Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38766022

RESUMEN

Lachnospiraceae members were highly detected in dysbiotic IL-10 KO mice that displayed similar physiological outcomes as control mice. Lachnospiraceae is a highly diverse family of microbes that have been shown to display both commensal and pathogenic characteristics in the colon environment. We investigated the impact of genetic variation in five Lachnospiraceae strains on lowering cellular inflammation and ROS levels. Cell free spent media (CFSM) from Eubacterium rectale resulted in lowered ROS, and nitric oxide levels in stressed colon cells. We demonstrated through an array of multi-omics and molecular techniques that glutathione (GSH) biosynthesized by E. rectale was able to alleviate host ROS damage. We further showed downregulation of cell stress and immune response genes by host RNA sequencing, which is evidence that E. rectale microbial products promote recovery and alleviate ROS stress.

2.
J Exp Biol ; 227(1)2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38073469

RESUMEN

The gut microbiome is known to influence and have regulatory effects in diverse physiological functions of host animals, but only recently has the relationship between host thermal biology and gut microbiota been explored. Here, we examined how early-life manipulations of the gut microbiota in larval amphibians influenced their critical thermal maximum (CTmax) at different acclimation temperatures. We stripped the resident microbiome from egg masses of wild-caught wood frogs (Lithobates sylvaticus) via an antibiotic wash, and then inoculated the eggs with pond water (control), no inoculation, or the intestinal microbiota of another species that has a wider thermal tolerance - green frogs (Lithobates clamitans). We predicted that this cross-species transplant would increase the CTmax of the recipient wood frog larvae relative to the other treatments. In line with this prediction, green frog microbiome-recipient larvae had the highest CTmax while those with no inoculum had the lowest CTmax. Both the microbiome treatment and acclimation temperature significantly influenced the larval gut microbiota communities and α-diversity indices. Green frog microbiome-inoculated larvae were enriched in Rikenellaceae relative to the other treatments, which produce short-chain fatty acids and could contribute to greater energy availability and enhanced heat tolerance. Larvae that received no inoculation had a higher relative abundance of potentially pathogenic Aeromonas spp., which negatively affects host health and performance. Our results are the first to show that cross-species gut microbiota transplants alter heat tolerance in a predictable manner. This finding has repercussions for the conservation of species that are threatened by climate change and demonstrates a need to further explore the mechanisms by which the gut microbiota modulate host thermal tolerance.


Asunto(s)
Microbioma Gastrointestinal , Termotolerancia , Animales , Larva/fisiología , Aclimatación , Ranidae
3.
mSystems ; 8(6): e0070323, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-37909786

RESUMEN

IMPORTANCE: Inflammatory bowel disease is associated with an increase in Enterobacteriaceae and Enterococcus species; however, the specific mechanisms are unclear. Previous research has reported the associations between microbiota and inflammation, here we investigate potential pathways that specific bacteria populations use to drive gut inflammation. Richie et al. show that these bacterial populations utilize an alternate sulfur metabolism and are tolerant of host-derived immune-response products. These metabolic pathways drive host gut inflammation and fuel over colonization of these pathobionts in the dysbiotic colon. Cultured isolates from dysbiotic mice indicated faster growth supplemented with L-cysteine, showing these microbes can utilize essential host nutrients.


Asunto(s)
Colitis , Microbioma Gastrointestinal , Enfermedades Inflamatorias del Intestino , Ratones , Animales , Aminoácidos , Colitis/microbiología , Inflamación , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Bacterias
4.
bioRxiv ; 2023 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-37987001

