Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
J Hepatobiliary Pancreat Sci ; 30(1): 122-132, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33991409

RESUMEN

BACKGROUND/PURPOSE: The current study aimed to develop a prediction model using a multi-marker panel as a diagnostic screening tool for pancreatic ductal adenocarcinoma. METHODS: Multi-center cohort of 1991 blood samples were collected from January 2011 to September 2019, of which 609 were normal, 145 were other cancer (colorectal, thyroid, and breast cancer), 314 were pancreatic benign disease, and 923 were pancreatic ductal adenocarcinoma. The automated multi-biomarker Enzyme-Linked Immunosorbent Assay kit was developed using three potential biomarkers: LRG1, TTR, and CA 19-9. Using a logistic regression model on a training data set, the predicted values for pancreatic ductal adenocarcinoma were obtained, and the result was classification into one of the three risk groups: low, intermediate, and high. The five covariates used to create the model were sex, age, and three biomarkers. RESULTS: Participants were categorized into four groups as normal (n = 609), other cancer (n = 145), pancreatic benign disease (n = 314), and pancreatic ductal adenocarcinoma (n = 923). The normal, other cancer, and pancreatic benign disease groups were clubbed into the non-pancreatic ductal adenocarcinoma group (n = 1068). The positive and negative predictive value, sensitivity, and specificity were 94.12, 90.40, 93.81, and 90.86, respectively. CONCLUSIONS: This study demonstrates a significant diagnostic performance of the multi-marker panel in distinguishing pancreatic ductal adenocarcinoma from normal and benign pancreatic disease states, as well as patients with other cancers.


Asunto(s)
Adenocarcinoma , Carcinoma Ductal Pancreático , Enfermedades Pancreáticas , Neoplasias Pancreáticas , Humanos , Biomarcadores de Tumor , Neoplasias Pancreáticas/patología , Carcinoma Ductal Pancreático/patología , Adenocarcinoma/diagnóstico , Adenocarcinoma/patología , Neoplasias Pancreáticas
2.
Front Med (Lausanne) ; 10: 1239789, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38239614

RESUMEN

Background: Understanding the clinical course and pivotal time points of COVID-19 aggravation is critical for enhancing patient monitoring. This retrospective, multi-center cohort study aims to identify these significant time points and associate them with potential risk factors, leveraging data from a sizable cohort with mild-to-moderate symptoms upon admission. Methods: This study included data from 1,696 COVID-19 patients with mild-to-moderate clinical severity upon admission across multiple hospitals in Daegu-Kyungpook Province (Daegu dataset) between February 18 and early March 2020 and 321 COVID-19 patients at Seoul Boramae Hospital (Boramae dataset) collected from February to July 2020. The approach involved: (1) identifying the optimal time point for aggravation using survival analyses with maximally selected rank statistics; (2) investigating the relationship between comorbidities and time to aggravation; and (3) developing prediction models through machine learning techniques. The models were validated internally among patients from the Daegu dataset and externally among patients from the Boramae dataset. Results: The Daegu dataset showed a mean age of 51.0 ± 19.6 years, with 8 days for aggravation and day 5 being identified as the pivotal point for survival. Contrary to previous findings, specific comorbidities had no notable impact on aggravation patterns. Prediction models utilizing factors including age and chest X-ray infiltration demonstrated promising performance, with the top model achieving an AUC of 0.827 in external validation for 5 days aggravation prediction. Conclusion: Our study highlights the crucial significance of the initial 5 days period post-admission in managing COVID-19 patients. The identification of this pivotal time frame, combined with our robust predictive models, provides valuable insights for early intervention strategies. This research underscores the potential of proactive monitoring and timely interventions in enhancing patient outcomes, particularly for those at risk of rapid aggravation. Our findings offer a meaningful contribution to understanding the COVID-19 clinical course and supporting healthcare providers in optimizing patient care and resource allocation.

