Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39091876

RESUMEN

Cryopreservation in cryovials extends cell storage at low temperatures, and advances in organoid cryopreservation improve reproducibility and reduce generation time. However, cryopreserving human organoids presents challenges due to the limited diffusion of cryoprotective agents (CPAs) into the organoid core and the potential toxicity of these agents. To overcome these obstacles, we developed a cryopreservation technique using a pillar plate platform. To illustrate cryopreservation application to human brain organoids (HBOs), early-stage HBOs were produced by differentiating induced pluripotent stem cells (iPSCs) into neuroectoderm (NEs) in an ultralow atachement (ULA) 384-well plate. These NEs were transferred and encapsulated in Matrigel on the pillar plate. The early-stage HBOs on the pillar plate were exposed to four commercially available CPAs, including PSC cryopreservation kit, CryoStor CS10, 3dGRO, and 10% DMSO, before being frozen overnight at -80°C and subsequently stored in a liquid nitrogen dewar. We examined the impact of CPA type, organoid size, and CPA exposure duration on cell viability post-thaw. Additionally, the differentiation of early-stage HBOs on the pillar plate was assessed using RT-qPCR and immunofluorescence staining. The PSC cryopreservation kit proved to be the least toxic for preserving these HBOs on the pillar plate. Notably, smaller HBOs showed higher cell viability post-cryopreservation than larger ones. An incubation period of 80 minutes with the PSC kit was essential to ensure optimal CPA diffusion into HBOs with a diameter of 400 - 600 µm. These cryopreserved early-stage HBOs successfully matured over 30 days, exhibiting gene expression patterns akin to non-cryopreserved HBOs. The cryopreserved early-stage HBOs on the pillar plate maintained high viability after thawing and successfully differentiated into mature HBOs. This on-chip cryopreservation method could extend to other small organoids, by integrating cryopreservation, thawing, culturing, staining, rinsing, and imaging processes within a single system, thereby preserving the 3D structure of the organoids.

2.
Inorg Chem ; 63(25): 11737-11744, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38865158

RESUMEN

The Heisenberg antiferromagnetic chain is a canonical model for understanding many-body gaps that emerge in quantum magnets, and as a result, there has been significant work on this class of materials for much of the past century. Chiral chains, on the other hand, have received markedly less attention. [Cu(pym)(H2O)4]SiF6·H2O (pym = pyrimidine) is an S = 1/2 chiral antiferromagnet with an unconventional spin gap and no long-range ordering at zero field, features that distinguish it from more conventional spin chains that host simple phase diagrams and no magnetoelectric coupling. Here, we report pulsed magnetic field electrical polarization measurements, strong magnetoelectric coupling, and extraordinary magnetic field - temperature phase diagrams for this system. In addition to three low field transitions, we find a series of phase transitions between 40 and 70 T that depend on the magnetic field direction. The observation of electric polarization in a material with a nonpolar crystal structure implies symmetry-breaking magnetic ordering that creates a polar axis - a mechanism that we discuss in terms of significant interactions between the chiral chains as well as Dzyaloshinskii-Moriya effects. Further, we find second-order magnetoelectric coupling, allowing us to deduce the magnetic point group of the highest polarization phase. These findings are in contrast to expectations for an unordered one-dimensional spin chain and reveal a significantly greater complexity of behavior in applied field.

3.
ACS Biomater Sci Eng ; 10(5): 3478-3488, 2024 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-38695610

RESUMEN

Static three-dimensional (3D) cell culture has been demonstrated in ultralow attachment well plates, hanging droplet plates, and microtiter well plates with hydrogels or magnetic nanoparticles. Although it is simple, reproducible, and relatively inexpensive, thus potentially used for high-throughput screening, statically cultured 3D cells often suffer from a necrotic core due to limited nutrient and oxygen diffusion and waste removal and have a limited in vivo-like tissue structure. Here, we overcome these challenges by developing a pillar/perfusion plate platform and demonstrating high-throughput, dynamic 3D cell culture. Cell spheroids were loaded on the pillar plate with hydrogel by simple sandwiching and encapsulation and cultured dynamically in the perfusion plate on a digital rocker. Unlike traditional microfluidic devices, fast flow velocity was maintained within perfusion wells and the pillar plate was separated from the perfusion plate for cell-based assays. It was compatible with common lab equipment and allowed cell culture, testing, staining, and imaging in situ. The pillar/perfusion plate enhanced cell growth by rapid diffusion, reproducibility, assay throughput, and user friendliness in a dynamic 3D cell culture.


