Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Cell Physiol ; 239(8): e31299, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38764231

RESUMEN

Osteoclasts are the cells primarily responsible for inflammation-induced bone loss, as is particularly seen in rheumatoid arthritis. Increasing evidence suggests that osteoclasts formed under homeostatic versus inflammatory conditions may differ in phenotype. While microRNA-29-3p family members (miR-29a-3p, miR-29b-3p, miR-29c-3p) promote the function of RANKL-induced osteoclasts, the role of miR-29-3p during inflammatory TNF-α-induced osteoclastogenesis is unknown. We used bulk RNA-seq, histology, qRT-PCR, reporter assays, and western blot analysis to examine bone marrow monocytic cell cultures and tissue from male mice in which the function of miR-29-3p family members was decreased by expression of a miR-29-3p tough decoy (TuD) competitive inhibitor in the myeloid lineage (LysM-cre). We found that RANKL-treated monocytic cells expressing the miR-29-3p TuD developed a hypercytokinemia/proinflammatory gene expression profile in vitro, which is associated with macrophages. These data support the concept that miR-29-3p suppresses macrophage lineage commitment and may have anti-inflammatory effects. In correlation, when miR-29-3p activity was decreased, TNF-α-induced osteoclast formation was accentuated in an in vivo model of localized osteolysis and in a cell-autonomous manner in vitro. Further, miR-29-3p targets mouse TNF receptor 1 (TNFR1/Tnfrsf1a), an evolutionarily conserved regulatory mechanism, which likely contributes to the increased TNF-α signaling sensitivity observed in the miR-29-3p decoy cells. Whereas our previous studies demonstrated that the miR-29-3p family promotes RANKL-induced bone resorption, the present work shows that miR-29-3p dampens TNF-α-induced osteoclastogenesis, indicating that miR-29-3p has pleiotropic effects in bone homeostasis and inflammatory osteolysis. Our data supports the concept that the knockdown of miR-29-3p activity could prime myeloid cells to respond to an inflammatory challenge and potentially shift lineage commitment toward macrophage, making the miR-29-3p family a potential therapeutic target for modulating inflammatory response.


Asunto(s)
Inflamación , MicroARNs , Osteoclastos , Osteólisis , Ligando RANK , MicroARNs/genética , MicroARNs/metabolismo , Animales , Osteólisis/genética , Osteólisis/patología , Osteólisis/metabolismo , Osteoclastos/metabolismo , Osteoclastos/patología , Ratones , Ligando RANK/metabolismo , Ligando RANK/genética , Inflamación/genética , Inflamación/patología , Inflamación/metabolismo , Masculino , Macrófagos/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Osteogénesis/genética , Ratones Endogámicos C57BL , Monocitos/metabolismo
2.
J Orthop Res ; 42(6): 1231-1243, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38111181

RESUMEN

Osteoporosis is a chronic disease characterized by reduced bone mass and increased fracture risk, estimated to affect over 10 million people in the United States alone. Drugs used to treat bone loss often come with significant limitations and/or long-term safety concerns. Proteoglycan-4 (PRG4, also known as lubricin) is a mucin-like glycoprotein best known for its boundary lubricating function of articular cartilage. In more recent years, it has been shown that PRG4 has anti-inflammatory properties, contributes to the maintenance of subchondral bone integrity, and patients with PRG4 mutations are osteopenic. However, it remains unknown how PRG4 impacts mechanical and material properties of bone. Therefore, our objective was to perform a phenotyping study of bone in a Prg4 gene trap (GT) mouse (PRG4 deficient). We found that femurs of Prg4 GT mice have altered mechanical, structural, and material properties relative to wildtype littermates. Additionally, Prg4 GT mice have a greater number of calvarial osteoclasts than wildtype mice, but do not have a notable inflammatory serum profile. Finally, Prg4 GT mice do not have an altered rate of bone formation, and exogenous recombinant human PRG4 (rhPRG4) administration inhibited osteoclastogenesis in vitro, suggesting that the skeletal phenotype may be due to changes in bone resorption. Overall, this work demonstrates that PRG4 deficiency affects several integral properties of bone structure, mechanics, and skeletal cell activity, and provides the foundation and insight toward future work evaluating PRG4 as a potential therapeutic target in treating bone loss.


