Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Talanta ; 275: 126073, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38688085

RESUMEN

Methicillin-resistant Staphylococcus aureus (MRSA) has a high incidence in infectious hospitals and communities, highlighting the need for early on-site detection due to its resistance to methicillin antibiotics. The present study introduces a highly sensitive detection system for mecA, a crucial methicillin marker, utilizing an RCA-based isothermal exponential amplification reaction. The G-quadruplex-based isothermal exponential amplification reaction (GQ-EXPAR) method designs probes to establish G-quadruplex secondary structures incorporating thioflavin T for fluorescence. The system, unlike conventional genetic detection methods, works with portable isothermal PCR devices (isoQuark), facilitating on-site detection. A detection limit of 0.1 fmol was demonstrated using synthetic DNA, and effective detection was proven using thermal lysis. The study also validated the detection of targets swabbed from surfaces within bacterial 3D nanostructures using the GQ-EXPAR method. After applying complementary sequences to the padlock probe for the target, the GQ-EXPAR method can be used on various targets. The developed method could facilitate rapid and accurate diagnostics within MRSA strains.


Asunto(s)
G-Cuádruplex , Staphylococcus aureus Resistente a Meticilina , Técnicas de Amplificación de Ácido Nucleico , Staphylococcus aureus Resistente a Meticilina/aislamiento & purificación , Staphylococcus aureus Resistente a Meticilina/genética , Técnicas de Amplificación de Ácido Nucleico/métodos , Límite de Detección , Proteínas de Unión a las Penicilinas , Proteínas Bacterianas/genética , ADN Bacteriano/genética , ADN Bacteriano/análisis , Benzotiazoles/química , Humanos
2.
Small ; : e2308317, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38564785

RESUMEN

Proactive management of foodborne illness requires routine surveillance of foodborne pathogens, which requires developing simple, rapid, and sensitive detection methods. Here, a strategy is presented that enables the detection of multiple foodborne bacteria using a 3D nanostructure swab and deep learning-based Raman signal classification. The nanostructure swab efficiently captures foodborne pathogens, and the portable Raman instrument directly collects the Raman signals of captured bacteria. a deep learning algorithm has been demonstrated, 1D convolutional neural network with binary labeling, achieves superior performance in classifying individual bacterial species. This methodology has been extended to mixed bacterial populations, maintaining accuracy close to 100%. In addition, the gradient-weighted class activation mapping method is used to provide an investigation of the Raman bands for foodborne pathogens. For practical application, blind tests are conducted on contaminated kitchen utensils and foods. The proposed technique is validated by the successful detection of bacterial species from the contaminated surfaces. The use of a 3D nanostructure swab, portable Raman device, and deep learning-based classification provides a powerful tool for rapid identification (≈5 min) of foodborne bacterial species. The detection strategy shows significant potential for reliable food safety monitoring, making a meaningful contribution to public health and the food industry.

3.
Adv Healthc Mater ; 13(15): e2303272, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38412280

RESUMEN

Atopic dermatitis (AD), a prevalent skin condition often complicated by microbial infection, poses a significant challenge in identifying the responsible pathogen for its effective management. However, a reliable, safe tool for pinpointing the source of these infections remains elusive. In this study, a novel on-site pathogen detection that combines chemically functionalized nanotopology with genetic analysis is proposed to capture and analyze pathogens closely associated with severe atopic dermatitis. The chemically functionalized nanotopology features a 3D hierarchical nanopillar array (HNA) with a functional polymer coating, tailored to isolate target pathogens from infected skin. This innovative nanotopology demonstrates superior pathogenic capture efficiency, favorable entrapment patterns, and non-cytotoxicity. An HNA-assembled stick is utilized to directly retrieve bacteria from infected skin samples, followed by extraction-free quantitative loop-mediated isothermal amplification (direct qLAMP) for validation. To mimic human skin conditions, porcine skin is employed to successfully capture Staphylococcus aureus, a common bacterium exacerbating AD cases. The on-site detection method exhibits an impressive detection limit of 103 cells mL-1. The HNA-assembled stick represents a promising tool for on-site detection of bacteria associated with atopic dermatitis. This innovative approach enables to deepen the understanding of AD pathogenesis and open avenues for more effective management strategies for chronic skin conditions.