3.
Front Public Health ; 10: 1007205, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36518574

RESUMEN

Background: As the worldwide spread of coronavirus disease 2019 (COVID-19) continues for a long time, early prediction of the maximum severity is required for effective treatment of each patient. Objective: This study aimed to develop predictive models for the maximum severity of hospitalized COVID-19 patients using artificial intelligence (AI)/machine learning (ML) algorithms. Methods: The medical records of 2,263 COVID-19 patients admitted to 10 hospitals in Daegu, Korea, from February 18, 2020, to May 19, 2020, were comprehensively reviewed. The maximum severity during hospitalization was divided into four groups according to the severity level: mild, moderate, severe, and critical. The patient's initial hospitalization records were used as predictors. The total dataset was randomly split into a training set and a testing set in a 2:1 ratio, taking into account the four maximum severity groups. Predictive models were developed using the training set and were evaluated using the testing set. Two approaches were performed: using four groups based on original severity levels groups (i.e., 4-group classification) and using two groups after regrouping the four severity level into two (i.e., binary classification). Three variable selection methods including randomForestSRC were performed. As AI/ML algorithms for 4-group classification, GUIDE and proportional odds model were used. For binary classification, we used five AI/ML algorithms, including deep neural network and GUIDE. Results: Of the four maximum severity groups, the moderate group had the highest percentage (1,115 patients; 49.5%). As factors contributing to exacerbation of maximum severity, there were 25 statistically significant predictors through simple analysis of linear trends. As a result of model development, the following three models based on binary classification showed high predictive performance: (1) Mild vs. Above Moderate, (2) Below Moderate vs. Above Severe, and (3) Below Severe vs. Critical. The performance of these three binary models was evaluated using AUC values 0.883, 0.879, and, 0.887, respectively. Based on results for each of the three predictive models, we developed web-based nomograms for clinical use (http://statgen.snu.ac.kr/software/nomogramDaeguCovid/). Conclusions: We successfully developed web-based nomograms predicting the maximum severity. These nomograms are expected to help plan an effective treatment for each patient in the clinical field.


Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , Inteligencia Artificial , Hospitalización , Aprendizaje Automático , Redes Neurales de la Computación
4.
Genomics Inform ; 20(2): e23, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35794703

RESUMEN

A survival prediction model has recently been developed to evaluate the prognosis of resected nonmetastatic pancreatic ductal adenocarcinoma based on a Cox model using two nationwide databases: Surveillance, Epidemiology and End Results (SEER) and Korea Tumor Registry System-Biliary Pancreas (KOTUS-BP). In this study, we applied two machine learning methods-random survival forests (RSF) and support vector machines (SVM)-for survival analysis and compared their prediction performance using the SEER and KOTUS-BP datasets. Three schemes were used for model development and evaluation. First, we utilized data from SEER for model development and used data from KOTUS-BP for external evaluation. Second, these two datasets were swapped by taking data from KOTUS-BP for model development and data from SEER for external evaluation. Finally, we mixed these two datasets half and half and utilized the mixed datasets for model development and validation. We used 9,624 patients from SEER and 3,281 patients from KOTUS-BP to construct a prediction model with seven covariates: age, sex, histologic differentiation, adjuvant treatment, resection margin status, and the American Joint Committee on Cancer 8th edition T-stage and N-stage. Comparing the three schemes, the performance of the Cox model, RSF, and SVM was better when using the mixed datasets than when using the unmixed datasets. When using the mixed datasets, the C-index, 1-year, 2-year, and 3-year time-dependent areas under the curve for the Cox model were 0.644, 0.698, 0.680, and 0.687, respectively. The Cox model performed slightly better than RSF and SVM.

5.
J Gastrointest Surg ; 26(8): 1705-1712, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35641810

RESUMEN

BACKGROUND: Sequential extended cholecystectomy (SEC) is currently recommended for T2 and higher gallbladder cancer (GBC) diagnosed after simple cholecystectomy (SC), but the value and timing of re-resection has not been fully studied. We evaluated the long-term oncologic outcomes of T2 GBC according to the type of surgery performed and investigated the optimal timing for SEC. METHODS: Patients diagnosed with T2 GBC who underwent SC, extended cholecystectomy (EC), or SEC between 2002 and 2017 were retrospectively reviewed. Those who underwent other surgical procedures or those with incomplete medical records were excluded. Overall survival (OS) and disease-free survival (DFS) according to the types of surgeries and prognostic factors for OS and DFS were analyzed. Survival analysis was done between groups that were divided according to the optimal cutoff time interval between SC and SEC based on DFS data. RESULTS: Of the 226 T2 GBC patients, 53, 173, and 44 underwent SC, EC, and SEC, respectively. The 5-year OS rate was 50.1%, 73.2%, and 78.7%, and the DFS rate was 46.8%, 66.3%, and 65.2% in the SC, EC, and SEC groups, respectively. EC (p = 0.001 and p = 0.001) and SEC (p = 0.007 and p = 0.065) groups had better 5-year OS and DFS rates than the SC group. Preoperative CA 19-9 level > 37 U/mL (HR 1.56; 95% CI 1.87-2.79; p < 0.001) and N1 stage (HR 2.88; 95% CI 1.76-4.71; p < 0.001) were associated with poorer prognosis. The optimal cutoff interval between SC and SEC was 28 days. Patients who underwent SEC ≤ 28 days after the initial cholecystectomy had better 5-year DFS rates than patients who underwent SEC after > 28 days (75.0% vs. 52.8%, p = 0.023). CONCLUSIONS: SEC is recommended for T2 GBC diagnosed after SC, because SEC provides better survival outcomes than SC alone. A time interval of less than 28 days to SEC is associated with an improved DFS.