RESUMEN

Background: Global change has accelerated the nitrogen cycle. Soil nitrogen stock degradation by microbes leads to the release of various gases, including nitrous oxide (N2O), a potent greenhouse gas. Ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) participate in the soil nitrogen cycle, producing N2O. There are outstanding questions regarding the impact of environmental processes such as precipitation and land use legacy on AOA and AOB structurally, compositionally, and functionally. To answer these questions, we analyzed field soil cores and soil monoliths under varying precipitation profiles and land legacies. Results: We resolved 28 AOA and AOB metagenome assembled genomes (MAGs) and found that they were significantly higher in drier environments and differentially abundant in different land use legacies. We further dissected AOA and AOB functional potentials to understand their contribution to nitrogen transformation capabilities. We identified the involvement of stress response genes, differential metabolic functional potentials, and subtle population dynamics under different environmental parameters for AOA and AOB. We observed that AOA MAGs lacked a canonical membrane-bound electron transport chain and F-type ATPase but possessed A/A-type ATPase, while AOB MAGs had a complete complex III module and F-type ATPase, suggesting differential survival strategies of AOA and AOB. Conclusions: The outcomes from this study will enable us to comprehend how drought-like environments and land use legacies could impact AOA- and AOB-driven nitrogen transformations in soil.

5.
Microbiol Spectr ; : e0020823, 2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37606438

RESUMEN

Due to climate change, drought frequencies and severities are predicted to increase across the United States. Plant responses and adaptation to stresses depend on plant genetic and environmental factors. Understanding the effect of those factors on plant performance is required to predict species' responses to environmental change. We used reciprocal gardens planted with distinct regional ecotypes of the perennial grass Andropogon gerardii adapted to dry, mesic, and wet environments to characterize their rhizosphere communities using 16S rRNA metabarcode sequencing. Even though the local microbial pool was the main driver of these rhizosphere communities, the significant plant ecotypic effect highlighted active microbial recruitment in the rhizosphere, driven by ecotype or plant genetic background. Our data also suggest that ecotypes planted at their homesites were more successful in recruiting rhizosphere community members that were unique to the location. The link between the plants' homesite and the specific local microbes supported the "home field advantage" hypothesis. The unique homesite microbes may represent microbial specialists that are linked to plant stress responses. Furthermore, our data support ecotypic variation in the recruitment of congeneric but distinct bacterial variants, highlighting the nuanced plant ecotype effects on rhizosphere microbiome recruitment. These results improve our understanding of the complex plant host-soil microbe interactions and should facilitate further studies focused on exploring the functional potential of recruited microbes. Our study has the potential to aid in predicting grassland ecosystem responses to climate change and impact restoration management practices to promote grassland sustainability. IMPORTANCE In this study, we used reciprocal gardens located across a steep precipitation gradient to characterize rhizosphere communities of distinct dry, mesic, and wet regional ecotypes of the perennial grass Andropogon gerardii. We used 16S rRNA amplicon sequencing and focused oligotyping analysis and showed that even though location was the main driver of the microbial communities, ecotypes could potentially recruit distinct bacterial populations. We showed that different A. gerardii ecotypes were more successful in overall community recruitment and recruitment of microbes unique to the "home" environment, when growing at their "home site." We found evidence for "home-field advantage" interactions between the host and host-root-associated bacterial communities, and the capability of ecotypes to recruit specialized microbes that were potentially linked to plant stress responses. Our study aids in a better understanding of the factors that affect plant adaptation, improve management strategies, and predict grassland function under the changing climate.