Asunto(s)
Dermatitis Atópica , Staphylococcus aureus , Dermatitis Atópica/microbiología , Staphylococcus aureus/aislamiento & purificación , Humanos , Animales , Porcinos , Técnicas de Amplificación de Ácido Nucleico/métodos , Piel/microbiología , Nanoestructuras/química , Técnicas de Diagnóstico Molecular
4.
Adv Mater ; 36(9): e2303079, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37487578

RESUMEN

The transmission and pathogenesis of highly contagious fatal respiratory viruses are increasing, and the need for an on-site diagnostic platform has arisen as an issue worldwide. Furthermore, as the spread of respiratory viruses continues, different variants have become the dominant circulating strains. To prevent virus transmission, the development of highly sensitive and accurate on-site diagnostic assays is urgently needed. Herein, a facile diagnostic device is presented for multi-detection based on the results of detailed receptor-ligand dynamics simulations for the screening of various viral strains. The novel bioreceptor-treated electronics (receptonics) device consists of a multichannel graphene transistor and cell-entry receptors conjugated to N-heterocyclic carbene (NHC). An ultrasensitive multi-detection performance is achieved without the need for sample pretreatment, which will enable rapid diagnosis and prevent the spread of pathogens. This platform can be applied for the diagnosis of variants of concern in clinical respiratory virus samples and primate models. This multi-screening platform can be used to enhance surveillance and discriminate emerging virus variants before they become a severe threat to public health.


Asunto(s)
Bioensayo , Grafito , Animales , Ligandos , Electrónica
5.
Nat Commun ; 14(1): 8033, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38052830

RESUMEN

Endonucleases have recently widely used in molecular diagnostics. Here, we report a strategy to exploit the properties of Argonaute (Ago) proteins for molecular diagnostics by introducing an artificial nucleic acid circuit with Ago protein (ANCA) method. The ANCA is designed to perform a continuous autocatalytic reaction through cross-catalytic cleavage of the Ago protein, enabling one-step, amplification-free, and isothermal DNA detection. Using the ANCA method, carbapenemase-producing Klebsiella pneumoniae (CPKP) are successfully detected without DNA extraction and amplification steps. In addition, we demonstrate the detection of carbapenem-resistant bacteria in human urine and blood samples using the method. We also demonstrate the direct identification of CPKP swabbed from surfaces using the ANCA method in conjunction with a three-dimensional nanopillar structure. Finally, the ANCA method is applied to detect CPKP in rectal swab specimens from infected patients, achieving sensitivity and specificity of 100% and 100%, respectively. The developed method can contribute to simple, rapid and accurate diagnosis of CPKP, which can help prevent nosocomial infections.


Asunto(s)
Antibacterianos , Ácidos Nucleicos , Humanos , Antibacterianos/farmacología , Antibacterianos/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , beta-Lactamasas/genética , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Anticuerpos Anticitoplasma de Neutrófilos/metabolismo , Ácidos Nucleicos/metabolismo , Bacterias/genética , ADN/metabolismo , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Pruebas de Sensibilidad Microbiana
6.
J Hazard Mater ; 460: 132398, 2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37639787

RESUMEN

Over the past few years, infections caused by airborne pathogens have spread worldwide, infecting several people and becoming an increasingly severe threat to public health. Therefore, there is an urgent need for developing airborne pathogen monitoring technology for use in confined environments to enable epidemic prevention. In this study, we designed a colorimetry-based bacterial detection platform that uses a clustered regularly interspaced short palindromic repeat-associated protein 12a system to amplify signals and a urease enzyme to induce color changes. Furthermore, we have developed a smartphone application that can distinguish colors under different illumination conditions based on the HSV model and detect three types of disease-causing bacteria. Even synthetic oligomers of a few picomoles of concentration and genomic DNA of airborne bacteria smaller than several nanograms can be detected with the naked eye and using color analysis systems. Furthermore, in the air capture model system, the bacterial sample generated approximately a 2-fold signal difference compared with that in the control group. This colorimetric detection method can be widely applied for public safety because it is easy to use and does not require complex equipment.


