Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Small ; : e2405618, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39264000

RESUMEN

Since the coronavirus pandemic, mRNA vaccines have revolutionized the field of vaccinology. Lipid nanoparticles (LNPs) are proposed to enhance mRNA delivery efficiency; however, their design is suboptimal. Here, a rational method for designing LNPs is explored, focusing on the ionizable lipid composition and structural optimization using machine learning (ML) techniques. A total of 213 LNPs are analyzed using random forest regression models trained with 314 features to predict the mRNA expression efficiency. The models, which predict mRNA expression levels post-administration of intradermal injection in mice, identify phenol as the dominant substructure affecting mRNA encapsulation and expression. The specific phospholipids used as components of the LNPs, as well as the N/P ratio and mass ratio, are found to affect the efficacy of mRNA delivery. Structural analysis highlights the impact of the carbon chain length on the encapsulation efficiency and LNP stability. This integrated approach offers a framework for designing advanced LNPs and has the potential to unlock the full potential of mRNA therapeutics.

2.
Adv Mater ; : e2411479, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39318072

RESUMEN

Herein, a mild thermal annealing (MTA) process is presented for additive-free gelation of graphene oxide (GO) dispersions. This process transitions the GO from a nematic liquid crystal phase to a random network structure, significantly enhancing its rheological properties by order of magnitude. This transition is facilitated by the diffusion of functional groups on the GO surface, which induces hydrophobic attractions, leading to a stable network structure. Employing rheo-SAXS experiments, detailed insights are provided into the microstructural changes of GO gel under shear stress, establishing a direct correlation between its rheological behavior and microstructure. The distinctive properties of MTA-processed inks are illustrated, seamlessly integrating with 3D printing, to yield a highly porous lattice structure that demonstrates promising potential as a supercapacitor electrode. The MTA process, an additive-free approach to gelation, maintains the inherent dispersion properties of GO while offering scalability. Thus, this method brings significant economic and environmental advantages compared to conventional gelation techniques. The findings not only advance the fundamental understanding of 2D colloidal network gels but also increase the potential of GO for a wide range of applications, from gas and liquid absorbers to electrodes for energy storage and conversion, and biomedical fields.

3.
Bioact Mater ; 38: 486-498, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38779592

RESUMEN

The rapid development of messenger RNA (mRNA) vaccines formulated with lipid nanoparticles (LNPs) has contributed to control of the COVID-19 pandemic. However, mRNA vaccines have raised concerns about their potential toxicity and clinical safety, including side effects, such as myocarditis, anaphylaxis, and pericarditis. In this study, we investigated the potential of trehalose glycolipids-containing LNP (LNP S050L) to reduce the risks associated with ionizable lipids. Trehalose glycolipids can form hydrogen bonds with polar biomolecules, allowing the formation of a stable LNP structure by replacing half of the ionizable lipids. The efficacy and safety of LNP S050L were evaluated by encapsulating the mRNA encoding the luciferase reporter gene and measuring gene expression and organ toxicity, respectively. Furthermore, mice immunized with an LNP S050L-formulated mRNA vaccine expressing influenza hemagglutinin exhibited a significant reduction in organ toxicity, including in the heart, spleen, and liver, while sustaining gene expression and immune efficiency, compared to conventional LNPs (Con-LNPs). Our findings suggest that LNP S050L, a trehalose glycolipid-based LNP, could facilitate the development of safe mRNA vaccines with improved clinical safety.