Asunto(s)
Neoplasias de la Vesícula Biliar , Colecistectomía/métodos , Neoplasias de la Vesícula Biliar/patología , Humanos , Escisión del Ganglio Linfático , Estadificación de Neoplasias , Estudios Retrospectivos
6.
Bioinformatics ; 38(11): 3078-3086, 2022 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-35460238

RESUMEN

MOTIVATION: Pathway analyses have led to more insight into the underlying biological functions related to the phenotype of interest in various types of omics data. Pathway-based statistical approaches have been actively developed, but most of them do not consider correlations among pathways. Because it is well known that there are quite a few biomarkers that overlap between pathways, these approaches may provide misleading results. In addition, most pathway-based approaches tend to assume that biomarkers within a pathway have linear associations with the phenotype of interest, even though the relationships are more complex. RESULTS: To model complex effects including non-linear effects, we propose a new approach, Hierarchical structural CoMponent analysis using Kernel (HisCoM-Kernel). The proposed method models non-linear associations between biomarkers and phenotype by extending the kernel machine regression and analyzes entire pathways simultaneously by using the biomarker-pathway hierarchical structure. HisCoM-Kernel is a flexible model that can be applied to various omics data. It was successfully applied to three omics datasets generated by different technologies. Our simulation studies showed that HisCoM-Kernel provided higher statistical power than other existing pathway-based methods in all datasets. The application of HisCoM-Kernel to three types of omics dataset showed its superior performance compared to existing methods in identifying more biologically meaningful pathways, including those reported in previous studies. AVAILABILITY AND IMPLEMENTATION: The HisCoM-Kernel software is freely available at http://statgen.snu.ac.kr/software/HisCom-Kernel/. The RNA-seq data underlying this article are available at https://xena.ucsc.edu/, and the others will be shared on reasonable request to the corresponding author. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Programas Informáticos , Simulación por Computador , Fenotipo , RNA-Seq , Biomarcadores
7.
Sci Rep ; 11(1): 20495, 2021 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-34650119

RESUMEN

The outbreak of novel COVID-19 disease elicited a wide range of anti-contagion and economic policies like school closure, income support, contact tracing, and so forth, in the mitigation and suppression of the spread of the SARS-CoV-2 virus. However, a systematic evaluation of these policies has not been made. Here, 17 implemented policies from the Oxford COVID-19 Government Response Tracker dataset employed in 90 countries from December 31, 2019, to August 31, 2020, were analyzed. A Poisson regression model was applied to analyze the relationship between policies and daily confirmed cases using a generalized estimating equations approach. A lag is a fixed time displacement in time series data. With that, lagging (0, 3, 7, 10, and 14 days) was also considered during the analysis since the effects of policies implemented on a given day may affect the number of confirmed cases several days after implementation. The countries were divided into three groups depending on the number of waves of the pandemic observed in each country. Through subgroup analysis, we showed that with and without lagging, contact tracing and containment policies were significant for countries with two waves, while closing, economic, and health policies were significant for countries with three waves. Wave-specific analysis for each wave showed that significant health, economic, and containment policies varied across waves of the pandemic. Emergency investment in healthcare was consistently significant among the three groups of countries, while the Stringency index was significant among all waves of the pandemic. These findings may help in making informed decisions regarding whether, which, or when these policies should be intensified or lifted.