Asunto(s)
Colorimetría , Teléfono Inteligente , Humanos , Bacterias/genética , Modelos Biológicos , Salud Pública
7.
Mater Horiz ; 10(10): 4571-4580, 2023 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-37581348

RESUMEN

The recent outbreak of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has highlighted the need for rapid, user-friendly nucleic acid testing that involves simple but efficient RNA extraction. Here, we present a charge-shifting polyplex as an RNA extraction carrier for advanced diagnosis of infectious viral diseases. The polyplex comprises poly(2-(dimethylamino) ethyl acrylate) (pDMAEA) electrostatically conjugated with RNA. The pDMAEA film can rapidly dissolve in the viral RNA solution, promoting immediate binding with RNA to form the polyplex, which enables the efficient capture of a substantial quantity of RNA. Subsequently, the captured RNA can be readily released by the quick hydrolysis of pDMAEA at the onset of quantitative reverse transcription-polymerase chain reaction (qRT-PCR), streamlining the entire process from RNA extraction to analysis. The developed method requires only 5 min of centrifugation and enables the detection of RNA in a one-pot setup. Moreover, the proposed method is fully compatible with high-speed qRT-PCR kits and can identify clinical samples within 1 h including the entire extraction to detection procedure. Indeed, the method successfully detected influenza viruses, SARS-CoV-2, and their delta and omicron variants in 260 clinical samples with a sensitivity of 99.4% and specificity of 98.9%. This rapid, user-friendly polyplex-based approach represents a significant breakthrough in molecular diagnostics.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , ARN Viral/genética , ARN Viral/análisis , COVID-19/diagnóstico , Prueba de COVID-19
8.
Nano Converg ; 10(1): 25, 2023 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-37243716

RESUMEN

Sensitive and accurate capture, enrichment, and identification of drug-resistant bacteria on human skin are important for early-stage diagnosis and treatment of patients. Herein, we constructed a three-dimensional hierarchically structured polyaniline nanoweb (3D HPN) to capture, enrich, and detect drug-resistant bacteria on-site by rubbing infected skins. These unique hierarchical nanostructures enhance bacteria capture efficiency and help severely deform the surface of the bacteria entrapped on them. Therefore, 3D HPN significantly contributes to the effective and reliable recovery of drug-resistant bacteria from the infected skin and the prevention of potential secondary infection. The recovered bacteria were successfully identified by subsequent real-time polymerase chain reaction (PCR) analysis after the lysis process. The molecular analysis results based on a real-time PCR exhibit excellent sensitivity to detecting target bacteria of concentrations ranging from 102 to 107 CFU/mL without any fluorescent signal interruption. To confirm the field applicability of 3D HPN, it was tested with a drug-resistant model consisting of micropig skin similar to human skin and Klebsiella pneumoniae carbapenemase-producing carbapenem-resistant Enterobacteriaceae (KPC-CRE). The results show that the detection sensitivity of this assay is 102 CFU/mL. Therefore, 3D HPN can be extended to on-site pathogen detection systems, along with rapid molecular diagnostics through a simple method, to recover KPC-CRE from the skin.

9.
Adv Mater ; 35(19): e2206198, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36856042

RESUMEN

The sense of spiciness is related to the stimulation of vanilloid compounds contained in the foods. Although, the spiciness is commonly considered as the part of taste, it is more classified to the sense of pain stimulated on a tongue, namely, pungency, which is described as a tingling or burning on the tongue. Herein, first, a reusable electronic tongue based on a transient receptor potential vanilloid 1 (TRPV1) nanodisc conjugated graphene field-effect transistor is fabricated and spiciness-related pain evaluation with reusable electrode is demonstrated. The pungent compound reactive receptor TRPV1 is synthesized in the form of nanodiscs to maintain stability and reusability. The newly developed platform shows highly selective and sensitive performance toward each spiciness related vanilloid compound repeatably: 1 aM capsaicin, 10 aM dihydrocapsaicin, 1 fM piperine, 10 nM allicin, and 1 pM AITC. The binding mechanism is also examined by simulation. Furthermore, the elimination of the burning sensation on the tongue after eating spicy foods is not investigated. Based on the synthesis of micelles composed of casein protein (which is contained in skim milk) that remove pungent compounds bound to TRPV1 nanodisc, the deactivation of TRPV1 is investigated, and the electrode is reusable that mimics electronic tongue.


