , Síndrome de Bronquiolitis Obliterante
4.
Microorganisms ; 12(6)2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38930524

RESUMEN

The bacterial communities related to seaweed can vary considerably across different locations, and these variations influence the seaweed's nutrition, growth, and development. To study this further, we evaluated the bacteria found on the green marine seaweed Ulva prolifera from Garorim Bay and Muan Bay, two key locations on Republic of Korea's west coast. Our analysis found notable differences in the bacterial communities between the two locations. Garorim Bay hosted a more diverse bacterial population, with the highest number of ASVs (871) compared to Muan Bay's 156 ASVs. In Muan Bay, more than 50% of the bacterial community was dominated by Pseudomonadota. On the other hand, Garorim Bay had a more balanced distribution between Bacteroidota and Pseudomonadota (37% and 35.5%, respectively). Additionally, Cyanobacteria, particularly Cyanothece aeruginosa, were found in significant numbers in Garorim Bay, making up 8% of the community. Mineral analysis indicated that Garorim Bay had higher levels of S, Na, Mg, Ca, and Fe. Function-wise, both locations exhibited bacterial enrichment in amino acid production, nucleosides, and nucleotide pathways. In conclusion, this study broadens our understanding of the bacterial communities associated with Ulva prolifera in Korean waters and provides a foundation for future research on the relationships between U. prolifera and its bacteria.

5.
Health Econ ; 33(8): 1811-1830, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38728372

RESUMEN

We utilize the phased rollout of COVID-19 vaccines by exact birth date in South Korea as a natural experiment for testing risk compensation. People may resume face-to-face social activities following vaccination because they perceive lower risk of infection. Applying a regression discontinuity design based on birth date cutoffs for vaccine eligibility, we find no evidence of risk-compensating behaviors, as measured by large, high-frequency data from credit card and airline companies as well as survey data. We find some evidence of self-selection into vaccine take-up based on perception toward vaccine effectiveness and side effects, but the treatment effects do not differ between compliers and never-takers.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Humanos , República de Corea , Vacunas contra la COVID-19/administración & dosificación , COVID-19/prevención & control , Vacunación , Femenino , SARS-CoV-2 , Masculino , Adulto
6.
iScience ; 27(5): 109783, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38726369

RESUMEN

Human bone marrow-derived mesenchymal stromal cells (BM-MSCs) have been proposed as a treatment for graft-versus-host disease (GVHD), which is a major complication following allogeneic hematopoietic cell transplantation. However, clinical trials have not yielded good results, and human decidua-derived mesenchymal stromal cells (DSCs) have been proposed as an alternative. In addition, the mechanism by which DSCs exert their immunomodulatory effects is still unknown. We found that knockdown of IL-6 in DSCs reduced the expression of PD-L1 and PD-L2, which are known as classical immune checkpoint inhibitors. Expression of PD-L1 and PD-L2 was restored by adding recombinant IL-6 to the DSCs. When DSCs and IL-6-knockdown DSCs were administered as treatment in a murine GVHD model, the group receiving IL-6-knockdown DSCs had significantly higher mortality and clinical scores compared to the group receiving DSCs. Taken together, these data suggest that the IL-6 signaling pathway is a crucial contributor to the immunosuppressive capacity of DSCs.

7.
Brief Bioinform ; 25(3)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38706317

RESUMEN

Single-cell RNA sequencing (scRNA-seq) enables the exploration of cellular heterogeneity by analyzing gene expression profiles in complex tissues. However, scRNA-seq data often suffer from technical noise, dropout events and sparsity, hindering downstream analyses. Although existing works attempt to mitigate these issues by utilizing graph structures for data denoising, they involve the risk of propagating noise and fall short of fully leveraging the inherent data relationships, relying mainly on one of cell-cell or gene-gene associations and graphs constructed by initial noisy data. To this end, this study presents single-cell bilevel feature propagation (scBFP), two-step graph-based feature propagation method. It initially imputes zero values using non-zero values, ensuring that the imputation process does not affect the non-zero values due to dropout. Subsequently, it denoises the entire dataset by leveraging gene-gene and cell-cell relationships in the respective steps. Extensive experimental results on scRNA-seq data demonstrate the effectiveness of scBFP in various downstream tasks, uncovering valuable biological insights.