6.
Anim Microbiome ; 5(1): 35, 2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37461084

RESUMEN

BACKGROUND: Archaea perform critical roles in the microbiome system, including utilizing hydrogen to allow for enhanced microbiome member growth and influencing overall host health. With the majority of microbiome research focusing on bacteria, the functions of archaea are largely still under investigation. Understanding methanogenic functions during the host lifetime will add to the limited knowledge on archaeal influence on gut and host health. In our study, we determined lifelong archaea dynamics, including detection and methanogenic functions, while assessing global, temporal and host distribution of our novel archaeal metagenome-assembled genomes (MAGs). We followed 7 monogastric swine throughout their life, from birth to adult (1-156 days of age), and collected feces at 22 time points. The samples underwent gDNA extraction, Illumina sequencing, bioinformatic quality and assembly processes, MAG taxonomic assignment and functional annotation. MAGs were utilized in downstream phylogenetic analysis for global, temporal and host distribution in addition to methanogenic functional potential determination. RESULTS: We generated 1130 non-redundant MAGs, representing 588 unique taxa at the species level, with 8 classified as methanogenic archaea. The taxonomic classifications were as follows: orders Methanomassiliicoccales (5) and Methanobacteriales (3); genera UBA71 (3), Methanomethylophilus (1), MX-02 (1), and Methanobrevibacter (3). We recovered the first US swine Methanobrevibacter UBA71 sp006954425 and Methanobrevibacter gottschalkii MAGs. The Methanobacteriales MAGs were identified primarily during the young, preweaned host whereas Methanomassiliicoccales primarily in the adult host. Moreover, we identified our methanogens in metagenomic sequences from Chinese swine, US adult humans, Mexican adult humans, Swedish adult humans, and paleontological humans, indicating that methanogens span different hosts, geography and time. We determined complete metabolic pathways for all three methanogenic pathways: hydrogenotrophic, methylotrophic, and acetoclastic. This study provided the first evidence of acetoclastic methanogenesis in archaea of monogastric hosts which indicated a previously unknown capability for acetate utilization in methanogenesis for monogastric methanogens. Overall, we hypothesized that the age-associated detection patterns were due to differential substrate availability via the host diet and microbial metabolism, and that these methanogenic functions are likely crucial to methanogens across hosts. This study provided a comprehensive, genome-centric investigation of monogastric-associated methanogens which will further improve our understanding of microbiome development and functions.

7.
Sci Rep ; 13(1): 12241, 2023 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-37507482

RESUMEN

Although many therapeutic options are available for inflammatory bowel disease (IBD), 5-aminosalicylic acid (5-ASA) is still the key medication, particularly for ulcerative colitis (UC). However, the mechanism of action of 5-ASA remains unclear. The intestinal microbiota plays an important role in the pathophysiology of IBD, and we hypothesized that 5-ASA alters the intestinal microbiota, which promotes the anti-inflammatory effect of 5-ASA. Because intestinal inflammation affects the gut microbiota and 5-ASA can change the severity of inflammation, assessing the impact of inflammation and 5-ASA on the gut microbiota is not feasible in a clinical study of patients with UC. Therefore, we undertook a translational study to demonstrate a causal link between 5-ASA administration and alterations of the intestinal microbiota. Furthermore, by rigorously controlling environmental confounders and excluding the effect of 5-ASA itself with a vertical transmission model, we observed that the gut microbiota altered by 5-ASA affected host mucosal immunity and decreased susceptibility to dextran sulfate sodium-induce colitis. Although the potential intergenerational transmission of epigenetic changes needs to be considered in this study, these findings suggested that alterations in the intestinal microbiota induced by 5-ASA directed the host immune system towards an anti-inflammatory state, which underlies the mechanism of 5-ASA efficacy.


Asunto(s)
Colitis Ulcerosa , Colitis , Microbioma Gastrointestinal , Enfermedades Inflamatorias del Intestino , Humanos , Animales , Ratones , Mesalamina/efectos adversos , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Antiinflamatorios/farmacología , Sulfato de Dextran/efectos adversos , Modelos Animales de Enfermedad , Colon , Ratones Endogámicos C57BL
8.
Cell ; 186(9): 1846-1862.e26, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-37028428

RESUMEN

The use of probiotics by cancer patients is increasing, including among those undergoing immune checkpoint inhibitor (ICI) treatment. Here, we elucidate a critical microbial-host crosstalk between probiotic-released aryl hydrocarbon receptor (AhR) agonist indole-3-aldehyde (I3A) and CD8 T cells within the tumor microenvironment that potently enhances antitumor immunity and facilitates ICI in preclinical melanoma. Our study reveals that probiotic Lactobacillus reuteri (Lr) translocates to, colonizes, and persists within melanoma, where via its released dietary tryptophan catabolite I3A, it locally promotes interferon-γ-producing CD8 T cells, thereby bolstering ICI. Moreover, Lr-secreted I3A was both necessary and sufficient to drive antitumor immunity, and loss of AhR signaling within CD8 T cells abrogated Lr's antitumor effects. Further, a tryptophan-enriched diet potentiated both Lr- and ICI-induced antitumor immunity, dependent on CD8 T cell AhR signaling. Finally, we provide evidence for a potential role of I3A in promoting ICI efficacy and survival in advanced melanoma patients.