4.
NPJ Vaccines ; 9(1): 34, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38360752

RESUMEN

The implications of administration of mRNA vaccines to individuals with chronic inflammatory diseases, including myocarditis, rheumatoid arthritis (RA), and inflammatory bowel disease (IBD), are unclear. We investigated mRNA vaccine effects in a chronic inflammation mouse model implanted with an LPS pump, focusing on toxicity and immunogenicity. Under chronic inflammation, mRNA vaccines exacerbated cardiac damage and myocarditis, inducing mild heart inflammation with heightened pro-inflammatory cytokine production and inflammatory cell infiltration in the heart. Concurrently, significant muscle damage occurred, with disturbances in mitochondrial fusion and fission factors signaling impaired muscle repair. However, chronic inflammation did not adversely affect muscles at the vaccination site or humoral immune responses; nevertheless, it partially reduced the cell-mediated immune response, particularly T-cell activation. These findings underscore the importance of addressing mRNA vaccine toxicity and immunogenicity in the context of chronic inflammation, ensuring their safe and effective utilization, particularly among vulnerable populations with immune-mediated inflammatory diseases.

5.
Cell ; 187(1): 95-109.e26, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-38181745

RESUMEN

DddA-derived cytosine base editors (DdCBEs) and transcription activator-like effector (TALE)-linked deaminases (TALEDs) catalyze targeted base editing of mitochondrial DNA (mtDNA) in eukaryotic cells, a method useful for modeling of mitochondrial genetic disorders and developing novel therapeutic modalities. Here, we report that A-to-G-editing TALEDs but not C-to-T-editing DdCBEs induce tens of thousands of transcriptome-wide off-target edits in human cells. To avoid these unwanted RNA edits, we engineered the substrate-binding site in TadA8e, the deoxy-adenine deaminase in TALEDs, and created TALED variants with fine-tuned deaminase activity. Our engineered TALED variants not only reduced RNA off-target edits by >99% but also minimized off-target mtDNA mutations and bystander edits at a target site. Unlike wild-type versions, our TALED variants were not cytotoxic and did not cause developmental arrest of mouse embryos. As a result, we obtained mice with pathogenic mtDNA mutations, associated with Leigh syndrome, which showed reduced heart rates.


Asunto(s)
ADN Mitocondrial , Efectores Tipo Activadores de la Transcripción , Animales , Humanos , Ratones , Adenina , Citosina , ADN Mitocondrial/genética , Edición Génica , ARN , Efectores Tipo Activadores de la Transcripción/metabolismo , Ingeniería de Proteínas
6.
J Med Virol ; 95(12): e29309, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38100632

RESUMEN

The E6 and E7 proteins of specific subtypes of human papillomavirus (HPV), including HPV 16 and 18, are highly associated with cervical cancer as they modulate cell cycle regulation. The aim of this study was to investigate the potential antitumor effects of a messenger RNA-HPV therapeutic vaccine (mHTV) containing nononcogenic E6 and E7 proteins. To achieve this, C57BL/6j mice were injected with the vaccine via both intramuscular and subcutaneous routes, and the resulting effects were evaluated. mHTV immunization markedly induced robust T cell-mediated immune responses and significantly suppressed tumor growth in both subcutaneous and orthotopic tumor-implanted mouse model, with a significant infiltration of immune cells into tumor tissues. Tumor retransplantation at day 62 postprimary vaccination completely halted progression in all mHTV-treated mice. Furthermore, tumor expansion was significantly reduced upon TC-1 transplantation 160 days after the last immunization. Immunization of rhesus monkeys with mHTV elicited promising immune responses. The immunogenicity of mHTV in nonhuman primates provides strong evidence for clinical application against HPV-related cancers in humans. All data suggest that mHTV can be used as both a therapeutic and prophylactic vaccine.