Asunto(s)
Análisis de Secuencia de ARN , Análisis de la Célula Individual , Análisis de la Célula Individual/métodos , Análisis de Secuencia de ARN/métodos , Humanos , Algoritmos , Perfilación de la Expresión Génica/métodos , Biología Computacional/métodos , RNA-Seq/métodos
8.
Cancer Immunol Immunother ; 73(6): 102, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38630304

RESUMEN

Immune checkpoint inhibitors have revolutionized anti-tumor therapy, notably improving treatment responses in various tumors. However, many patients remain non-responsive and do not experience benefits. Given that Toll-like receptors (TLRs) can counteract tumor immune tolerance by stimulating both innate and adaptive immune responses, TLR agonists are being explored as potential immune adjuvants for cancer treatment. In this study, we assessed the potential of enhancing the efficacy of immune checkpoint inhibitors by activating innate immunity with a TLR5 agonist. In a mouse tumor model, combination therapy with TLR5 agonist and anti-PD-1 significantly inhibited tumor growth. The TLR5 agonist shifted the balance from M2-like to M1-like macrophages and upregulated the expression of co-stimulatory molecules in macrophages. Furthermore, TLR5 agonist promoted the activation and tumor infiltration of CD8+ T cells. As a result, the TLR5 agonist augmented the anti-tumor efficacy of anti-PD-1, suggesting its potential in modulating the tumor microenvironment to enhance the anti-tumor response. Our findings point toward the possibility of optimizing immune checkpoint inhibitor therapy using TLR5 agonists.


Asunto(s)
Neoplasias , Receptor Toll-Like 5 , Humanos , Animales , Ratones , Linfocitos T CD8-positivos , Inhibidores de Puntos de Control Inmunológico , Macrófagos , Terapia Combinada , Modelos Animales de Enfermedad , Microambiente Tumoral
9.
Angew Chem Int Ed Engl ; 63(24): e202405525, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38607969

RESUMEN

Cancer stem cells are pivotal players in tumors initiation, growth, and metastasis. While several markers have been identified, there remain challenges particularly in heterogeneous malignancies like adult soft tissue sarcomas, where conventional markers are inherently overexpressed. Here, we designed BODIPY scaffold fluorescence probes (BD-IMC-1, BD-IMC-2) that activate via disaggregation targeting for cyclooxygenase (COX), a potential marker for CSCs in sarcoma in clinical pathology. Based on their structures, BD-IMC-1 showcased higher susceptibility to disaggregation compared to BD-IMC-2, consistent with their selective interaction with COX. Notably, the BD-IMC-1 revealed positive cooperativity binding to COX-2 at sub-micromolar ranges. Both probes showed significant fluorescence turn-on upon LPS or PMA triggered COX-2 upregulation in live RAW264.7, HeLa, and human sarcoma cell line (Saos-LM2) up to 2-fold increase with negligible toxicity. More importantly, the BD-IMC-1 demonstrated their practical imaging for COX-2 positive cells in paraffin-fixed human sarcoma tissue. Considering the fixed tissues are most practiced pathological sample, our finding suggests a potential of disaggregation activated chemosensor for clinical applications.


Asunto(s)
Ciclooxigenasa 2 , Colorantes Fluorescentes , Sarcoma , Humanos , Sarcoma/diagnóstico por imagen , Sarcoma/patología , Sarcoma/metabolismo , Ciclooxigenasa 2/metabolismo , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Imagen Óptica , Compuestos de Boro/química , Animales , Ratones , Línea Celular Tumoral , Estructura Molecular
10.
Artículo en Inglés | MEDLINE | ID: mdl-38356349

RESUMEN

Objective: This study focuses on identifying potential complications following oblique lumbar interbody fusion (OLIF) through routine magnetic resonance (MR) scans. Methods: From 650 patients who underwent OLIF from April 2018 to April 2022, this study included those with MR scans taken one-week post-operatively, and only for indirect decompression patients. The analysis evaluated postoperative MR images for hematoma, cage insertion angles, and indirect decompression efficiency. Patient demographics, post-operatively symptoms, and complications were also evaluated. Results: Out of 401 patients enrolled, most underwent 1- or 2-level OLIF. Common findings included approach site hematoma (65.3%) and contralateral psoas hematoma (19%). The caudal level OLIF was related with less orthogonality and deep insertion of cage. Incomplete indirect decompression occurred in 4.66% of cases but did not require additional surgery. Rare but symptomatic complications included remnant disc rupture (4 cases, 1%) and synovial cyst rupture (4 cases, 1%). Conclusion: This study has identified potential complications associated with OLIF, including approach site hematoma, contralateral psoas hematoma, cage malposition risk at caudal levels, and radiologically insufficient indirect decompression. Additionally, it highlights rare, yet symptomatic complications such as remnant disc rupture and synovial cyst rupture. These findings contribute insights into the relatively under-explored area of OLIF complications.