Asunto(s)
Limosilactobacillus reuteri , Melanoma , Microambiente Tumoral , Humanos , Dieta , Inhibidores de Puntos de Control Inmunológico , Limosilactobacillus reuteri/metabolismo , Melanoma/terapia , Triptófano/metabolismo , Linfocitos T CD8-positivos/inmunología , Receptores de Hidrocarburo de Aril/agonistas
9.
Genome Biol ; 24(1): 78, 2023 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-37069665

RESUMEN

BACKGROUND: Changes in microbial community composition as a function of human health and disease states have sparked remarkable interest in the human gut microbiome. However, establishing reproducible insights into the determinants of microbial succession in disease has been a formidable challenge. RESULTS: Here we use fecal microbiota transplantation (FMT) as an in natura experimental model to investigate the association between metabolic independence and resilience in stressed gut environments. Our genome-resolved metagenomics survey suggests that FMT serves as an environmental filter that favors populations with higher metabolic independence, the genomes of which encode complete metabolic modules to synthesize critical metabolites, including amino acids, nucleotides, and vitamins. Interestingly, we observe higher completion of the same biosynthetic pathways in microbes enriched in IBD patients. CONCLUSIONS: These observations suggest a general mechanism that underlies changes in diversity in perturbed gut environments and reveal taxon-independent markers of "dysbiosis" that may explain why widespread yet typically low-abundance members of healthy gut microbiomes can dominate under inflammatory conditions without any causal association with disease.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Humanos , Trasplante de Microbiota Fecal , Metagenómica , Aminoácidos , Heces
10.
Fam Syst Health ; 41(1): 54-60, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36951698

RESUMEN

INTRODUCTION: The pandemic has significantly impacted medical residents. We created and implemented a biannual biopsychosocial-spiritual Wellness Check Program (WCP) to help internal medicine residents self-assess for burnout, enhance resilience, and to promote early identification and referral to mental health services. We report the preliminary findings from our quality improvement pilot effort at Loma Linda University Health (LLUH). METHOD: Residents participated in biannual sessions with licensed therapists employed by Loma Linda University, Office of Physician Vitality (OPV). Visits consisted of an evidence-guided discussion about general wellbeing, relationships, family life, coping strategies, and referrals. Archived, confidential WCP session notes between July 1, 2019 and December 31, 2019 were reviewed and a simple tally system was used to record coping strategies, concerns, and referrals made. RESULTS: Partner and family issues were the most prevalent concern, followed by mental health issues, and relationships with colleagues, faculty, or staff. Most residents described several coping strategies: 66.36% listed two to three, and 26.36% listed four or more. Referrals were offered to community or employee assistance program therapists, follow-up with the OPV, psychiatry, couple counseling, given Web based psychoeducational links, or referred to their program director. Nine other residencies requested the WCP providing anecdotal evidence of its feasibility and usefulness. DISCUSSION: As the pandemic surged, these visits normalized reflections about wellbeing, intentional coping strategies, and resilience practices. We continue to gather data to refine and further structure this program and help residents monitor and address their resilience needs and wellness. (PsycInfo Database Record (c) 2023 APA, all rights reserved).