Asunto(s)
COVID-19/epidemiología , COVID-19/prevención & control , Control de Enfermedades Transmisibles , Trazado de Contacto , Gobierno , Política de Salud , Humanos , SARS-CoV-2/aislamiento & purificación
8.
Front Genet ; 12: 634922, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34267778

RESUMEN

In the "personalized medicine" era, one of the most difficult problems is identification of combined markers from different omics platforms. Many methods have been developed to identify candidate markers for each type of omics data, but few methods facilitate the identification of multiple markers on multi-omics platforms. microRNAs (miRNAs) is well known to affect only indirectly phenotypes by regulating mRNA expression and/or protein translation. To take into account this knowledge into practice, we suggest a miRNA-mRNA integration model for survival time analysis, called mimi-surv, which accounts for the biological relationship, to identify such integrated markers more efficiently. Through simulation studies, we found that the statistical power of mimi-surv be better than other models. Application to real datasets from Seoul National University Hospital and The Cancer Genome Atlas demonstrated that mimi-surv successfully identified miRNA-mRNA integrations sets associated with progression-free survival of pancreatic ductal adenocarcinoma (PDAC) patients. Only mimi-surv found miR-96, a previously unidentified PDAC-related miRNA in these two real datasets. Furthermore, mimi-surv was shown to identify more PDAC related miRNAs than other methods because it used the known structure for miRNA-mRNA regularization. An implementation of mimi-surv is available at http://statgen.snu.ac.kr/software/mimi-surv.

9.
Gut Liver ; 15(6): 912-921, 2021 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-33941710

RESUMEN

Background/Aims: Several prediction models for evaluating the prognosis of nonmetastatic resected pancreatic ductal adenocarcinoma (PDAC) have been developed, and their performances were reported to be superior to that of the 8th edition of the American Joint Committee on Cancer (AJCC) staging system. We developed a prediction model to evaluate the prognosis of resected PDAC and externally validated it with data from a nationwide Korean database. Methods: Data from the Surveillance, Epidemiology and End Results (SEER) database were utilized for model development, and data from the Korea Tumor Registry System-Biliary Pancreas (KOTUS-BP) database were used for external validation. Potential candidate variables for model development were age, sex, histologic differentiation, tumor location, adjuvant chemotherapy, and the AJCC 8th staging system T and N stages. For external validation, the concordance index (C-index) and time-dependent area under the receiver operating characteristic curve (AUC) were evaluated. Results: Between 2004 and 2016, data from 9,624 patients were utilized for model development, and data from 3,282 patients were used for external validation. In the multivariate Cox proportional hazard model, age, sex, tumor location, T and N stages, histologic differentiation, and adjuvant chemotherapy were independent prognostic factors for resected PDAC. After an exhaustive search and 10-fold cross validation, the best model was finally developed, which included all prognostic variables. The C-index, 1-year, 2-year, 3-year, and 5-year time-dependent AUCs were 0.628, 0.650, 0.665, 0.675, and 0.686, respectively. Conclusions: The survival prediction model for resected PDAC could provide quantitative survival probabilities with reliable performance. External validation studies with other nationwide databases are needed to evaluate the performance of this model.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Carcinoma Ductal Pancreático/patología , Humanos , Estadificación de Neoplasias , Páncreas/patología , Neoplasias Pancreáticas/epidemiología , Neoplasias Pancreáticas/patología , Pronóstico , Sistema de Registros , República de Corea/epidemiología
11.
Biology (Basel) ; 10(3)2021 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-33805810

RESUMEN

Novel biomarkers for early diagnosis of pancreatic cancer (PC) are necessary to improve prognosis. We aimed to discover candidate biomarkers by identifying compositional differences of microbiome between patients with PC (n = 38) and healthy controls (n = 52), using microbial extracellular vesicles (EVs) acquired from blood samples. Composition analysis was performed using 16S rRNA gene analysis and bacteria-derived EVs. Statistically significant differences in microbial compositions were used to construct PC prediction models after propensity score matching analysis to reduce other possible biases. Between-group differences in microbial compositions were identified at the phylum and genus levels. At the phylum level, three species (Verrucomicrobia, Deferribacteres, and Bacteroidetes) were more abundant and one species (Actinobacteria) was less abundant in PC patients. At the genus level, four species (Stenotrophomonas, Sphingomonas, Propionibacterium, and Corynebacterium) were less abundant and six species (Ruminococcaceae UCG-014, Lachnospiraceae NK4A136 group, Akkermansia, Turicibacter, Ruminiclostridium, and Lachnospiraceae UCG-001) were more abundant in PC patients. Using the best combination of these microbiome markers, we constructed a PC prediction model that yielded a high area under the receiver operating characteristic curve (0.966 and 1.000, at the phylum and genus level, respectively). These microbiome markers, which altered microbial compositions, are therefore candidate biomarkers for early diagnosis of PC.