Asunto(s)
Técnicas de Cultivo Tridimensional de Células , Proliferación Celular , Técnicas de Cultivo Tridimensional de Células/métodos , Técnicas de Cultivo Tridimensional de Células/instrumentación , Humanos , Reproducibilidad de los Resultados , Perfusión/instrumentación , Hidrogeles/química , Esferoides Celulares/citología , Técnicas de Cultivo de Célula/métodos , Técnicas de Cultivo de Célula/instrumentación
4.
Chem Pharm Bull (Tokyo) ; 72(4): 365-373, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38569867

RESUMEN

Obesity is known to be associated with increased inflammation and dysregulated autophagy, both of which contribute to insulin resistance. Saikosaponin-A (SSA) has been reported to exhibit anti-inflammatory and lipid-lowering properties. In this research, we employed a combination of computational modeling and animal experiments to explore the effects of SSA. Male C57BL/6 mice were categorized into four groups: normal diet, high-fat diet (HFD), HFD + atorvastatin 10 mg/kg, and HFD + SSA 10 mg/kg. We conducted oral glucose and fat tolerance tests to assess metabolic parameters and histological changes. Furthermore, we evaluated the population of Kupffer cells (KCs) and examined gene expressions related to inflammation and autophagy. Computational analysis revealed that SSA displayed high binding affinity to tumor necrosis factor (TNF)-α, nuclear factor (NF)-κB, fibroblast growth factor 21 (FGF21), and autophagy-related 7 (ATG7). Animal study demonstrated that SSA administration improved fasting and postprandial glucose levels, homeostatic model assessment of insulin resistance (HOMA-IR) index, as well as triglyceride, free fatty acid, total cholesterol, low-density lipoprotein cholesterol (LDL-C)-cholesterol, and high-density lipoprotein cholesterol (HDL-C)-cholesterol levels in HFD-fed mice. Moreover, SSA significantly reduced liver weight and fat accumulation, while inhibiting the infiltration and M1 activation of KCs. At the mRNA level, SSA downregulated TNF-α and NF-κB expression, while upregulating FGF21 and ATG7 expression. In conclusion, our study suggests that SSA may serve as a therapeutic agent for addressing the metabolic complications associated with obesity. This potential therapeutic effect is attributed to the suppression of inflammatory cytokines and the upregulation of FGF21 and ATG7.


Asunto(s)
Experimentación Animal , Resistencia a la Insulina , Ácido Oleanólico/análogos & derivados , Saponinas , Ratones , Masculino , Animales , Resistencia a la Insulina/fisiología , Ratones Endogámicos C57BL , Obesidad/tratamiento farmacológico , Hígado , Inflamación/metabolismo , Glucosa/metabolismo , Colesterol , Dieta Alta en Grasa/efectos adversos , Factor de Necrosis Tumoral alfa/metabolismo , Insulina/metabolismo
5.
Phys Rev Lett ; 131(14): 146701, 2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37862638

RESUMEN

Continuous spin excitations are widely recognized as one of the hallmarks of novel spin states in quantum magnets, such as quantum spin liquids (QSLs). Here, we report the observation of such kind of excitations in K_{2}Ni_{2}(SO_{4})_{3}, which consists of two sets of intersected spin-1 (Ni^{2+}) trillium lattices. Our inelastic neutron scattering measurement on single crystals clearly shows a dominant excitation continuum, which exhibits a distinct temperature-dependent behavior from that of spin waves, and is rooted in strong quantum spin fluctuations. Further using the self-consistent-Gaussian-approximation method, we determine that the fourth- and fifth-nearest-neighbor exchange interactions are dominant. These two bonds together form a unique three-dimensional network of corner-sharing tetrahedra, which we name as a "hypertrillium" lattice. Our results provide direct evidence for the existence of QSL features in K_{2}Ni_{2}(SO_{4})_{3} and highlight the potential for the hypertrillium lattice to host frustrated quantum magnetism.