Asunto(s)
Agotamiento Profesional , Internado y Residencia , Servicios de Salud Mental , Humanos , Adaptación Psicológica , Promoción de la Salud , Agotamiento Profesional/prevención & control , Agotamiento Profesional/psicología , Medicina Interna/educación
11.
Microorganisms ; 11(2)2023 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-36838283

RESUMEN

The oral microbiome is an emerging field that has been a topic of discussion since the development of next generation sequencing and the implementation of the human microbiome project. This article reviews the current literature surrounding the oral microbiome, briefly highlighting most recent methods of microbiome characterization including cutting edge omics, databases for the microbiome, and areas with current gaps in knowledge. This article also describes reports on microorganisms contained in the oral microbiome which include viruses, archaea, fungi, and bacteria, and provides an in-depth analysis of their significant roles in tissue homeostasis. Finally, we detail key bacteria involved in oral disease, including oral cancer, and the current research surrounding their role in stimulation of inflammatory cytokines, the role of gingival crevicular fluid in periodontal disease, the creation of a network of interactions between microorganisms, the influence of the planktonic microbiome and cospecies biofilms, and the implications of antibiotic resistance. This paper provides a comprehensive literature analysis while also identifying gaps in knowledge to enable future studies to be conducted.

13.
Orphanet J Rare Dis ; 17(1): 416, 2022 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-36376984

RESUMEN

BACKGROUND: Individuals with familial adenomatous polyposis (FAP) harbor numerous polyps with inevitable early progression to colon cancer. Complex microbiotic-tumor microenvironment perturbations suggest a dysbiotic relationship between polyp and microbiome. In this study, we performed comprehensive analyses of stool and tissue microbiome of pediatric FAP subjects and compared with unaffected cohabiting relatives through 16S V4 region amplicon sequencing and machine learning platforms. RESULTS: Within our FAP and control patient population, Firmicutes and Bacteroidetes were the predominant phyla in the tissue and stool samples, while Proteobacteria dominated the polyp/non-polyp mucosa. A decline in Faecalibacterium in polyps contrasted with a decline in Bacteroides in the FAP stool. The alpha- and beta-diversity indices differed significantly within the polyp/non-polyp groups, with a concurrent shift towards lower diversity in polyps. In a limited 3-year longitudinal study, the relative abundance of Proteobacteria and Fusobacteria was higher in polyps compared to non-polyp and stool specimens over time. Through machine learning, we discovered that Archaeon_enrichment_culture_clone_A13, Micrococcus_luteus, and Eubacterium_hallii in stool and PL-11B10, S1-80, and Blastocatellaceae in tissues were significantly different between patients with and without polyps. CONCLUSIONS: Detection of certain bacterial concentrations within stool or biopsied polyps could serve as adjuncts to current screening modalities to help identify higher-risk patients.


Asunto(s)
Poliposis Adenomatosa del Colon , Microbiota , Humanos , Niño , Estudios Longitudinales , Poliposis Adenomatosa del Colon/epidemiología , Poliposis Adenomatosa del Colon/patología , Biopsia , Microambiente Tumoral
14.
BMC Genomics ; 23(1): 784, 2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36451103