12.
J Med Internet Res ; 23(4): e25852, 2021 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-33822738

RESUMEN

BACKGROUND: Limited information is available about the present characteristics and dynamic clinical changes that occur in patients with COVID-19 during the early phase of the illness. OBJECTIVE: This study aimed to develop and validate machine learning models based on clinical features to assess the risk of severe disease and triage for COVID-19 patients upon hospital admission. METHODS: This retrospective multicenter cohort study included patients with COVID-19 who were released from quarantine until April 30, 2020, in Korea. A total of 5628 patients were included in the training and testing cohorts to train and validate the models that predict clinical severity and the duration of hospitalization, and the clinical severity score was defined at four levels: mild, moderate, severe, and critical. RESULTS: Out of a total of 5601 patients, 4455 (79.5%), 330 (5.9%), 512 (9.1%), and 301 (5.4%) were included in the mild, moderate, severe, and critical levels, respectively. As risk factors for predicting critical patients, we selected older age, shortness of breath, a high white blood cell count, low hemoglobin levels, a low lymphocyte count, and a low platelet count. We developed 3 prediction models to classify clinical severity levels. For example, the prediction model with 6 variables yielded a predictive power of >0.93 for the area under the receiver operating characteristic curve. We developed a web-based nomogram, using these models. CONCLUSIONS: Our prediction models, along with the web-based nomogram, are expected to be useful for the assessment of the onset of severe and critical illness among patients with COVID-19 and triage patients upon hospital admission.


Asunto(s)
COVID-19/diagnóstico , COVID-19/epidemiología , Modelos Estadísticos , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Preescolar , Estudios de Cohortes , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , República de Corea/epidemiología , Proyectos de Investigación , Estudios Retrospectivos , SARS-CoV-2/aislamiento & purificación , Adulto Joven
13.
BioData Min ; 14(1): 17, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33648540

RESUMEN

BACKGROUND: For gene-gene interaction analysis, the multifactor dimensionality reduction (MDR) method has been widely employed to reduce multi-levels of gene-gene interactions into high- or low-risk groups using a binary attribute. For the survival phenotype, the Cox-MDR method has been proposed using a martingale residual of a Cox model since Surv-MDR was first proposed using a log-rank test statistic. Recently, the KM-MDR method was proposed using the Kaplan-Meier median survival time as a classifier. All three methods used the cross-validation procedure to identify single nucleotide polymorphism (SNP) using SNP interactions among all possible SNP pairs. Furthermore, these methods require the permutation test to verify the significance of the selected SNP pairs. However, the unified model-based multifactor dimensionality reduction method (UM-MDR) overcomes this shortcoming of MDR by unifying the significance testing with the MDR algorithm within the framework of the regression model. Neither cross-validation nor permutation testing is required to identify SNP by SNP interactions in the UM-MDR method. The UM-MDR method comprises two steps: in the first step, multi-level genotypes are classified into high- or low-risk groups, and an indicator variable for the high-risk group is defined. In the second step, the significance of the indicator variable of the high-risk group is tested in the regression model included with other adjusting covariates. The Cox-UMMDR method was recently proposed by combining Cox-MDR with UM-MDR to identify gene-gene interactions associated with the survival phenotype. In this study, we propose two simple methods either by combining KM-MDR with UM-MDR, called KM-UMMDR or by modifying Cox-UMMDR by adjusting for the covariate effect in step 1, rather than in step 2, a process called Cox2-UMMDR. The KM-UMMDR method allows the covariate effect to be adjusted for in the regression model of step 2, although KM-MDR cannot adjust for the covariate effect in the classification procedure of step 1. In contrast, Cox2-UMMDR differs from Cox-UMMDR in the sense that the martingale residuals are obtained from a Cox model by adjusting for the covariate effect in step 1 of Cox2-UMMDR whereas Cox-UMMDR adjusts for the covariate effect in the regression model in step 2. We performed simulation studies to compare the power of several methods such as KM-UMMDR, Cox-UMMDR, Cox2-UMMDR, Cox-MDR, and KM-MDR by considering the effect of covariates and the marginal effect of SNPs. We also analyzed a real example of Korean leukemia patient data for illustration and a short discussion is provided. RESULTS: In the simulation study, two different scenarios are considered: the first scenario compares the power of the cases with and without the covariate effect. The second scenario is to compare the power of cases with the main effect of SNPs versus without the main effect of SNPs. From the simulation results, Cox-UMMDR performs the best across all scenarios among KM-UMMDR, Cox2-UMMDR, Cox-MDR and KM-MDR. As expected, both Cox-UMMDR and Cox-MDR perform better than KM-UMMDR and KM-MDR when a covariate effect exists because the former adjusts for the covariate effect but the latter cannot. However, Cox2-UMMDR behaves similarly to KM-UMMDR and KM-MDR even though there is a covariate effect. This implies that the covariate effect would be more efficiently adjusted for in the regression model of the second step rather than under the classification procedure of the first step. When there is a main effect of any SNP, Cox-UMMDR, Cox2-UMMDR and KM-UMMDR perform better than Cox-MDR and KM-MDR if the main effects of SNPs are properly adjusted for in the regression model. From the simulation results of two different scenarios, Cox-UMMDR seems to be the most robust when there is either any covariate effect adjusting for or any SNP that has a main effect on the survival phenotype. In addition, the power of all methods decreased as the censoring fraction increased from 0.1 to 0.3, as heritability increased. The power of all methods seems to be greater under MAF = 0.2 than under MAF = 0.4. For illustration, both KM-UMMDR and Cox2-UMMDR were applied to identify SNP by SNP interactions with the survival phenotype to a real dataset of Korean leukemia patients. CONCLUSION: Both KM-UMMDR and Cox2-UMMDR were easily implemented by combining KM-MDR and Cox-MDR with UM-MDR, respectively, to detect significant gene-gene interactions associated with survival time without cross-validation and permutation testing. The simulation results demonstrate the utility of KM-UMMDR, Cox2-UMMDR and Cox-UMMDR, which outperforms Cox-MDR and KM-MDR when some SNPs with only marginal effects might mask the detection of causal epistasis. In addition, Cox-UMMDR, Cox2-UMMDR and Cox-MDR performed better than KM-UMMDR and KM-MDR when there were potentially confounding covariate effects.