Asunto(s)
Proteínas Oncogénicas Virales , Infecciones por Papillomavirus , Vacunas contra Papillomavirus , Neoplasias del Cuello Uterino , Humanos , Femenino , Animales , Ratones , Virus del Papiloma Humano , Proteínas Oncogénicas Virales/genética , Infecciones por Papillomavirus/prevención & control , ARN Mensajero/genética , Proteínas E7 de Papillomavirus/genética , Ratones Endogámicos C57BL , Vacunación/métodos , Inmunización , Neoplasias del Cuello Uterino/prevención & control
7.
Adv Sci (Weinh) ; 10(33): e2303308, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37867236

RESUMEN

Argyrodite-type Li6 PS5 Cl (LPSCl) has attracted much attention as a solid electrolyte for all-solid-state batteries (ASSBs) because of its high ionic conductivity and good mechanical flexibility. LPSCl, however, has challenges of translating research into practical applications, such as irreversible electrochemical degradation at the interface between LPSCl and cathode materials. Even for Li-ion batteries (LIBs), liquid electrolytes have the same issue as electrolyte decomposition due to interfacial instability. Nonetheless, current LIBs are successfully commercialized because functional electrolyte additives give rise to the formation of stable cathode-electrolyte interphase (CEI) and solid-electrolyte interphase (SEI) layers, leading to supplementing the interfacial stability between electrolyte and electrode. Herein, inspired by the role of electrolyte additives for LIBs, trimethylsilyl compounds are introduced as solid electrolyte additives for improving the interfacial stability between sulfide-based solid electrolytes and cathode materials. 2-(Trimethylsilyl)ethanethiol (TMS-SH), a solid electrolyte additive, is oxidatively decomposed during charge, forming a stable CEI layer. As a result, the CEI layer derived from TMS-SH suppresses the interfacial degradation between LPSCl and LiCoO2 , thereby leading to the excellent electrochemical performance of Li | LPSCl | LiCoO2 , such as superior cycle life over 2000 cycles (85.0% of capacity retention after 2000 cycles).

8.
J Infect Dis ; 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37711050

RESUMEN

Developing new adjuvants that can effectively induce both humoral and cellular immune responses while broadening the immune response is of great value. In this study, we aimed to develop GM-CSF- or IL-18-expressing single-stranded RNA (ssRNA) adjuvants based on the encephalomyocarditis virus (EMCV) internal ribosome entry site (IRES) and tested their efficacy in combination with ovalbumin (OVA) or inactivated influenza vaccines. Notably, cytokine-expressing RNA adjuvants increased the expression of antigen-presenting cell activation markers. Specifically, GM-CSF-expressing RNA adjuvants increased CD4+T cell responses, while IL-18-expressing RNA adjuvants increased CD8+T cell responses in mice when combined with OVA. In addition, cytokine-expressing RNA adjuvants increased the frequency of polyclonal T cells in combination with the influenza vaccine and reduced the clinical illness scores and weight loss of mice after viral challenge. Collectively, our results suggest that cytokine-expressing RNA adjuvants can be applied to protein-based or inactivated vaccines to increase their efficacy.

9.
Talanta ; 252: 123826, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-35998444

RESUMEN

Microscopic visualization of DNA molecules is a simple, intuitive, and powerful method. Nonetheless, DNA-molecule quantification methods that employ microscopic visualization have not been reported so far. In this study, a new quantitative approach is presented that enables the counting of individual DNA molecules that have been rendered visible by fluorescence microscopy. Toward this, a microfluidic device was employed that directed DNA molecules into microchannels and deposited the molecules onto a positively charged surface. This microfluidic device had a vertically tapered channel inlet structure that prevented the accumulation of excess DNA molecules in the channel inlet while creating a tapering flow, thereby ensuring the even distribution of the DNA molecules in the microchannels. The channel heights and the density of positive charges on the surface were optimized for analysis. The linearity of this method with respect to the determination of the concentration of DNA in solutions was subsequently determined. The limit of detection was 0.48 fg/µL, which corresponds to 64 molecules of 7.25 kbp DNA in 1 µL of sample. This quantitative approach was finally used to count two types of plasmids co-transformed in an E. coli cell; a measurement that is typically considered challenging with gel electrophoresis.