RESUMEN

BACKGROUND: Climate change will result in more frequent droughts that can impact soil-inhabiting microbiomes (rhizobiomes) in the agriculturally vital North American perennial grasslands. Rhizobiomes have contributed to enhancing drought resilience and stress resistance properties in plant hosts. In the predicted events of more future droughts, how the changing rhizobiome under environmental stress can impact the plant host resilience needs to be deciphered. There is also an urgent need to identify and recover candidate microorganisms along with their functions, involved in enhancing plant resilience, enabling the successful development of synthetic communities. RESULTS: In this study, we used the combination of cultivation and high-resolution genomic sequencing of bacterial communities recovered from the rhizosphere of a tallgrass prairie foundation grass, Andropogon gerardii. We cultivated the plant host-associated microbes under artificial drought-induced conditions and identified the microbe(s) that might play a significant role in the rhizobiome of Andropogon gerardii under drought conditions. Phylogenetic analysis of the non-redundant metagenome-assembled genomes (MAGs) identified a bacterial genome of interest - MAG-Pseudomonas. Further metabolic pathway and pangenome analyses recovered genes and pathways related to stress responses including ACC deaminase; nitrogen transformation including assimilatory nitrate reductase in MAG-Pseudomonas, which might be associated with enhanced drought tolerance and growth for Andropogon gerardii. CONCLUSIONS: Our data indicated that the metagenome-assembled MAG-Pseudomonas has the functional potential to contribute to the plant host's growth during stressful conditions. Our study also suggested the nitrogen transformation potential of MAG-Pseudomonas that could impact Andropogon gerardii growth in a positive way. The cultivation of MAG-Pseudomonas sets the foundation to construct a successful synthetic community for Andropogon gerardii. To conclude, stress resilience mediated through genes ACC deaminase, nitrogen transformation potential through assimilatory nitrate reductase in MAG-Pseudomonas could place this microorganism as an important candidate of the rhizobiome aiding the plant host resilience under environmental stress. This study, therefore, provided insights into the MAG-Pseudomonas and its potential to optimize plant productivity under ever-changing climatic patterns, especially in frequent drought conditions.


Asunto(s)
Andropogon , Poa , Rizosfera , Sequías , Pseudomonas , Filogenia , Nitrógeno , Nitrato Reductasas
15.
Sci Rep ; 12(1): 15080, 2022 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-36064754

RESUMEN

The gut microbiome plays important roles in the maintenance of health and pathogenesis of diseases in the growing host. In order to fully comprehend the interplay of the gut microbiome and host, a foundational understanding of longitudinal microbiome, including bacteria and fungi, development is necessary. In this study, we evaluated enteric microbiome and host dynamics throughout the lifetime of commercial swine. We collected a total of 234 fecal samples from ten pigs across 31 time points in three developmental stages (5 preweaning, 15 nursery, and 11 growth adult). We then performed 16S rRNA gene amplicon sequencing for bacterial profiles and qPCR for the fungus Kazachstania slooffiae. We identified distinct bacteriome clustering according to the host developmental stage, with the preweaning stage exhibiting low bacterial diversity and high volatility amongst samples. We further identified clusters of bacteria that were considered core, increasing, decreasing or stage-associated throughout the host lifetime. Kazachstania slooffiae was absent in the preweaning stage but peaked during the nursery stage of the host. We determined that all host growth stages contained negative correlations between K. slooffiae and bacterial genera, with only the growth adult stage containing positive correlates. Our stage-associated bacteriome results suggested the neonate contained a volatile gut microbiome. Upon weaning, the microbiome became relatively established with comparatively fewer perturbations in microbiome composition. Differential analysis indicated bacteria might play distinct stage-associated roles in metabolism and pathogenesis. The lack of positive correlates and shared K. slooffiae-bacteria interactions between stages warranted future research into the interactions amongst these kingdoms for host health. This research is foundational for understanding how bacteria and fungi develop singularly, as well as within a complex ecosystem in the host's gut environment.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Animales , Bacterias , Heces/microbiología , Hongos/genética , ARN Ribosómico 16S/genética , Saccharomycetales , Porcinos
16.
mSystems ; 7(5): e0029322, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-35968975