Asunto(s)
Nariz Electrónica , Dolor , Gusto , Humanos , Grafito
10.
Biosens Bioelectron ; 225: 115085, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36696850

RESUMEN

Accurate and efficient detection of DNA is crucial for disease diagnosis and health monitoring. The traditional methods for DNA analysis involve multiple steps, including sample preparation, lysis, extraction, amplification, and detection. In this study, we present a one-step elution-free DNA analysis method based on the combination of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9)-mediated light-up aptamer transcription (CLAT) assay and a DNA-capturing poly(2-dimethylaminomethyl styrene) (pDMAMS)-coated tube. The sample solution and lysis buffer are added to the pDMAMS-coated tube, and the DNA is efficiently captured on the surface via electrostatic interaction and directly detected by CLAT assay. The ability of the CRISPR/Cas9 system to specifically recognize DNA enables direct detection of DNA captured on the pDMAMS-coated tube. The combination of CLAT assay and pDMAMS-coated tube simplifies DNA detection in a single tube without the need for complicated extraction steps, improving sensitivity. Our platform demonstrated attomolar sensitivity in the detection of target DNA in cell lysate (0.92 aM), urine (7.7 aM), and plasma (94.6 aM) samples within 1 h. The practical applicability of this method was further demonstrated in experiments with tumor-bearing mice. We believe that this approach brings us closer to an all-in-one DNA purification and detection tube system and has potential applications in tissue and liquid biopsies, as well as various other DNA sensing applications.


Asunto(s)
Técnicas Biosensibles , Sistemas CRISPR-Cas , Ratones , Animales , Sistemas CRISPR-Cas/genética , ADN/análisis , Oligonucleótidos
11.
Lab Chip ; 22(20): 3933-3941, 2022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-36102682

RESUMEN

For rapid detection of the COVID-19 infection, the digital polymerase chain reaction (dPCR) with higher sensitivity and specificity has been presented as a promising method of point-of-care testing (POCT). Unlike the conventional real-time PCR (qPCR), the dPCR system allows absolute quantification of the target DNA without a calibration curve. Although a number of dPCR systems have previously been reported, most of these previous assays lack multiplexing capabilities. As different variants of COVID-19 have rapidly emerged, there is an urgent need for highly specific multiplexed detection systems. Additionally, the advances in the Internet of Things (IoT) technology have enabled the onsite detection of infectious diseases. Here, we present an IoT-integrated multiplexed dPCR (IM-dPCR) system involving sample compartmentalization, DNA amplification, fluorescence imaging, and quantitative analysis. This IM-dPCR system comprises three modules: a plasmonic heating-based thermal cycler, a multi-color fluorescence imaging set-up, and a firmware control module. Combined with a custom-developed smartphone application built on an IoT platform, the IM-dPCR system enabled automatic processing, data collection, and cloud storage. Using a self-priming microfluidic chip, 9 RNA groups (e.g., H1N1, H3N2, IFZ B, DENV2, DENV3, DENV4, OC43, 229E, and NL63) associated with three infectious diseases (e.g., influenza, dengue, and human coronaviruses) were analyzed with higher linearity (>98%) and sensitivity (1 copy per µL). The IM-dPCR system exhibited comparable analytical accuracy to commercial qPCR platforms. Therefore, this IM-dPCR system plays a crucial role in the onsite detection of infectious diseases.


Asunto(s)
COVID-19 , Enfermedades Transmisibles , Subtipo H1N1 del Virus de la Influenza A , COVID-19/diagnóstico , Prueba de COVID-19 , Enfermedades Transmisibles/diagnóstico , ADN/genética , Humanos , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/genética , ARN , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos
12.
Biochip J ; 16(4): 433-440, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36091641