Asunto(s)
Técnicas Analíticas Microfluídicas , Escherichia coli/genética , ADN/genética , ADN/análisis , Microscopía Fluorescente , Plásmidos
10.
Nat Biotechnol ; 41(3): 378-386, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36229610

RESUMEN

Bacterial toxin DddA-derived cytosine base editors (DdCBEs)-composed of split DddAtox (a cytosine deaminase specific to double-stranded DNA), custom-designed TALE (transcription activator-like effector) DNA-binding proteins, and a uracil glycosylase inhibitor-enable mitochondrial DNA (mtDNA) editing in human cells, which may pave the way for therapeutic correction of pathogenic mtDNA mutations in patients. The utility of DdCBEs has been limited by off-target activity, which is probably caused by spontaneous assembly of the split DddAtox deaminase enzyme, independent of DNA-binding interactions. We engineered high-fidelity DddA-derived cytosine base editors (HiFi-DdCBEs) with minimal off-target activity by substituting alanine for amino acid residues at the interface between the split DddAtox halves. The resulting domains cannot form a functional deaminase without binding of their linked TALE proteins at adjacent sites on DNA. Whole mitochondrial genome sequencing shows that, unlike conventional DdCBEs, which induce hundreds of unwanted off-target C-to-T conversions in human mtDNA, HiFi-DdCBEs are highly efficient and precise, avoiding collateral off-target mutations, and as such, they will probably be desirable for therapeutic applications.


Asunto(s)
ADN Mitocondrial , Edición Génica , Humanos , ADN Mitocondrial/genética , Edición Génica/métodos , Mitocondrias/metabolismo , Mutación , Citosina/metabolismo , Sistemas CRISPR-Cas
11.
Genome Biol ; 23(1): 211, 2022 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-36224582

RESUMEN

We present two methods for enhancing the efficiency of mitochondrial DNA (mtDNA) editing in mice with DddA-derived cytosine base editors (DdCBEs). First, we fused DdCBEs to a nuclear export signal (DdCBE-NES) to avoid off-target C-to-T conversions in the nuclear genome and improve editing efficiency in mtDNA. Second, mtDNA-targeted TALENs (mitoTALENs) are co-injected into mouse embryos to cleave unedited mtDNA. We generated a mouse model with the m.G12918A mutation in the MT-ND5 gene, associated with mitochondrial genetic disorders in humans. The mutant mice show hunched appearances, damaged mitochondria in kidney and brown adipose tissues, and hippocampal atrophy, resulting in premature death.


Asunto(s)
ADN Mitocondrial , Enfermedades Mitocondriales , Animales , Citosina , ADN Mitocondrial/genética , Endonucleasas/metabolismo , Edición Génica/métodos , Humanos , Ratones , Mitocondrias/genética , Mitocondrias/metabolismo , Enfermedades Mitocondriales/genética , Señales de Exportación Nuclear/genética , Nucleasas de los Efectores Tipo Activadores de la Transcripción/genética
12.
Cell ; 185(10): 1764-1776.e12, 2022 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-35472302

RESUMEN

Mitochondrial DNA (mtDNA) editing paves the way for disease modeling of mitochondrial genetic disorders in cell lines and animals and also for the treatment of these diseases in the future. Bacterial cytidine deaminase DddA-derived cytosine base editors (DdCBEs) enabling mtDNA editing, however, are largely limited to C-to-T conversions in the 5'-TC context (e.g., TC-to-TT conversions), suitable for generating merely 1/8 of all possible transition (purine-to-purine and pyrimidine-to-pyrimidine) mutations. Here, we present transcription-activator-like effector (TALE)-linked deaminases (TALEDs), composed of custom-designed TALE DNA-binding arrays, a catalytically impaired, full-length DddA variant or split DddA originated from Burkholderia cenocepacia, and an engineered deoxyadenosine deaminase derived from the E. coli TadA protein, which induce targeted A-to-G editing in human mitochondria. Custom-designed TALEDs were highly efficient in human cells, catalyzing A-to-G conversions at a total of 17 target sites in various mitochondrial genes with editing frequencies of up to 49%.


Asunto(s)
ADN Mitocondrial , Enfermedades Mitocondriales , Animales , Sistemas CRISPR-Cas , Citosina/metabolismo , ADN Mitocondrial/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Edición Génica , Humanos , Mitocondrias/genética , Mitocondrias/metabolismo , Enfermedades Mitocondriales/genética , Purinas
13.
Sensors (Basel) ; 22(8)2022 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-35458902

RESUMEN

In this paper, experimental validation of high precision web handling for a two-actuator-based roll-to-roll (R2R) system is presented. To achieve this, the tension control loop is utilized to regulate the tension in the unwinder module, and the velocity loop is utilized to regulate the web speed in the rewinder module owing to the limitation of the number of actuators. Moreover, the radius estimation algorithm is applied to achieve an accurate web speed and the control sequence of the web handling in the longitudinal axis is developed to manipulate the web handling for convenience. Having these, the tension control performances are validated within ±0.79, ±1.32 and ±1.58 percent tension tracking error and 1.6, 1.53 and 1.33 percent web speed error at the speeds of 0.1 m/s, 0.2 m/s, and 0.3 m/s, respectively. The tension control performance is verified within ±0.3 N tracking error in the changes of the reference tension profile at 0.1 m/s web speed. Lastly, the air floating roller is used to minimize the friction terms and the inertia of the idle roller in the tension zone so that tension control performance can be better achieved during web transportation.

14.
Nat Plants ; 7(7): 899-905, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34211132

RESUMEN

Plant organelles including mitochondria and chloroplasts contain their own genomes, which encode many genes essential for respiration and photosynthesis, respectively. Gene editing in plant organelles, an unmet need for plant genetics and biotechnology, has been hampered by the lack of appropriate tools for targeting DNA in these organelles. In this study, we developed a Golden Gate cloning system1, composed of 16 expression plasmids (8 for the delivery of the resulting protein to mitochondria and the other 8 for delivery to chloroplasts) and 424 transcription activator-like effector subarray plasmids, to assemble DddA-derived cytosine base editor (DdCBE)2 plasmids and used the resulting DdCBEs to efficiently promote point mutagenesis in mitochondria and chloroplasts. Our DdCBEs induced base editing in lettuce or rapeseed calli at frequencies of up to 25% (mitochondria) and 38% (chloroplasts). We also showed DNA-free base editing in chloroplasts by delivering DdCBE mRNA to lettuce protoplasts to avoid off-target mutations caused by DdCBE-encoding plasmids. Furthermore, we generated lettuce calli and plantlets with edit frequencies of up to 99%, which were resistant to streptomycin or spectinomycin, by introducing a point mutation in the chloroplast 16S rRNA gene.


Asunto(s)
Brassica napus/genética , Clonación de Organismos/métodos , ADN de Cloroplastos , ADN Mitocondrial , Edición Génica/métodos , Lactuca/genética , Fitomejoramiento/métodos , Productos Agrícolas/genética
15.
Nat Commun ; 12(1): 1190, 2021 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-33608520

RESUMEN

DddA-derived cytosine base editors (DdCBEs), composed of the split interbacterial toxin DddAtox, transcription activator-like effector (TALE), and uracil glycosylase inhibitor (UGI), enable targeted C-to-T base conversions in mitochondrial DNA (mtDNA). Here, we demonstrate highly efficient mtDNA editing in mouse embryos using custom-designed DdCBEs. We target the mitochondrial gene, MT-ND5 (ND5), which encodes a subunit of NADH dehydrogenase that catalyzes NADH dehydration and electron transfer to ubiquinone, to obtain several mtDNA mutations, including m.G12918A associated with human mitochondrial diseases and m.C12336T that incorporates a premature stop codon, creating mitochondrial disease models in mice and demonstrating a potential for the treatment of mitochondrial disorders.


Asunto(s)
ADN Mitocondrial/genética , Edición Génica/métodos , Genes Mitocondriales/genética , Animales , Transporte de Electrón , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias , Enfermedades Mitocondriales/genética , Proteínas Mitocondriales/genética , Mutación , NADH Deshidrogenasa/genética , Células 3T3 NIH , Efectores Tipo Activadores de la Transcripción/genética
16.
Analyst ; 145(12): 4079-4095, 2020 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-32386402

RESUMEN

DNA binding fluorescent proteins are useful probes for a broad range of biological applications. Fluorescent protein (FP)-tagging allows DNA binding proteins expressed within a living cell to be directly visualised, in real-time, to study DNA binding patterns and dynamics. Moreover, FP-tagged DNA binding proteins (FP-DBP) have allowed the imaging of single proteins bound to large elongated DNA molecules with a fluorescence microscope. Although there are numerous DNA binding proteins, only a small portion of them have been exploited to construct FP-DBPs to study molecular motion in a cell or in vitro single-molecule visualisation. Therefore, it would be informative to review FP-DBP for further development. Here, we summarise the design of FP-DBPs and their brightness, photostability, pKa, maturation rate, and binding affinity (Kd) characteristics. Then, we review the applications of FP-DBP in cells to study chromosome dynamics, DNA replication, transcription factors, DNA damage, and repair. Finally, we focus on single DNA molecule visualisation using FP-DBP.


Asunto(s)
Proteínas de Unión al ADN/química , ADN/metabolismo , Colorantes Fluorescentes/química , Proteínas Luminiscentes/química , Animales , Línea Celular , Cromosomas/metabolismo , ADN/análisis , Daño del ADN/fisiología , Reparación del ADN/fisiología , Replicación del ADN/fisiología , Proteínas de Unión al ADN/metabolismo , Colorantes Fluorescentes/metabolismo , Humanos , Proteínas Luminiscentes/metabolismo , Microscopía/métodos , Mitosis/fisiología , Plantas , Unión Proteica , Análisis de la Célula Individual/métodos
17.
J Nanosci Nanotechnol ; 20(7): 4182-4187, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-31968438

RESUMEN

The tunnel field-effect transistor (TFET) with surrounding channel nanowire (SCNW) structure promises better performance than the conventional planar TFET in terms of subthreshold swing (SS) and on-current (ION). In spite of the advantages of SCNW TFET, there are some technical issues in the aspects of a hump phenomenon in subthreshold region and a high ambipolar current (IAMB) in off-state. In order to overcome these issues, a novel dual-gate SCNW TFET (DG-SCNW TFET) with differential gate work functions (WFs) and a gate-drain underlap is proposed and studied by using technology computer-aided design (TCAD) simulation. In addition, a hetero-junction with SiGe source is applied to improve the device performance. Finally, it is confirmed that the optimized DG-SCNW TFET shows the remarkable performance comparing with the control device.

18.
Small ; 16(5): e1905821, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31898870

RESUMEN

Although carbon nanotubes (CNTs) are remarkable materials with many exceptional characteristics, their poor chemical functionality limits their potential applications. Herein, a strategy is proposed for functionalizing CNTs, which can be achieved with any functional group (FG) without degrading their intrinsic structure by using a deoxyribonucleic acid (DNA)-binding peptide (DBP) anchor. By employing a DBP tagged with a certain FG, such as thiol, biotin, and carboxyl acid, it is possible to introduce any FG with a controlled density on DNA-wrapped CNTs. Additionally, different types of FGs can be introduced on CNTs simultaneously, using DBPs tagged with different FGs. This method can be used to prepare CNT nanocomposites containing different types of nanoparticles (NPs), such as Au NPs, magnetic NPs, and quantum dots. The CNT nanocomposites decorated with these NPs can be used as reusable catalase-like nanocomposites with exceptional catalytic activities, owing to the synergistic effects of all the components. Additionally, the unique DBP-DNA interaction allows the on-demand detachment of the NPs attached to the CNT surface; further, it facilitates a CNT chirality-specific NP attachment and separation using the sequence-specific programmable characteristics of oligonucleotides. The proposed method provides a novel chemistry platform for constructing new functional CNTs suitable for diverse applications.


Asunto(s)
Nanocompuestos , Nanotubos de Carbono , Péptidos , ADN/metabolismo , Nanocompuestos/química , Nanotubos de Carbono/química , Péptidos/química , Péptidos/metabolismo , Puntos Cuánticos
19.
Sci Rep ; 9(1): 17197, 2019 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-31748571

RESUMEN

Large DNA molecules are a promising platform for in vitro single-molecule biochemical analysis to investigate DNA-protein interactions by fluorescence microscopy. For many studies, intercalating fluorescent dyes have been primary DNA staining reagents, but they often cause photo-induced DNA breakage as well as structural deformation. As a solution, we previously developed several fluorescent-protein DNA-binding peptides or proteins (FP-DBP) for reversibly staining DNA molecules without structural deformation or photo-induced damage. However, they cannot stain DNA in a condition similar to a physiological salt concentration that most biochemical reactions require. Given these concerns, here we developed a salt-tolerant FP-DBP: truncated transcription activator-like effector (tTALE-FP), which can stain DNA up to 100 mM NaCl. Moreover, we found an interesting phenomenon that the tTALE-FP stained DNA evenly in 1 × TE buffer but showed AT-rich specific patterns from 40 mM to 100 mM NaCl. Using an assay based on fluorescence resonance energy transfer, we demonstrated that this binding pattern is caused by a higher DNA binding affinity of tTALE-FP for AT-rich compared to GC-rich regions. Finally, we used tTALE-FP in a single molecule fluorescence assay to monitor real-time restriction enzyme digestion of single DNA molecules. Altogether, our results demonstrate that this protein can provide a useful alternative as a DNA stain over intercalators.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , ADN/química , ADN/metabolismo , Colorantes Fluorescentes/química , Sustancias Intercalantes/metabolismo , Coloración y Etiquetado/métodos , Efectores Tipo Activadores de la Transcripción/metabolismo , Proteínas de Unión al ADN/química , Fluorescencia , Transferencia Resonante de Energía de Fluorescencia , Humanos , Sustancias Intercalantes/química , Microscopía Fluorescente , Imagen Individual de Molécula/métodos , Efectores Tipo Activadores de la Transcripción/química
20.
J Audiol Otol ; 23(2): 76-82, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30989997

RESUMEN

BACKGROUND AND OBJECTIVES: Noise levels and room acoustic parameters at a tertiary referral hospital, Seoul National University Hospital (SNUH) in Korea, are investigated. MATERIALS AND METHODS: Through a questionnaire, acoustically problematic rooms are identified. Noise levels in emergency rooms (ERs) and intensive care units (ICUs) are measured over about three days. Acoustically critical and problematic rooms in the otolaryngology department are measured including examination rooms, operating rooms, nurse stations, receptions, and patient rooms. RESULTS: The A-weighted equivalent noise level, LAeq, ranges from 54 to 56 dBA, which is at least 10 dB lower than the noise levels of 65 to 73 dBA measured in American ERs. In an ICU, the noise level for the first night was 66 dBA, which came down to 56 dBA for the next day. The noise levels during three different ear surgeries vary from 57 to 62 dBA, depending on the use of surgical drills and suctions. The noise levels in a patient room is found to be 47 dBA, while the nurse stations and the receptions have high noise levels up to 64 dBA. The reverberation times in an operation room, examination room, and single patient room are found to be below 0.6 s. CONCLUSIONS: At SNUH, the nurse stations and receptions were found to be quite noisy. The ERs were quieter than in the previous studies. The measured reverberation times seemed low enough but some other nurse stations and examination rooms were not satisfactory according to the questionnaire.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...