RESUMEN

Animals colonized with a defined microbiota represent useful experimental systems to investigate microbiome function. The altered Schaedler flora (ASF) represents a consortium of eight murine bacterial species that have been used for more than 4 decades where the study of mice with a reduced microbiota is desired. In contrast to germ-free mice, or mice colonized with only one or two species, ASF mice show the normal gut structure and immune system development. To further expand the utility of the ASF, we have developed technical and bioinformatic resources to enable a systems-based analysis of microbiome function using this model. Here, we highlighted four distinct applications of these resources that enable and improve (i) measurements of the abundance of each ASF member by quantitative PCR; (ii) exploration and comparative analysis of ASF genomes and the metabolic pathways they encode that comprise the entire gut microbiome; (iii) global transcriptional profiling to identify genes whose expression responds to environmental changes within the gut; and (iv) discovery of genetic changes resulting from the evolutionary adaptation of the microbiota. These resources were designed to be accessible to a broad community of researchers that, in combination with conventionally-reared mice (i.e., with complex microbiome), should contribute to our understanding of microbiome structure and function. IMPORTANCE Improved experimental systems are needed to advance our understanding of how the gut microbiome influences processes of the mammalian host as well as microbial community structure and function. An approach that is receiving considerable attention is the use of animal models that harbor a stable microbiota of known composition, i.e., defined microbiota, which enables control over an otherwise highly complex and variable feature of mammalian biology. The altered Schaedler flora (ASF) consortium is a well-established defined microbiota model, where mice are stably colonized with 8 distinct murine bacterial species. To take better advantage of the ASF, we established new experimental and bioinformatics resources for researchers to make better use of this model as an experimental system to study microbiome function.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Animales , Ratones , Microbiota/genética , Modelos Animales de Enfermedad , Microbioma Gastrointestinal/genética , Bacterias/genética , Reacción en Cadena de la Polimerasa , Mamíferos/genética
17.
Microbiol Spectr ; 10(3): e0239121, 2022 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-35442065

RESUMEN

Environmental change, especially frequent droughts, is predicted to detrimentally impact the North American perennial grasslands. Consistent dry spells will affect plant communities as well as their associated rhizobiomes, possibly altering the plant host performance under environmental stress. Therefore, there is a need to understand the impact of drought on the rhizobiome, and how the rhizobiome may modulate host performance and ameliorate its response to drought stress. In this study, we analyzed bacterial and fungal communities in the rhizospheres of three ecotypes (dry, mesic, and wet) of dominant prairie grass, Andropogon gerardii. The ecotypes were established in 2010 in a common garden design and grown for a decade under persistent dry conditions at the arid margin of the species' range in Colby, Kansas. The experiment aimed to answer whether and to what extent do the different ecotypes maintain or recruit distinct rhizobiomes after 10 years in an arid climate. In order to answer this question, we screened the bacterial and fungal rhizobiome profiles of the ecotypes under the arid conditions of western Kansas as a surrogate for future climate environmental stress using 16S rRNA and ITS2 metabarcoding sequencing. Under these conditions, bacterial communities differed compositionally among the A. gerardii ecotypes, whereas the fungal communities did not. The ecotypes were instrumental in driving the differences among bacterial rhizobiomes, as the ecotypes maintained distinct bacterial rhizobiomes even after 10 years at the edge of the host species range. This study will aid us to optimize plant productivity through the use of different ecotypes under future abiotic environmental stress, especially drought. IMPORTANCE In this study, we used a 10-year long reciprocal garden system, and reports that different ecotypes (dry, mesic, and wet) of dominant prairie grass, Andropogon gerardii can maintain or recruit distinct bacterial but not fungal rhizobiomes after 10 years in an arid environment. We used both 16S rRNA and ITS2 amplicons to analyze the bacterial and fungal communities in the rhizospheres of the respective ecotypes. We showed that A. gerardii might regulate the bacterial community to adapt to the arid environment, in which some ecotypes were not adapted to. Our study also suggested a possible tradeoff between the generalist and the specialist bacterial communities in specific environments, which could benefit the plant host. Our study will provide insights into the plant host regulation of the rhizosphere bacterial and fungal communities, especially during frequent drought conditions anticipated in the future.