14.
Ann Surg Treat Res ; 100(3): 144-153, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33748028

RESUMEN

PURPOSE: Diagnostic biomarkers of pancreatic ductal adenocarcinoma (PDAC) have been used for early detection to reduce its dismal survival rate. However, clinically feasible biomarkers are still rare. Therefore, in this study, we developed an automated multi-marker enzyme-linked immunosorbent assay (ELISA) kit using 3 biomarkers (leucine-rich alpha-2-glycoprotein [LRG1], transthyretin [TTR], and CA 19-9) that were previously discovered and proposed a diagnostic model for PDAC based on this kit for clinical usage. METHODS: Individual LRG1, TTR, and CA 19-9 panels were combined into a single automated ELISA panel and tested on 728 plasma samples, including PDAC (n = 381) and normal samples (n = 347). The consistency between individual panels of 3 biomarkers and the automated multi-panel ELISA kit were accessed by correlation. The diagnostic model was developed using logistic regression according to the automated ELISA kit to predict the risk of pancreatic cancer (high-, intermediate-, and low-risk groups). RESULTS: The Pearson correlation coefficient of predicted values between the triple-marker automated ELISA panel and the former individual ELISA was 0.865. The proposed model provided reliable prediction results with a positive predictive value of 92.05%, negative predictive value of 90.69%, specificity of 90.69%, and sensitivity of 92.05%, which all simultaneously exceed 90% cutoff value. CONCLUSION: This diagnostic model based on the triple ELISA kit showed better diagnostic performance than previous markers for PDAC. In the future, it needs external validation to be used in the clinic.

15.
Sci Rep ; 10(1): 20140, 2020 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-33208887

RESUMEN

Most models for predicting malignant pancreatic intraductal papillary mucinous neoplasms were developed based on logistic regression (LR) analysis. Our study aimed to develop risk prediction models using machine learning (ML) and LR techniques and compare their performances. This was a multinational, multi-institutional, retrospective study. Clinical variables including age, sex, main duct diameter, cyst size, mural nodule, and tumour location were factors considered for model development (MD). After the division into a MD set and a test set (2:1), the best ML and LR models were developed by training with the MD set using a tenfold cross validation. The test area under the receiver operating curves (AUCs) of the two models were calculated using an independent test set. A total of 3,708 patients were included. The stacked ensemble algorithm in the ML model and variable combinations containing all variables in the LR model were the most chosen during 200 repetitions. After 200 repetitions, the mean AUCs of the ML and LR models were comparable (0.725 vs. 0.725). The performances of the ML and LR models were comparable. The LR model was more practical than ML counterpart, because of its convenience in clinical use and simple interpretability.