11.
Small ; 20(25): e2309919, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38377304

RESUMEN

Despite gold-based nanomaterials having a unique role in nanomedicine, among other fields, synthesis limitations relating to reaction scale-up and control result in prohibitively high gold nanoparticle costs. In this work, a new preparation procedure for lipid bilayer-coated gold nanoparticles in water is presented, using sodium oleate as reductant and capping agent. The seed-free synthesis not only allows for size precision (8-30 nm) but also remarkable particle concentration (10 mm Au). These reaction efficiencies allow for multiplexing and reaction standardization in 96-well plates using conventional thermocyclers, in addition to simple particle purification via microcentrifugation. Such a multiplexing approach also enables detailed spectroscopic investigation of the nonlinear growth process and dynamic sodium oleate/oleic acid self-assembly. In addition to scalability (at gram-level), resulting gold nanoparticles are stable at physiological pH, in common cell culture media, and are autoclavable. To demonstrate the versatility and applicability of the reported method, a robust ligand exchange with thiolated polyethylene glycol analogues is also presented.


Asunto(s)
Oro , Nanopartículas del Metal , Ácido Oléico , Oro/química , Nanopartículas del Metal/química , Ácido Oléico/química , Agua/química , Membrana Dobles de Lípidos/química
12.
Nanoscale ; 16(2): 742-751, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38086680

RESUMEN

The approach of using ferroptosis to treat cancer has garnered attention due to its promising potential. However, the effectiveness of this therapy is often limited by the inherent redox system in cancer cells and the presence of ferritin as an iron ion storage molecule. To address this issue, we have designed a polymeric iron oxide nanocomplex loaded with sulfasalazine as a ferritinophagy-assisted ferroptosis inducing agent. The nanocomplex is based on a pH-responsive drug releasing platform that enables improved ferroptosis anti-cancer therapy. The nanocomplex was synthesized using polymerized phenylboronic acid decorated with iron oxide and further loaded with sulfasalazine by interacting with polymerized phenylboronic acid. Upon entering cancer cells, the nanocomplex releases sulfasalazine at the lysosomal acidic pH, which causes the complex to degrade into the labile iron ion (Fe2+). This process inhibits the production of GSH and reproduces the labile iron ion by degrading ferritin. As a result, an excess iron ion pool is formed, and the facilitated Fenton reaction induces an improved ferroptosis anti-cancer effect. Moreover, our research has demonstrated that the nanocomplex effectively regresses tumors, thereby representing significant inhibition of tumor growth using in vivo models. We believe that this ferritinophagy-assisted ferroptosis strategy using the nanocomplex provides a promising solution for iron-based anti-cancer therapy.


Asunto(s)
Ferroptosis , Sulfasalazina , Sulfasalazina/farmacología , Hierro , Ferritinas
13.
Angew Chem Int Ed Engl ; 63(3): e202312942, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38062619

RESUMEN

The development of a small-molecule probe designed to selectively target neurons would enhance the exploration of intricate neuronal structures and functions. Among such probes, NeuO stands out as the pioneer and has gained significant traction in the field of research. Nevertheless, neither the mechanism behind neuron-selectivity nor the cellular localization has been determined. Here, we introduce NeuM, a derivative of NeuO, designed to target neuronal cell membranes. Furthermore, we elucidate the mechanism behind the selective neuronal membrane trafficking that distinguishes neurons. In an aqueous buffer, NeuM autonomously assembles into micellar structures, leading to the quenching of its fluorescence (Φ=0.001). Upon exposure to neurons, NeuM micelles were selectively internalized into neuronal endosomes via clathrin-mediated endocytosis. Through the endocytic recycling pathway, NeuM micelles integrate into neuronal membrane, dispersing fluorescent NeuM molecules in the membrane (Φ=0.61). Molecular dynamics simulations demonstrated that NeuM, in comparison to NeuO, possesses optimal lipophilicity and molecular length, facilitating its stable incorporation into phospholipid layers. The stable integration of NeuM within neuronal membrane allows the prolonged monitoring of neurons, as well as the visualization of intricate neuronal structures.