6.
bioRxiv ; 2023 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-36824786

RESUMEN

Static three-dimensional (3D) cell culture has been demonstrated in ultralow attachment well plates, hanging droplet plates, and microtiter well plates with hydrogels or magnetic nanoparticles. Although it is simple, reproducible, and relatively inexpensive, thus potentially used for high-throughput screening, statically cultured 3D cells often suffer from the necrotic core due to limited nutrient and oxygen diffusion and waste removal and have limited in vivo-like tissue structure. Here, we overcome these challenges by developing a pillar/perfusion plate platform and demonstrating high-throughput, dynamic 3D cell culture. Cell spheroids have been loaded on the pillar plate with hydrogel by simple sandwiching and encapsulation and cultured dynamically in the perfusion plate on a digital rocker. Unlike traditional microfluidic devices, fast flow rates were maintained within perfusion wells, and the pillar plate could be separated from the perfusion plate for cell-based assays. It was compatible with common lab equipment and allowed cell culture, testing, staining, and imaging in situ. The pillar/perfusion plate enhanced cell growth by rapid diffusion, reproducibility, assay throughput, and user friendliness in dynamic 3D cell culture.

7.
Mol Cells ; 46(4): 209-218, 2023 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-36852435

RESUMEN

In induced pluripotent stem cells (iPSCs), pluripotency is induced artificially by introducing the transcription factors Oct4, Sox2, Klf4, and c-Myc. When a transgene is introduced using a viral vector, the transgene may be integrated into the host genome and cause a mutation and cancer. No integration occurs when an episomal vector is used, but this method has a limitation in that remnants of the virus or vector remain in the cell, which limits the use of such iPSCs in therapeutic applications. Chemical reprogramming, which relies on treatment with small-molecule compounds to induce pluripotency, can overcome this problem. In this method, reprogramming is induced according to the gene expression pattern of extra-embryonic endoderm (XEN) cells, which are used as an intermediate stage in pluripotency induction. Therefore, iPSCs can be induced only from established XEN cells. We induced XEN cells using small molecules that modulate a signaling pathway and affect epigenetic modifications, and devised a culture method in which can be produced homogeneous XEN cells. At least 4 passages were required to establish morphologically homogeneous chemically induced XEN (CiXEN) cells, whose properties were similar to those of XEN cells, as revealed through cellular and molecular characterization. Chemically iPSCs derived from CiXEN cells showed characteristics similar to those of mouse embryonic stem cells. Our results show that the homogeneity of CiXEN cells is critical for the efficient induction of pluripotency by chemicals.


Asunto(s)
Células Madre Pluripotentes Inducidas , Animales , Ratones , Reprogramación Celular , Células Madre Embrionarias de Ratones , Epigénesis Genética
8.
Angew Chem Int Ed Engl ; 61(52): e202214335, 2022 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-36307376

RESUMEN

Magnetoelectric coupling is achieved near room temperature in a spin crossover FeII molecule-based compound, [Fe(1bpp)2 ](BF4 )2 . Large atomic displacements resulting from Jahn-Teller distortions induce a change in the molecule dipole moment when switching between high-spin and low-spin states leading to a step-wise change in the electric polarization and dielectric constant. For temperatures in the region of bistability, the changes in magnetic and electrical properties are induced with a remarkably low magnetic field of 3 T. This result represents a successful expansion of magnetoelectric spin crossovers towards ambient conditions. Moreover, the observed 0.3-0.4 mC m-2 changes in the H-induced electric polarization suggest that the high strength of the coupling obtained via this route is accessible not just at cryogenic temperatures but also near room temperature, a feature that is especially appealing in the light of practical applications.

9.
Inorg Chem ; 61(14): 5469-5473, 2022 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-35343233

RESUMEN

Organic-inorganic hybrids of halogenoindates(III) are typically represented by one of the zero-dimensional units: InX4-, InX52-, InX63-, or In2X115-. Higher dimensional anionic forms, although not forbidden, have remained almost elusive. Here we report for the first time In3+-based organic-inorganic hybrids, (C4H5N2S)2InCl5 and (C4H5N2S)2InBr5, with 1D anionic chains of trans-halide-bridged InX6 octahedra whose formation is guided by 2-mercaptopyrimidinium cations (C4H5N2S+). The chains are characterized by the significant ease of deformation, which is reflected in the elongation of the bridging bonds or the displacement of In3+ ions. The materials show a robust band gap predominantly governed by C4H5N2S+ cations. Dielectric relaxation processes in (C4H5N2S)2InBr5 arise from the cations' dynamics and suggest the ability of the brominated system to accommodate even larger cations. Our work represents a successful attempt to expand the structural diversity of halogenoindates(III) and opens a pathway to reach multifunctional 1D In3+-based hybrids.