Asunto(s)
Modelos Logísticos , Aprendizaje Automático , Neoplasias Intraductales Pancreáticas/patología , Anciano , Algoritmos , Diagnóstico por Computador/métodos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Quiste Pancreático/patología , Neoplasias Intraductales Pancreáticas/diagnóstico por imagen , Pronóstico , Estudios Retrospectivos , Factores de Riesgo
16.
Biomed Res Int ; 2020: 5282345, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32461998

RESUMEN

In this study, we propose a simple and computationally efficient method based on the multifactor dimensional reduction algorithm to identify gene-gene interactions associated with the survival phenotype. The proposed method, referred to as KM-MDR, uses the Kaplan-Meier median survival time as a classifier. The KM-MDR method classifies multilocus genotypes into a binary attribute for high- or low-risk groups using median survival time and replaces balanced accuracy with log-rank test statistics as a score to determine the best model. Through intensive simulation studies, we compared the power of KM-MDR with that of Surv-MDR, Cox-MDR, and AFT-MDR. It was found that KM-MDR has a similar power to that of Surv-MDR, with less computing time, and has comparable power to that of Cox-MDR and AFT-MDR, even when there is a covariate effect. Furthermore, we apply KM-MDR to a real dataset of ovarian cancer patients from The Cancer Genome Atlas (TCGA).


Asunto(s)
Algoritmos , Biología Computacional/métodos , Regulación de la Expresión Génica/genética , Estimación de Kaplan-Meier , Tasa de Supervivencia , Femenino , Humanos , Reducción de Dimensionalidad Multifactorial , Neoplasias Ováricas/genética , Neoplasias Ováricas/mortalidad , Fenotipo , Polimorfismo de Nucleótido Simple/genética
17.
Ann Neurol ; 87(5): 739-750, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32078179

RESUMEN

OBJECTIVE: We aimed to determine the association between striatal dopaminergic depletion, cerebral ß-amyloid deposition, and cognitive dysfunction in Lewy body disease (LBD). METHODS: This cross-sectional study recruited 48 LBD patients (30 with dementia, 18 with mild cognitive impairment) and 15 control subjects from a university-based hospital. We measured the striatal dopamine transporter (DAT) activity and regional ß-amyloid burden using N-(3-[18 F]fluoropropyl)-2ß-carbon ethoxy-3ß-(4-iodophenyl) nortropane (FP-CIT) positron emission tomography (PET) and 18 F-florbetaben (FBB) PET, respectively. The relationship between striatal FP-CIT uptake, regional cortical FBB uptake, and cognitive function scores was evaluated using path analyses. We also investigated the effects of striatal FP-CIT uptake and cortical FBB uptake on the interval between motor symptom and dementia onset. RESULTS: Reduced striatal FP-CIT uptake was associated with increased FBB uptake in the posterior cortical regions, most prominently in the occipital cortices. Reduced FP-CIT uptake in the anterior putamen was associated with visuospatial dysfunction with mediation of increased occipital FBB uptake. Reduced FP-CIT uptake in the posterior putamen and an increased parietal FBB uptake were independently associated with memory dysfunction. Reduced striatal FP-CIT uptake was associated with attention, language, and frontal/executive dysfunction, independent of amyloid deposition. Increased FBB uptake, especially in the parietal cortex, was associated with earlier onset of dementia. INTERPRETATION: Our results suggest that occipital ß-amyloid deposition may contribute to the association between striatal dopaminergic depletion and visuospatial dysfunction in LBD patients. Although the effects of reduced DAT activity are more prominent than those of ß-amyloid burden on cognitive dysfunction, the latter affects the onset of cognitive dysfunction. ANN NEUROL 2020;87:739-750.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Disfunción Cognitiva/etiología , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Enfermedad por Cuerpos de Lewy/metabolismo , Enfermedad por Cuerpos de Lewy/patología , Anciano , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Encéfalo/patología , Cognición/fisiología , Estudios Transversales , Femenino , Humanos , Enfermedad por Cuerpos de Lewy/complicaciones , Masculino , Tomografía de Emisión de Positrones
18.
Genes (Basel) ; 10(11)2019 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-31739607

RESUMEN

Although there have been several analyses for identifying cancer-associated pathways, based on gene expression data, most of these are based on single pathway analyses, and thus do not consider correlations between pathways. In this paper, we propose a hierarchical structural component model for pathway analysis of gene expression data (HisCoM-PAGE), which accounts for the hierarchical structure of genes and pathways, as well as the correlations among pathways. Specifically, HisCoM-PAGE focuses on the survival phenotype and identifies its associated pathways. Moreover, its application to real biological data analysis of pancreatic cancer data demonstrated that HisCoM-PAGE could successfully identify pathways associated with pancreatic cancer prognosis. Simulation studies comparing the performance of HisCoM-PAGE with other competing methods such as Gene Set Enrichment Analysis (GSEA), Global Test, and Wald-type Test showed HisCoM-PAGE to have the highest power to detect causal pathways in most simulation scenarios.