Asunto(s)
Clatrina , Micelas , Clatrina/metabolismo , Endocitosis/fisiología , Endosomas/metabolismo , Neuronas/metabolismo
14.
Chemistry ; 30(5): e202302916, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-37902438

RESUMEN

Blood continually contributes to the maintenance of homeostasis of the body and contains information regarding the health state of an individual. However, current hematological analyses predominantly rely on a limited number of CD markers and morphological analysis. In this work, differentially sensitive fluorescent compounds based on TCF scaffolds are introduced that are designed for fluorescent phenotyping of blood. Depending on their structures, TCF compounds displayed varied responses to reactive oxygen species, biothiols, redox-related biomolecules, and hemoglobin, which are the primary influential factors within blood. Contrary to conventional CD marker-based analysis, this unbiased fluorescent phenotyping method produces diverse fingerprints of the health state. Precise discrimination of blood samples from 37 mice was demonstrated based on their developmental stages, ranging from 10 to 19 weeks of age. Additionally, this fluorescent phenotyping method enabled the differentiation between drugs with distinct targets, serving as a simple yet potent tool for pharmacological analysis to understand the mode of action of various drugs.


Asunto(s)
Envejecimiento , Colorantes Fluorescentes , Ratones , Animales , Colorantes Fluorescentes/química , Especies Reactivas de Oxígeno/análisis , Oxidación-Reducción , Células Sanguíneas/química
15.
Water Res ; 249: 120886, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38103442

RESUMEN

For membrane-based, water treatment technologies, fouling remains a significant challenge for pressure-driven processes. While many antifouling strategies have been proposed, there remains significant room for improved efficiency. Direct application of microbubbles (MBs) at a membrane surface offers a promising approach for managing interfacial fouling through continuous physical interaction(s). Despite such potential, to date, integration and optimization of in-situ generated MBs at the membrane interface that are both highly antifouling with minimal energy inputs and unwanted side reactions remains mostly outstanding. Here we demonstrate the application of conductive, porous nickel foam for electrolysis-based generation of hydrogen microbubbles at an ultra-filtration (UF) membrane interface, which significantly mitigates membrane fouling for a range of model foulants. System characterization and optimization includes comparison of metal foams (Ni, Cu, Ti), faradic efficiencies, hydrogen evolution reaction (HER) curves, cyclic voltammetry, and quantification of hydrogen gas flux and bubble size, as a function of applied current. When optimized, we report rapid (<5 min) and near complete (∼99 %) flux recovery for three classes of foulants, including calcium alginate, humic acid (HA), and SiO2 particles. For all, the described MB-based approach is orders of magnitude more energy efficient when compared to conventional cleaning strategies. Finally, we demonstrate the MB-based regeneration/cleaning process is stable and repeatable for ten cycles and also highly effective for a challenge water (as a model oilfield brine). Taken together, this work presents a novel and efficient approach for the application of in-situ electrically generated MBs to support sustainable pressure-driven membrane processes.


Asunto(s)
Microburbujas , Purificación del Agua , Níquel , Dióxido de Silicio , Membranas Artificiales , Hidrógeno
16.
World J Clin Cases ; 11(35): 8392-8398, 2023 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-38130625

RESUMEN

BACKGROUND: Ligamentum flavum cysts, which are most common in mobile junctional levels of the spine, can be a rare cause of spinal stenosis. There have been several case reports of ligamentum flavum cysts. However, there is yet to be a documented case report of a calcified ligamentum flavum cyst. Herein, we report the first case of a calcified ligamentum flavum cyst causing ankle and toe weakness. CASE SUMMARY: A 66-year-old male visited our hospital complaining of claudication as well as thigh and calf pain in his left leg, all beginning two weeks prior. Physical examination revealed motor weakness of the left ankle dorsiflexion and great toe dorsiflexion. Lumbar spinal computed tomography scans showed spinal stenosis combined with a calcified mass at the left side of the L4-5 level. Magnetic resonance imaging showed dural sac compression caused by the calcified mass at the left ligamentum flavum of the L4-5 level. We performed decompressive laminectomy and excision of the calcified mass combined with posterior lumbar interbody fusion at the L4-5 level. Intra-operatively, we found a firm and nodule like mass originating from the ventral surface of ligamentum flavum. Pathological examination suggested a calcified pseudocyst without a capsular lining. After the operation, the patient's motor weakness in the ankle and great toe improved gradually. CONCLUSION: The patient's ankle and great toe weakness were improved successfully after surgical removal of the calcified cyst.

