Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 13(5)2020 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-32120795

RESUMEN

The electric field response of the lead-free solid solution (1-x)Bi0.53Na0.47TiO3-xBaTiO3 (BNT-BT) in the higher BT composition range with x = 0.12 was investigated using in situ synchrotron X-ray powder diffraction. An introduced Bi-excess non-stoichiometry caused an extended morphotropic phase boundary, leading to an unexpected fully reversible relaxor to ferroelectric (R-FE) phase transformation behavior. By varying the field frequency in a broad range from 10-4 up to 102 Hz, BNT-12BT showed a frequency-dependent gradual suppression of the field induced ferroelectric phase transformation in favor of the relaxor state. A frequency triggered self-heating within the sample was found and the temperature increase exponentially correlated with the field frequency. The effects of a lowered phase transformation temperature TR-FE, caused by the non-stoichiometric composition, were observed in the experimental setup of the freestanding sample. This frequency-dependent investigation of an R-FE phase transformation is unlike previous macroscopic studies, in which heat dissipating metal contacts are used.

2.
Natl Sci Rev ; 7(2): 355-365, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34692051

RESUMEN

Due to growing concern for the environment and human health, searching for high-performance lead-free piezoceramics has been a hot topic of scientific and industrial research. Despite the significant progress achieved toward enhancing piezoelectricity, further efforts should be devoted to the synergistic improvement of piezoelectricity and its thermal stability. This study provides new insight into these topics. A new KNN-based lead-free ceramic material is presented, which features a large piezoelectric coefficient (d 33) exceeding 500 pC/N and a high Curie temperature (T c) of ∼200°C. The superior piezoelectric response strongly relies on the increased composition-induced structural flexibility due to lattice softening and decreased unit cell distortion. In contrast to piezoelectricity anomalies induced via polymorphic transition, this piezoelectricity enhancement is effective within a broad temperature range rather than a specific small range. In particular, a hierarchical domain architecture composed of nano-sized domains along the submicron domains was detected in this material system, which further contributes to the high piezoelectricity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...