10.
J Phys Chem Lett ; 13(10): 2365-2370, 2022 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-35254080

RESUMEN

The single-molecule magnet {Mn84} is a challenge to theory because of its high nuclearity. We directly compute two experimentally accessible observables, the field-dependent magnetization up to 75 T and the temperature-dependent heat capacity, using parameter-free theory. In particular, we use first-principles calculations to derive short- and long-range exchange interactions and compute the exact partition function of the resulting classical Potts and Ising spin models for all 84 Mn S = 2 spins to obtain observables. The latter computation is made possible by using hyperoptimized tensor network contractions, a technique developed to simulate quantum supremacy circuits. We also synthesize the magnet and measure its heat capacity and magnetization, observing qualitative agreement between theory and experiment and identifying an unusual bump in the heat capacity and a plateau in the magnetization. Our work also identifies some limitations of current theoretical modeling in large magnets, such as sensitivity to small, long-range exchange couplings.

11.
Inorg Chem ; 61(8): 3434-3442, 2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35171587

RESUMEN

We combine high field polarization, magneto-infrared spectroscopy, and lattice dynamics calculations with prior magnetization to explore the properties of (NH4)2[FeCl5·(H2O)]─a type II molecular multiferroic in which the mixing between charge, structure, and magnetism is controlled by intermolecular hydrogen and halogen bonds. Electric polarization is sensitive to the series of field-induced spin reorientations, increasing linearly with the field and reaching a maximum before collapsing to zero across the quasi-collinear to collinear-sinusoidal reorientation due to the restoration of inversion symmetry. Magnetoelectric coupling is on the order of 1.2 ps/m for the P∥c, H∥c configuration between 5 and 25 T at 1.5 K. In this range, the coupling takes place via an orbital hybridization mechanism. Other forms of mixing are active in (NH4)2[FeCl5·(H2O)] as well. Magneto-infrared spectroscopy reveals that all of the vibrational modes below 600 cm-1 are sensitive to the field-induced transition to the fully saturated magnetic state at 30 T. We analyze these local lattice distortions and use frequency shifts to extract spin-phonon coupling constants for the Fe-O stretch, Fe-OH2 rock, and NH4+ libration. Inspection also reveals subtle symmetry breaking of the ammonium counterions across the ferroelectric transition. The coexistence of such varied mixing processes in a platform with intermolecular hydrogen- and halogen-bonding opens the door to greater understanding of multiferroics and magnetoelectrics governed by through-space interactions.

13.
ACS Appl Mater Interfaces ; 14(2): 2893-2907, 2022 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-34985249

RESUMEN

Biogas is an environmentally friendly and sustainable energy resource that can substitute or complement conventional fossil fuels. For practical uses, biogas upgrading, mainly through the effective separation of CO2 (0.33 nm) and CH4 (0.38 nm), is required to meet the approximately 90-95% purity of CH4, while CO2 should be concomitantly purified. In this study, a high CO2 perm-selective zeolite membrane was synthesized by heteroepitaxially growing a chabazite (CHA) zeolite seed layer with a synthetic precursor that allowed the formation of all-silica deca-dodecasil 3 rhombohedral (DDR) zeolite (with a pore size of 0.36 × 0.44 nm2). The resulting hydrophobic DDR@CHA hybrid membrane on an asymmetric α-Al2O3 tube was thin (ca. 2 µm) and continuous, thus providing both high flux and permselectivity for CO2 irrespective of the presence or absence of water vapor (the third largest component in the biogas streams). To the best of our knowledge, the CO2 permeance of (2.9 ± 0.3) × 10-7 mol m-2 s-1 Pa-1 and CO2/CH4 separation factor of ca. 274 ± 73 at a saturated water vapor partial pressure of ca. 12 kPa at 50 °C have the highest CO2/CH4 separation performance yet achieved. Furthermore, we explored the membrane module properties of the hybrid membrane in terms of the recovery and purity of both CO2 and CH4 under dry and wet conditions. Despite the high intrinsic membrane properties of the current hybrid membrane, reflected by the high permeance and SF, the corresponding module properties indicated that high-performance separation of CO2 and CH4 for the desired biogas upgrading was achieved at a limited processing capacity. This supports the importance of understanding the correlation between the membrane and module properties, as this will provide guidance for the optimal operating conditions.