17.
Neurospine ; 20(3): 1028-1039, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37798995

RESUMEN

OBJECTIVE: The objective of this study was to evaluate the accuracy of pedicle screw placement in patients undergoing percutaneous pedicle screw fixation with robotic guidance, using a newly developed 3-dimensional quantitative measurement system. The study also aimed to assess the clinical feasibility of the robotic system in the field of spinal surgery. METHODS: A total of 113 patients underwent pedicle screw insertion using the CUVIS-spine pedicle screw guide system (CUREXO Inc.). Intraoperative O-arm images were obtained, and screw insertion pathways were planned accordingly. Image registration was performed using paired-point registration and iterative closest point methods. The accuracy of the robotic-guided pedicle screw insertion was assessed using 3-dimensional offset calculation and the Gertzbein-Robbins system (GRS). RESULTS: A total of 448 screws were inserted in the 113 patients. The image registration success rate was 95.16%. The average error of entry offset was 2.86 mm, target offset was 2.48 mm, depth offset was 1.99 mm, and angular offset was 3.07°. According to the GRS grading system, 88.39% of the screws were classified as grade A, 9.60% as grade B, 1.56% as grade C, 0.22% as grade D, and 0.22% as grade E. Clinically acceptable screws (GRS grade A or B) accounted for 97.54% of the total, with no reported neurologic complications. CONCLUSION: Our study demonstrated that pedicle screw insertion using the novel robot-assisted navigation method is both accurate and safe. Further prospective studies are necessary to explore the potential benefits of this robot-assisted technique in comparison to conventional approaches.

18.
Bioengineering (Basel) ; 10(10)2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37892844

RESUMEN

(1) Background: Recently, Escherichia coli-derived recombinant human bone morphogenetic protein-2 (E. coli-derived rhBMP-2) has been increasingly applied to different types of spinal surgeries and reported to achieve successful fusion. This pilot study aimed to evaluate the clinical efficacy and safety of rhBMP-2 in patients undergoing posterior instrumented fusions for unstable spinal fractures. (2) Methods: This study included ten consecutive patients undergoing spinal surgery using E. coli-derived rhBMP-2 with more than one year of follow-up. Radiologic outcomes were compared, including the average fracture healing period, local kyphosis correction, and clinical outcomes between preoperative and the last follow-up. (3) Results: The average time of radiographic union was 99.9 ± 45.4 (62-192) days, with an average use of 5.2 ± 3.9 months of anabolic agents. Radiologic parameters such as anterior vertebral height and vertebral wedge angle were significantly corrected postoperatively and at the last follow-up. Clinical outcomes other than leg pain were significantly improved after the surgery. In addition, four patients with preoperative neurologic deficits showed improved neurologic status. (4) Conclusions: Combined with the anabolic agents, applying E. coli-derived rhBMP-2 to the fractured vertebral body could be an effective surgical treatment for unstable spinal fractures. Further trials are needed to validate this result.

20.
Life Sci ; 332: 122101, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37730110

RESUMEN

AIMS: We investigated whether modulation of white adipose tissue (WAT) vasculature regulates rebound weight gain (RWG) after caloric restriction (CR) in mice fed a high-fat diet (HFD). MAIN METHODS: We compared changes in energy balance, hypothalamic neuropeptide gene expression, and characteristics of WAT by RT-qPCR, ELISA, immunohistochemistry, and adipose-derived stromal vascular fraction spheroid sprouting assay in obese mice fed a HFD ad libitum (HFD-AL), mice under 40 % CR for 3 or 4 weeks, mice fed HFD-AL for 3 days after CR (CRAL), and CRAL mice treated with TNP-470, an angiogenic inhibitor. KEY FINDINGS: WAT angiogenic genes were expressed at low levels, but WAT vascular density was maintained in the CR group compared to that in the HFD-AL group. The CRAL group showed RWG, fat regain, and hyperphagia with higher expression of angiogenic genes and reduced pericyte coverage of the endothelium in WAT on day 3 after CR compared to the CR group, indicating rapidly increased angiogenic activity after CR. Administration of TNP-470 suppressed RWG, fat regain, and hyperphagia only after CR compared to the CRAL group. Changes in circulating leptin levels and hypothalamic neuropeptide gene expression were correlated with changes in weight and fat mass, suggesting that TNP-470 suppressed hyperphagia independently of the hypothalamic melanocortin system. Additionally, TNP-470 increased gene expression related to thermogenesis, fuel utilization, and browning in brown adipose tissue (BAT) and WAT, indicating TNP-470-induced increase in thermogenesis. SIGNIFICANCE: Modulation of the WAT vasculature attenuates RWG after CR by suppressing hyperphagia and increasing BAT thermogenesis and WAT browning.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...