Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Bone ; 138: 115497, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32599221

RESUMEN

Adult bone homeostasis requires a fine-tuned balance between the activity of osteoblasts and osteoclasts. This osteoblast-osteoclast coupling is therapeutically important because it limits the efficacy of most anabolic or anti-resorptive treatments for osteoporosis. Sirtuin6 (SIRT6), a histone deacetylase, was implicated recently as an important regulator in bone homeostasis, but its in vivo function in osteoblast lineage cells remains unclear, mainly due to a lack of in vivo experiments with osteoblast lineage-specific Sirt6 knockout mice. Here, we show that Sirt6 in mature osteoblasts and/or osteocytes inhibits osteoclastogenesis via a paracrine mechanism. We found that osteoblast/osteocyte-specific Sirt6 knockout mice show reduced bone mass due to increased osteoclast formation. Mechanistically, we attribute this increased osteoclastogenesis to decreased osteoprotegerin expression in Sirt6-null osteoblasts and osteocytes. This loss of Sirt6 in osteoblasts and osteocytes does not, however, alter bone formation parameters in vivo. It does accelerate osteogenic differentiation in ex vivo culture, indicating that the osteoblast/osteocyte-autonomous functions of SIRT6 have minor effects on the osteopenic phenotype. These results establish a critical role for SIRT6 in mature osteoblasts and osteocytes in adult bone homeostasis as a negative paracrine regulator of osteoclastogenesis.


Asunto(s)
Enfermedades Óseas Metabólicas , Osteoclastos , Sirtuinas , Animales , Diferenciación Celular , Ratones , Osteoblastos , Osteogénesis
2.
AMB Express ; 7(1): 19, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28063146

RESUMEN

Microalgae are considered to be the future promising sources of biofuels and bio products. The algal carbohydrates can be fermented to bioethanol after pretreatment process. Efficient pretreatment of the biomass is one of the major requirements for commercialization of the algal based biofuels. In present study the microalga, M. aeruginsa was used for pretreatment optimization and bioethanol production. Treatment of algal biomass with CaO before acid and/or enzymatic hydrolysis enhanced the degradation of algal cells. Monomeric sugars yield was increased more than twice when biomass was pretreated with CaO. Similarly, an increase was noted in the amount of fermentable sugars when biomass was subjected to invertase saccharification after acid or lysozyme pretreatment. Highest yield of fermentable sugars (16 mM/ml) in the centrifuged algal juice was obtained. 4 Different microorganisms' species were used individually and in combination for converting centrifuged algal juice to bioethanol. Comparatively higher yield of bioethanol (60 mM/ml) was obtained when the fermenter microorganisms were used in combination. The results demonstrated that M. arginase biomass can be efficiently pretreated to get higher yield of fermentable sugars for enhanced yield of bioethanol production.

3.
Biomed Res Int ; 2016: 4540826, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27556034

RESUMEN

Microcystis aeruginosa, a freshwater microalga, is capable of producing and accumulating different types of sugars in its biomass which make it a good feedstock for bioethanol production. Present study aims to investigate the effect of different factors increasing growth rate and carbohydrates productivity of M. aeruginosa. MF media (modified BG11 media) and additional ingredients such as aminolevulinic acid (2 mM), lysine (2.28 mM), alanine (1 mM), and Naphthalene acetic acid (1 mM) as cytokine promoted M. aeruginosa growth and sugar contents. Salmonella showed growth-assisting effect on M. aeruginosa. Enhanced growth rate and carbohydrates contents were observed in M. aeruginosa culture grown at 25°C under red LED light of 90 µmolm(-2)s(-1) intensity. More greenish and carbohydrates rich M. aeruginosa biomass was prepared (final OD660 nm = 2.21 and sugar contents 10.39 mM/mL) as compared to control (maximum OD660 nm = 1.4 and sugar contents 3 mM/mL). The final algae biomass was converted to algae juice through a specific pretreatment method. The resulted algae Juice was used as a substrate in fermentation process. Highest yield of bioethanol (50 mM/mL) was detected when Brettanomyces custersainus, Saccharomyces cerevisiae, and Pichia stipitis were used in combinations for fermentation process as compared to their individual fermentation. The results indicated the influence of different factors on the growth rate and carbohydrates productivity of M. aeruginosa and its feasibility as a feedstock for fermentative ethanol production.


Asunto(s)
Carbohidratos/biosíntesis , Etanol/metabolismo , Microcystis/metabolismo , Biomasa , Brettanomyces/crecimiento & desarrollo , Brettanomyces/metabolismo , Carbohidratos/química , Etanol/química , Fermentación , Microcystis/crecimiento & desarrollo , Pichia/crecimiento & desarrollo , Pichia/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Salmonella/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...