Asunto(s)
Andropogon , Micobioma , Andropogon/genética , Bacterias/genética , Ecotipo , Poaceae/genética , ARN Ribosómico 16S/genética , Rizosfera , Microbiología del Suelo
18.
Comput Struct Biotechnol J ; 20: 766-778, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35126886

RESUMEN

The clinical manifestation of the recent pandemic COVID-19, caused by the novel SARS-CoV-2 virus, varies from mild to severe respiratory illness. Although environmental, demographic and co-morbidity factors have an impact on the severity of the disease, contribution of the mutations in each of the viral genes towards the degree of severity needs a deeper understanding for designing a better therapeutic approach against COVID-19. Open Reading Frame-3a (ORF3a) protein has been found to be mutated at several positions. In this work, we have studied the effect of one of the most frequently occurring mutants, D155Y of ORF3a protein, found in Indian COVID-19 patients. Using computational simulations we demonstrated that the substitution at 155th changed the amino acids involved in salt bridge formation, hydrogen-bond occupancy, interactome clusters, and the stability of the protein compared with the other substitutions found in Indian patients. Protein-protein docking using HADDOCK analysis revealed that substitution D155Y weakened the binding affinity of ORF3a with caveolin-1 compared with the other substitutions, suggesting its importance in the overall stability of ORF3a-caveolin-1 complex, which may modulate the virulence property of SARS-CoV-2.

19.
Front Microbiol ; 13: 801864, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35154052

RESUMEN

Microbial interactions in natural environments are intricately complex. High numbers and rich diversity of microorganisms, along with compositional heterogeneities complicate the cause. It is essential to simplify these complex communities to understand the microbial interactions. We proposed a concept of "simple state community," which represents a subset of microbes and/or microbial functions of the original population that is necessary to build a stable community. By combining microbial culturing and high-throughput sequencing, we can better understand microbe-microbe and microbe-host interactions. To support our proposed model, we used carbon-based and nitrogen-based media to capture the simple state communities. We used 16S rRNA amplicon sequencing and assigned taxonomic identity to the bacterial populations before and after simple state communities. We showed that simple state communities were a subset of the original microbial communities at both phyla and genera level. We further used shotgun metagenomics to gain insights into the functional potential of the assembled simple state communities. Our proposed model supported the goal of simplifying the complex communities across diverse systems to provide opportunity to facilitate comprehension of both the structure and function of the subset communities. Further applications of the concept include the high-throughput screening of simple state communities using the BIOLOG® system and continuous culturing (Chemostat). This concept has the potential to test diverse experimental hypotheses in simplified microbial communities, and further extend that knowledge to answer the overarching questions at a more holistic level.

20.
Front Fungal Biol ; 3: 805225, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-37746168

RESUMEN

Plant communities and fungi inhabiting their phyllospheres change along precipitation gradients and often respond to changes in land use. Many studies have focused on the changes in foliar fungal communities on specific plant species, however, few have addressed the association between whole plant communities and their phyllosphere fungi. We sampled plant communities and associated phyllosphere fungal communities in native prairie remnants and post-agricultural sites across the steep precipitation gradient in the central plains in Kansas, USA. Plant community cover data and MiSeq ITS2 metabarcode data of the phyllosphere fungal communities indicated that both plant and fungal community composition respond strongly to mean annual precipitation (MAP), but less so to land use (native prairie remnants vs. post-agricultural sites). However, plant and fungal diversity were greater in the native remnant prairies than in post-agricultural sites. Overall, both plant and fungal diversity increased with MAP and the communities in the arid and mesic parts of the gradient were distinct. Analyses of the linkages between plant and fungal communities (Mantel and Procrustes tests) identified strong correlations between the composition of the two. However, despite the strong correlations, regression models with plant richness, diversity, or composition (ordination axis scores) and land use as explanatory variables for fungal diversity and evenness did not improve the models compared to those with precipitation and land use (ΔAIC < 2), even though the explanatory power of some plant variables was greater than that of MAP as measured by R2. Indicator taxon analyses suggest that grass species are the primary taxa that differ in the plant communities. Similar analyses of the phyllosphere fungi indicated that many plant pathogens are disproportionately abundant either in the arid or mesic environments. Although decoupling the drivers of fungal communities and their composition - whether abiotic or host-dependent - remains a challenge, our study highlights the distinct community responses to precipitation and the tight tracking of the plant communities by their associated fungal symbionts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...