Asunto(s)
Carcinoma Ductal Pancreático/genética , Análisis de Datos , Regulación Neoplásica de la Expresión Génica , Modelos Genéticos , Neoplasias Pancreáticas/genética , Anciano , Algoritmos , Carcinoma Ductal Pancreático/mortalidad , Simulación por Computador , Bases de Datos Genéticas/estadística & datos numéricos , Conjuntos de Datos como Asunto , Estudios de Factibilidad , Femenino , Redes Reguladoras de Genes , Humanos , Masculino , Persona de Mediana Edad , Análisis de Secuencia por Matrices de Oligonucleótidos/estadística & datos numéricos , Neoplasias Pancreáticas/mortalidad , Pronóstico , RNA-Seq/estadística & datos numéricos , República de Corea/epidemiología , Análisis de Supervivencia
19.
Int J Mol Sci ; 20(8)2019 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-31010051

RESUMEN

Interleukin (IL)-32θ, a newly identified IL-32 isoform, has been reported to exert pro-inflammatory effects through the association with protein kinase C delta (PKCδ). In this study, we further examined the effects of IL-32θ on IL-13 and IL-13Rα2 expression and the related mechanism in THP-1 cells. Upon stimulating IL-32θ-expressing and non-expressing cells with phorbol 12-myristate 13-acetate (PMA), the previous microarray analysis showed that IL-13Rα2 and IL-13 mRNA expression were significantly decreased by IL-32θ. The protein expression of these factors was also confirmed to be down-regulated. The nuclear translocation of transcription factors STAT3 and STAT6, which are necessary for IL-13Rα2 and IL-13 promoter activities, was suppressed by IL-32θ. Additionally, a direct association was found between IL-32θ, PKCδ, and signal transducer and activator of transcription 3 (STAT3), but not STAT6, revealing that IL-32θ might act mainly through STAT3 and indirectly affect STAT6. Moreover, the interaction of IL-32θ with STAT3 requires PKCδ, since blocking PKCδ activity eliminated the interaction and consequently limited the inhibitory effect of IL-32θ on STAT3 activity. Interfering with STAT3 or STAT6 binding by decoy oligodeoxynucleotides (ODNs) identified that IL-32θ had additive effects with the STAT3 decoy ODN to suppress IL-13 and IL-13Rα2 mRNA expression. Taken together, our data demonstrate the intracellular interaction of IL-32θ, PKCδ, and STAT3 to regulate IL-13 and IL-13Rα2 synthesis, supporting the role of IL-32θ as an inflammatory modulator.


Asunto(s)
Subunidad alfa2 del Receptor de Interleucina-13/metabolismo , Interleucina-13/metabolismo , Interleucinas/farmacología , Monocitos/metabolismo , Proteína Quinasa C-delta/metabolismo , Factor de Transcripción STAT3/metabolismo , Sitios de Unión , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/genética , Humanos , Subunidad alfa2 del Receptor de Interleucina-13/genética , Interleucinas/metabolismo , Modelos Biológicos , Monocitos/efectos de los fármacos , Regiones Promotoras Genéticas/genética , Unión Proteica/efectos de los fármacos , Factor de Transcripción STAT6/metabolismo , Transducción de Señal/efectos de los fármacos
20.
Genomics Inform ; 17(4): e41, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31896241

RESUMEN

Survival analysis mainly deals with the time to event, including death, onset of disease, and bankruptcy. The common characteristic of survival analysis is that it contains "censored" data, in which the time to event cannot be completely observed, but instead represents the lower bound of the time to event. Only the occurrence of either time to event or censoring time is observed. Many traditional statistical methods have been effectively used for analyzing survival data with censored observations. However, with the development of high-throughput technologies for producing "omics" data, more advanced statistical methods, such as regularization, should be required to construct the predictive survival model with high-dimensional genomic data. Furthermore, machine learning approaches have been adapted for survival analysis, to fit nonlinear and complex interaction effects between predictors, and achieve more accurate prediction of individual survival probability. Presently, since most clinicians and medical researchers can easily assess statistical programs for analyzing survival data, a review article is helpful for understanding statistical methods used in survival analysis. We review traditional survival methods and regularization methods, with various penalty functions, for the analysis of high-dimensional genomics, and describe machine learning techniques that have been adapted to survival analysis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA