Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Alcohol ; 116: 53-64, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38423261

RESUMEN

The central amygdala (CeA) and bed nucleus of the stria terminalis (BNST) are reciprocally connected nodes of the extended amygdala thought to play an important role in alcohol consumption. Studies of immediate-early genes indicate that BNST and CeA are acutely activated following alcohol drinking and may signal alcohol reward in nondependent drinkers, while stress signaling in the extended amygdala following chronic alcohol exposure drives increased drinking via negative reinforcement. However, the temporal dynamics of neuronal activation in these regions during drinking behavior are poorly understood. In this study, we used fiber photometry and the genetically encoded calcium sensor GCaMP6s to assess acute changes in neuronal activity during alcohol consumption in BNST and CeA before and after a chronic drinking paradigm. Activity was examined in the pan-neuronal population and separately in dynorphinergic neurons. BNST and CeA showed increased pan-neuronal activity during acute consumption of alcohol and other fluid tastants of positive and negative valence, as well as highly palatable chow. Responses were greatest during initial consummatory bouts and decreased in amplitude with repeated consumption of the same tastant, suggesting modulation by stimulus novelty. Dynorphin neurons showed similar consumption-associated calcium increases in both regions. Following three weeks of continuous alcohol access (CA), calcium increases in dynorphin neurons during drinking were maintained, but pan-neuronal activity and BNST-CeA coherence were altered in a sex-specific manner. These results indicate that BNST and CeA, and dynorphin neurons specifically, are engaged during drinking behavior, and activity dynamics are influenced by stimulus novelty and chronic alcohol.


Asunto(s)
Calcio , Dinorfinas , Femenino , Masculino , Humanos , Etanol/farmacología , Amígdala del Cerebelo , Consumo de Bebidas Alcohólicas , Agitación Psicomotora
2.
bioRxiv ; 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37873188

RESUMEN

The central amygdala (CeA) and bed nucleus of the stria terminalis (BNST) are reciprocally connected nodes of the extended amygdala thought to play an important role in alcohol consumption. Studies of immediate-early genes indicate that BNST and CeA are acutely activated following alcohol drinking and may signal alcohol reward in nondependent drinkers, while increased stress signaling in the extended amygdala following chronic alcohol exposure drives increased drinking via negative reinforcement. However, the temporal dynamics of neuronal activation in these regions during drinking behavior are poorly understood. In this study, we used fiber photometry and the genetically encoded calcium sensor GCaMP6s to assess acute changes in neuronal activity during alcohol consumption in BNST and CeA before and after a chronic drinking paradigm. Activity was examined in the pan-neuronal population and separately in dynorphinergic neurons. BNST and CeA showed increased pan-neuronal activity during acute consumption of alcohol and other fluid tastants of positive and negative valence, as well as highly palatable chow. Responses were greatest during initial consummatory bouts and decreased in amplitude with repeated consumption of the same tastant, suggesting modulation by stimulus novelty. Dynorphin neurons showed similar consumption-associated calcium increases in both regions. Following three weeks of continuous alcohol access (CA), calcium increases in dynorphin neurons during drinking were maintained, but pan-neuronal activity and BNST-CeA coherence were altered in a sex-specific manner. These results indicate that BNST and CeA, and dynorphin neurons specifically, are engaged during drinking behavior, and activity dynamics are influenced by stimulus novelty and chronic alcohol.

3.
bioRxiv ; 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37398115

RESUMEN

Dysregulation of the dopamine (DA) system is a hallmark of substance abuse disorders, including alcohol use disorder (AUD). Of the DA receptor subtypes, the DA D2 receptors (D2Rs) play a key role in the reinforcing effects of alcohol. D2Rs are expressed in numerous brain regions associated with the regulation of appetitive behaviors. One such region is the bed nucleus of the stria terminalis (BNST), which has been linked to the development and maintenance of AUD. Recently, we identified alcohol withdrawal-related neuroadaptations in the periaqueductal gray/dorsal raphe to BNST DA circuit in male mice. However, the role of D2R-expressing BNST neurons in voluntary alcohol consumption is not well characterized. In this study, we used a CRISPR-Cas9-based viral approach, to selectively reduce the expression of D2Rs in BNST VGAT neurons and interrogated the impact of BNST D2Rs in alcohol-related behaviors. In male mice, reduced D2R expression potentiated the stimulatory effects of alcohol and increased voluntary consumption of 20% w/v alcohol in a two-bottle choice intermittent access paradigm. This effect was not specific to alcohol, as D2R deletion also increased sucrose intake in male mice. Interestingly, cell-specific deletion of BNST D2Rs in female mice did not alter alcohol-related behaviors but lowered the threshold for mechanical pain sensitivity. Collectively, our findings suggest a role for postsynaptic BNST D2Rs in the modulation of sex-specific behavioral responses to alcohol and sucrose.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...