RESUMEN

Sensitive, effective, and quantitative analysis of infectious pathogens is an important task for the prevention of human health threats. Herein, we present an advanced approach to producing gene-encapsulated microdroplets for quantitative analysis using a micropatterned metal mold and injection molding technique with an automatically operated system. An injection molded microdroplet generation device was successfully fabricated with a minimum channel width of 30 µm and optimized to produce 100 µm diameter droplets. The optimized microchannel design and flow rate also enable the production of stable numbers of microdroplets (~ 16,000 droplets). To verify the applicability of our device and system to droplet-based digital PCR analysis, Escherichia coli (E. coli) O157:H7 was selected as a model bacterial pathogen, and the stx2 gene was amplified in the microdroplets. The generated microdroplets exhibit both chemical and mechanical stability, and our results are similar to those obtained by a commercially available method. Accordingly, the usefulness of the microdroplet generative device and system is confirmed as a simple, fast, and reliable tool for the quantitative molecular analysis of infectious diseases.

13.
Nano Converg ; 8(1): 30, 2021 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-34633558

RESUMEN

A bacteria-capturing platform is a critical function of accurate, quantitative, and sensitive identification of bacterial pathogens for potential usage in the detection of foodborne diseases. Despite the development of various nanostructures and their surface chemical modification strategies, relative to the principal physical contact propagation of bacterial infections, mechanically robust and nanostructured platforms that are available to capture bacteria remain a significant problem. Here, a three-dimensional (3D) hierarchically structured polyaniline nanoweb film is developed for the efficient capture of bacterial pathogens by hand-touching. This unique nanostructure ensures sufficient mechanical resistance when exposed to compression and shear forces and facilitates the 3D interfacial interactions between bacterial extracellular organelles and polyaniline surfaces. The bacterial pathogens (Escherichia coli O157:H7, Salmonella enteritidis, and Staphylococcus aureus) are efficiently captured through finger-touching, as verified by the polymerase chain reaction (PCR) analysis. Moreover, the real-time PCR results of finger-touched cells on a 3D nanoweb film show a highly sensitive detection of bacteria, which is similar to those of the real-time PCR using cultured cells without the capturing step without any interfering of fluorescence signal and structural deformation during thermal cycling.

14.
Nanomaterials (Basel) ; 11(10)2021 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-34685158

RESUMEN

Effective and reliable antibacterial surfaces are in high demand in modern society. Although recent works have shown excellent antibacterial performance by combining unique hierarchical nanotopological structures with functional polymer coating, determining the antibacterial performance arising from morphological changes is necessary. In this work, three-dimensional (3D) hierarchical polyaniline-gold (PANI/Au) hybrid nanopillars were successfully fabricated via chemical polymerization (i.e., dilute method). The morphology and structures of the PANI/Au nanopillars were controlled by the reaction time (10 min to 60 h) and the molar concentrations of the monomer (0.01, 0.1, and 1 M aniline), oxidant (0.002, 0.0067, 0.01, and 0.02 M ammonium persulfate), and acid (0.01, 0.1, 1, and 2 M perchloric acid). These complex combinations allow controlling the hierarchical micro- to nanostructure of PANI on a nanopillar array (NPA). Furthermore, the surface of the 3D PANI/Au hierarchical nanostructure can be chemically treated while maintaining the structure using initiated chemical vapor deposition. Moreover, the excellent antibacterial performance of the 3D PANI/Au hierarchical nanostructure (HNS) exceeds 99% after functional polymer coating. The excellent antibacterial performance of the obtained 3D PANI/Au HNS is mainly because of the complex topological and physicochemical surface modification. Thus, these 3D PANI/Au hierarchical nanostructures are promising high-performance antibacterial materials.

15.
Nanomicro Lett ; 13(1): 87, 2021 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-34138339

RESUMEN

HIGHLIGHTS: Ultrathin and defect-free graphene ink is prepared through a high-throughput fluid dynamics process, resulting in a high exfoliation yield (53.5%) and a high concentration (47.5 mg mL-1). A screen-printed graphene conductor exhibits a high electrical conductivity of 1.49 × 104 S m-1 and good mechanical flexibility. An electrochemical sodium ion sensor based on graphene ink exhibits an excellent potentiometric sensing performance in a mechanically bent state. Real-time monitoring of sodium ion concentration in sweat is demonstrated. Conductive inks based on graphene materials have received significant attention for the fabrication of a wide range of printed and flexible devices. However, the application of graphene fillers is limited by their restricted mass production and the low concentration of their suspensions. In this study, a highly concentrated and conductive ink based on defect-free graphene was developed by a scalable fluid dynamics process. A high shear exfoliation and mixing process enabled the production of graphene at a high concentration of 47.5 mg mL-1 for graphene ink. The screen-printed graphene conductor exhibits a high electrical conductivity of 1.49 × 104 S m-1 and maintains high conductivity under mechanical bending, compressing, and fatigue tests. Based on the as-prepared graphene ink, a printed electrochemical sodium ion (Na+) sensor that shows high potentiometric sensing performance was fabricated. Further, by integrating a wireless electronic module, a prototype Na+-sensing watch is demonstrated for the real-time monitoring of the sodium ion concentration in human sweat during the indoor exercise of a volunteer. The scalable and efficient procedure for the preparation of graphene ink presented in this work is very promising for the low-cost, reproducible, and large-scale printing of flexible and wearable electronic devices.

16.
Adv Healthc Mater ; 10(14): e2100430, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34050626

RESUMEN

An "all-in-one tube" platform is developed, where the genetic analysis involving DNA extraction, amplification, and detection can be performed in a single tube. The all-in-one tube consists of a polymerase chain reaction (PCR) tube in which the inner surface is conformally modified with a tertiary-amine-containing polymer to generate a strong electrostatic interaction with DNA. The all-in-one tube provides high DNA capture efficiency exceeding 80% from Escherichia coli O157: H7 pathogen at a wide range of DNA amount from 0.003 to 3 ng. Indeed, the use of the surface-functionalized PCR tube enables direct amplification and detection of the surface-captured DNA without the modification of standard real-time PCR instrument. Besides, this platform has sensitivity, selectivity, and reliability enough for accurate detection at the minimal infective dose of both gram-positive and negative pathogens. The all-in-one tube enables the direct molecular diagnosis, substantially reducing the labor-intensive pathogen detection steps while providing high compatibility with the currently established real-time PCR instruments, and illustrates its on-site applicability with convenience expandable to various genetic analyses including food safety testing, forensic analysis, and clinical diagnosis.


Asunto(s)
Escherichia coli O157 , ADN , ADN Bacteriano/genética , Escherichia coli O157/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
17.
Biosens Bioelectron ; 181: 113159, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-33773218

RESUMEN

Here, we report a portable microfluidic device to generate and dispense droplets simply operated by pushbutton for droplet digital polymerase chain reaction (ddPCR), which is named pushbutton-activated microfluidic dropenser (droplet dispenser) (PAMD). After loading the PCR mixtures and the droplet generation oil to PAMD, digitized PCR mixtures are prepared in PCR tubes after the actuation of a pushbutton. Multiple droplet generation units are simultaneously operated by a single pushbutton, and the size of droplets is controllable by adjusting the geometry of the droplet generation channel. To examine the performance of PAMD, digitized PCR mixtures containing genomic DNA of Escherichia coli (E. coli) O157:H7 prepared by PAMD were assessed by a fluorescence signal analyzer after PCR with a thermal cycler. As a result, PAMD can produce analytical droplets for ddPCR as much as a conventional droplet generator even though any external equipment is not required.


Asunto(s)
Técnicas Biosensibles , Técnicas Analíticas Microfluídicas , Escherichia coli/genética , Dispositivos Laboratorio en un Chip , Microfluídica , Reacción en Cadena de la Polimerasa
18.
ACS Appl Mater Interfaces ; 13(2): 3098-3108, 2021 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-33423455

RESUMEN

The digital nucleic acid assay is a precise, sensitive, and reproducible method for determining the presence of individual target molecules separated in designated partitions; thus, this technique can be used for the nucleic acid detection. Here, we propose a multifunctional micropattern array capable of isolating individual target molecules into partitions and simultaneous on-site cell lysis to achieve a direct DNA extraction and digitized quantification thereof. The multifunctional micropattern array is fabricated by the deposition of a copolymer film, poly(2-dimethylaminomethyl styrene-co-hydroxyethyl methacrylate) (pDH), directly on a microfluidic chip surface via the photoinitiated chemical vapor deposition process, followed by hydrophobic microcontact printing (µCP) to define each partition for the nucleic acid isolation. The pDH layer is a positively charged surface, which is desirable for the bacterial lysis and DNA capture, while showing exceptional water stability for more than 24 h. The hydrophobic µCP-treated pDH surface is stable under aqueous conditions at a high temperature (70 °C) for 1 h and enables the rapid and reliable formation of thousands of sessile microdroplets for the compartmentalization of an aqueous sample solution without involving bulky and costly microfluidic devices. By assembling the multifunctional micropattern array into the microfluidic chip, the isothermal amplification in each partition can detect DNA templates over a concentration range of 0.01-2 ng/µL. The untreated bacterial cells can also be directly compartmentalized via the microdroplet formation, followed by the on-site cell lysis and DNA capture on the compartmentalized pDH surface. For Escherichia coli O157:H7, Salmonella enteritidis, and Staphylococcus aureus cells, cell numbers ranging from 1.4 × 104 to 1.4 × 107 can be distinguished by using the multifunctional micropattern array, regardless of the cell type. The multifunctional micropattern array developed in this study provides a novel multifunctional compartmentalization method for rapid, simple, and accurate digital nucleic acid assays.


Asunto(s)
Bacterias/aislamiento & purificación , ADN Bacteriano/análisis , Metacrilatos/química , Análisis por Micromatrices/instrumentación , Técnicas de Amplificación de Ácido Nucleico/instrumentación , Estireno/química , Bacterias/genética , Infecciones Bacterianas/microbiología , ADN Bacteriano/genética , Diseño de Equipo , Humanos , Dispositivos Laboratorio en un Chip , Impresión Tridimensional
19.
Nanomaterials (Basel) ; 11(1)2021 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-33445759

RESUMEN

We developed copper sulfide (CuS)/reduced graphene oxide (rGO)-poly (ethylene glycol) (PEG) nanocomposites for photothermal bonding of a polymethyl methacrylate (PMMA)-based plastic lab-on-a-chip. The noncontact photothermal bonding of PMMA-based plastic labs-on-chip plays an important role in improving the stability and adhesion at a high-temperature as well as minimizing the solution leakage from microchannels when connecting two microfluidic devices. The CuS/rGO-PEG nanocomposites were used to bond a PMMA-based plastic lab-on-a-chip in a short time with a high photothermal effect by a near-infrared (NIR) laser irradiation. After the thermal bonding process, a gap was not generated in the PMMA-based plastic lab-on-a-chip due to the low viscosity and density of the CuS/rGO-PEG nanocomposites. We also evaluated the physical and mechanical properties after the thermal bonding process, showing that there was no solution leakage in PMMA-based plastic lab-on-a-chip during polymerase chain reaction (PCR) thermal cycles. Therefore, the CuS/rGO-PEG nanocomposite could be a potentially useful nanomaterial for non-contact photothermal bonding between the interfaces of plastic module lab-on-a-chip.

20.
ACS Nano ; 15(3): 4777-4788, 2021 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-33502164

RESUMEN

Effective capture and rapid detection of pathogenic bacteria causing pandemic/epidemic diseases is an important task for global surveillance and prevention of human health threats. Here, we present an advanced approach for the on-site capture and detection of pathogenic bacteria through the combination of hierarchical nanostructures and a nuclease-responsive DNA probe. The specially designed hierarchical nanocilia and network structures on the pillar arrays, termed 3D bacterial capturing nanotopographical trap, exhibit excellent mechanical reliability and rapid (<30 s) and irreversible bacterial capturability. Moreover, the nuclease-responsive DNA probe enables the highly sensitive and extremely fast (<1 min) detection of bacteria. The bacterial capturing nanotopographical trap (b-CNT) facilitates the on-site capture and detection of notorious infectious pathogens (Escherichia coli O157:H7, Salmonella enteritidis, Staphylococcus aureus, and Bacillus cereus) from kitchen tools and food samples. Accordingly, the usefulness of the b-CNT is confirmed as a simple, fast, sensitive, portable, and robust on-site capture and detection tool for point-of-care testing.


Asunto(s)
Escherichia coli O157 , Microbiología de Alimentos , Bacillus cereus , Humanos , Reproducibilidad de los Resultados , Staphylococcus aureus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...