Asunto(s)
Materiales Biocompatibles/química , Reactores Biológicos , Dióxido de Carbono/aislamiento & purificación , Metano/aislamiento & purificación , Zeolitas/química , Dióxido de Carbono/química , Ensayo de Materiales , Metano/química , Tamaño de la Partícula
14.
J Am Chem Soc ; 144(1): 195-211, 2022 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-34939802

RESUMEN

Pinned and mobile ferroelastic domain walls are detected in response to mechanical stress in a Mn3+ complex with two-step thermal switching between the spin triplet and spin quintet forms. Single-crystal X-ray diffraction and resonant ultrasound spectroscopy on [MnIII(3,5-diCl-sal2(323))]BPh4 reveal three distinct symmetry-breaking phase transitions in the polar space group series Cc → Pc → P1 → P1(1/2). The transition mechanisms involve coupling between structural and spin state order parameters, and the three transitions are Landau tricritical, first order, and first order, respectively. The two first-order phase transitions also show changes in magnetic properties and spin state ordering in the Jahn-Teller-active Mn3+ complex. On the basis of the change in symmetry from that of the parent structure, Cc, the triclinic phases are also ferroelastic, which has been confirmed by resonant ultrasound spectroscopy. Measurements of magnetoelectric coupling revealed significant changes in electric polarization at both the Pc → P1 and P1 → P1(1/2) transitions, with opposite signs. All these phases are polar, while P1 is also chiral. Remanent electric polarization was detected when applying a pulsed magnetic field of 60 T in the P1→ P1(1/2) region of bistability at 90 K. Thus, we showcase here a rare example of multifunctionality in a spin crossover material where the strain and polarization tensors and structural and spin state order parameters are strongly coupled.

15.
Angew Chem Int Ed Engl ; 61(4): e202114021, 2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-34761504

RESUMEN

A MnIII spin crossover complex with atypical two-step hysteretic thermal switching at 74 K and 84 K shows rich structural-magnetic interplay and magnetic-field-induced spin state switching below 14 T with an onset below 5 T. The spin states, structures, and the nature of the phase transitions are elucidated via X-ray and magnetization measurements. An unusual intermediate phase containing four individual sites, where 1 / 4 are in a pure low spin state, is observed. The splitting of equivalent sites in the high temperature phase into four inequivalent sites is due to a structural reorganization involving a primary and a secondary symmetry-breaking order parameter that induces a crystal system change from orthorhombic→monoclinic and a cell doubling. Further cooling leads to a reconstructive phase transition and a monoclinic low-temperature phase with two inequivalent low-spin sites. The coupling between the order parameters is identified in the framework of Landau theory.

16.
Cell Biol Int ; 46(1): 139-147, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34694043

RESUMEN

Stem cells are an important therapeutic source for recovery and regeneration, as their ability of self-renewal and differentiation offers an unlimited supply of highly specialized cells for therapeutic transplantation. Growth factors and serum are essential for maintaining the characteristics of stem cells in culture and for inducing differentiation. Because growth factors are produced mainly in bacterial (Escherichia coli) or animal cells, the use of such growth factors raises safety concerns that need to be resolved for the commercialization of stem cell therapeutics. To overcome this problem, studies on proteins produced in plants have been conducted. Here, we describe the functions of plant-derived fibroblast growth factor 2 (FGF2) and human serum albumin in the maintenance and differentiation of human-induced pluripotent stem cells (hiPSCs). Plant-derived FGF2 and human epidermal growth factor EGF were able to differentiate hiPSCs into neural stem cells (NSCs). These NSCs could differentiate into neuronal and glial cells. Our results imply that culturing stem cells in animal-free culture medium, which is composed of plant-derived proteins, would facilitate stem cell application research, for example, for cell therapy, by reducing contamination risk.


Asunto(s)
Factor de Crecimiento Epidérmico/farmacología , Factor 2 de Crecimiento de Fibroblastos/farmacología , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células-Madre Neurales/efectos de los fármacos , Neurogénesis/efectos de los fármacos , Albúmina Sérica Humana/farmacología , Animales , Línea Celular , Factor de Crecimiento Epidérmico/genética , Factor de Crecimiento Epidérmico/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/farmacología , Factor 2 de Crecimiento de Fibroblastos/genética , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Ratones Endogámicos NOD , Ratones SCID , Células-Madre Neurales/metabolismo , Oryza/genética , Oryza/metabolismo , Fenotipo , Proteínas de Plantas/farmacología , Proteínas Recombinantes/farmacología , Albúmina Sérica Humana/genética , Albúmina Sérica Humana/metabolismo
17.
Adv Sci (Weinh) ; 8(23): e2101402, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34719881

RESUMEN

The manipulation of mesoscale domain wall phenomena has emerged as a powerful strategy for designing ferroelectric responses in functional devices, but its full potential is not yet realized in the field of magnetism. This work shows a direct connection between magnetic response functions in mechanically strained samples of Mn3 O4 and MnV2 O4 and stripe-like patternings of the bulk magnetization which appear below known magnetostructural transitions. Building off previous magnetic force microscopy data, a small-angle neutron scattering is used to show that these patterns represent distinctive magnetic phenomena which extend throughout the bulk of two separate materials, and further are controllable via applied magnetic field and mechanical stress. These results are unambiguously connected to the anomalously large magnetoelastic and magnetodielectric response functions reported for these materials, by performing susceptibility measurements on the same crystals and directly correlating local and macroscopic data.

18.
Stem Cell Res ; 48: 101943, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32777770

RESUMEN

OCT4 and NANOG are core transcription factor genes in self-renewal, differentiation, and reprogramming. Here, we generated an OCT4-EGFP, NANOG-tdTomato dual reporter hiPSC line, KKUi001-A, on the basis of human induced pluripotent stem cells using CRISPR/Cas9 technology. EGFP and tdTomato reporter were inserted into before the stop codon of OCT4 and NANOG, respectively. Simultaneous expression of EGFP and tdTomato was observed when expression of OCT4 and NANOG was changed during differentiation and reprogramming. KKUi001-A hiPSC line will be a useful tool to find initial time point of OCT4 and NANOG expression during reprogramming process and to screen small molecules that promote reprogramming.


Asunto(s)
Células Madre Pluripotentes Inducidas , Sistemas CRISPR-Cas/genética , Diferenciación Celular , Reprogramación Celular , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Proteínas Luminiscentes , Proteína Homeótica Nanog/genética , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Proteína Fluorescente Roja
19.
Science ; 369(6509): 1343-1347, 2020 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-32616670

RESUMEN

Discovery of robust yet reversibly switchable electric dipoles at reduced dimensions is critical to the advancement of nanoelectronics devices. Energy bands flat in momentum space generate robust localized states that are activated independently of each other. We determined that flat bands exist and induce robust yet independently switchable dipoles that exhibit a distinct ferroelectricity in hafnium dioxide (HfO2). Flat polar phonon bands in HfO2 cause extreme localization of electric dipoles within its irreducible half-unit cell widths (~3 angstroms). Contrary to conventional ferroelectrics with spread dipoles, those intrinsically localized dipoles are stable against extrinsic effects such as domain walls, surface exposure, and even miniaturization down to the angstrom scale. Moreover, the subnanometer-scale dipoles are individually switchable without creating any domain-wall energy cost. This offers unexpected opportunities for ultimately dense unit cell-by-unit cell ferroelectric switching devices that are directly integrable into silicon technology.

20.
Sci Rep ; 10(1): 3614, 2020 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-32109236

RESUMEN

In humans, parthenogenesis and androgenesis occur naturally in mature cystic ovarian teratomas and androgenetic complete hydatidiform moles (CHM), respectively. Our previous study has reported human parthenogenetic induced pluripotent stem cells from ovarian teratoma-derived fibroblasts and screening of imprinted genes using genome-wide DNA methylation analysis. However, due to the lack of the counterparts of uniparental cells, identification of new imprinted differentially methylated regions has been limited. CHM are inherited from only the paternal genome. In this study, we generated human androgenetic induced pluripotent stem cells (AgHiPSCs) from primary androgenetic fibroblasts derived from CHM. To investigate the pluripotency state of AgHiPSCs, we analyzed their cellular and molecular characteristics. We tested the DNA methylation status of imprinted genes using bisulfite sequencing and demonstrated the androgenetic identity of AgHiPSCs. AgHiPSCs might be an attractive alternative source of human androgenetic embryonic stem cells. Furthermore, AgHiPSCs can be used in regenerative medicine, for analysis of genomic imprinting, to study imprinting-related development, and for disease modeling in humans.


Asunto(s)
Células Madre Pluripotentes Inducidas/citología , Herencia Paterna , Diferenciación Celular , Células Cultivadas , Metilación de ADN , Femenino , Fibroblastos/citología , Fibroblastos/metabolismo , Impresión Genómica , Humanos , Mola Hidatiforme/genética , Mola Hidatiforme/metabolismo , Mola Hidatiforme/fisiopatología , Células Madre Pluripotentes Inducidas/metabolismo , Masculino , Embarazo , Reproducción Asexuada
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...