Asunto(s)
Osteoclastos , Osteogénesis , Proteoglicanos , Animales , Osteogénesis/efectos de los fármacos , Osteoclastos/efectos de los fármacos , Ratones , Humanos , Masculino , Ratones Endogámicos C57BL , Cráneo , Femenino , Proteínas Recombinantes/farmacología , Proteínas Recombinantes/uso terapéutico , Fémur/efectos de los fármacos
4.
Endocrinology ; 162(10)2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34192317

RESUMEN

The miR-29-3p family (miR-29a, miR-29b, miR-29c) of microRNAs is increased during receptor activator of nuclear factor kappa-B ligand (RANKL)-induced osteoclastogenesis. In vivo, activation of a miR-29-3p tough decoy inhibitor in Cre recombinase under the control of the lysozyme 2 promoter-expressing cells (myeloid lineage) resulted in mice displaying enhanced trabecular and cortical bone volume because of decreased bone resorption. Calcitonin receptor (Calcr) is a miR-29 target that negatively regulates bone resorption. CALCR was significantly increased in RANKL-treated miR-29-decoy osteoclasts, and these cells were more responsive to the inhibitory effect of calcitonin on osteoclast formation. Further, cathepsin K (Ctsk), which is critical for resorption, was decreased in miR-29-decoy cells. CALCR is a Gs-coupled receptor and its activation raises cAMP levels. In turn, cAMP suppresses cathepsin K, and cAMP levels were increased in miR-29-decoy cells. siRNA-mediated knock-down of Calcr in miR-29 decoy osteoclasts allowed recovery of cathepsin K levels in these cells. Overall, using a novel knockin tough decoy mouse model, we identified a new role for miR-29-3p in bone homeostasis. In RANKL-driven osteoclastogenesis, as seen in normal bone remodeling, miR-29-3p promotes resorption. Consequently, inhibition of miR-29-3p activity in the myeloid lineage leads to increased trabecular and cortical bone. Further, this study documents an interrelationship between CALCR and CTSK in osteoclastic bone resorption, which is modulated by miR-29-3p.


Asunto(s)
Huesos/metabolismo , Calcitonina/metabolismo , MicroARNs/antagonistas & inhibidores , MicroARNs/genética , Células Mieloides/metabolismo , Actinas/metabolismo , Alelos , Animales , Resorción Ósea , Hueso Esponjoso/efectos de los fármacos , Catepsina K/metabolismo , Diferenciación Celular/efectos de los fármacos , Linaje de la Célula , Femenino , Homeostasis , Integrasas , Masculino , Ratones , Ratones Endogámicos C57BL , Muramidasa/química , Osteoclastos/efectos de los fármacos , Osteoclastos/metabolismo , Osteogénesis/efectos de los fármacos , Precursores de Proteínas , Ligando RANK/metabolismo , Microtomografía por Rayos X
5.
J Bone Miner Res ; 36(6): 1104-1116, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33567098

RESUMEN

Sexual dimorphism of the skeleton is well documented. At maturity, the male skeleton is typically larger and has a higher bone density than the female skeleton. However, the underlying mechanisms for these differences are not completely understood. In this study, we examined sexual dimorphism in the formation of osteoclasts between cells from female and male mice. We found that the number of osteoclasts in bones was greater in females. Similarly, in vitro osteoclast differentiation was accelerated in female osteoclast precursor (OCP) cells. To further characterize sex differences between female and male osteoclasts, we performed gene expression profiling of cultured, highly purified, murine bone marrow OCPs that had been treated for 3 days with macrophage colony-stimulating factor (M-CSF) and receptor activator of NF-κB ligand (RANKL). We found that 125 genes were differentially regulated in a sex-dependent manner. In addition to genes that are contained on sex chromosomes, transcriptional sexual dimorphism was found to be mediated by genes involved in innate immune and inflammatory response pathways. Furthermore, the NF-κB-NFATc1 axis was activated earlier in female differentiating OCPs, which partially explains the differences in transcriptomic sexual dimorphism in these cells. Collectively, these findings identify multigenic sex-dependent intrinsic difference in differentiating OCPs, which results from an altered response to osteoclastogenic stimulation. In humans, these differences could contribute to the lower peak bone mass and increased risk of osteoporosis that females demonstrate relative to males. © 2021 American Society for Bone and Mineral Research (ASBMR).


Asunto(s)
Osteoclastos , Caracteres Sexuales , Animales , Células de la Médula Ósea , Diferenciación Celular , Células Cultivadas , Femenino , Factor Estimulante de Colonias de Macrófagos , Masculino , Ratones , Factores de Transcripción NFATC , Osteogénesis , Ligando RANK
6.
Bone ; 143: 115757, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33212320

RESUMEN

MicroRNAs (miRNAs) are a class of short RNA molecules that mediate the regulation of gene activity through interactions with target mRNAs and subsequent silencing of gene expression. It has become increasingly clear the miRNAs regulate many diverse aspects of bone biology, including bone formation and bone resorption processes. The role of miRNAs specifically in osteoclasts has been of recent investigation, due to clinical interest in discovering new paradigms to control excessive bone resorption, as is observed in multiple conditions including aging, estrogen deprivation, cancer metastases or glucocorticoid use. Therefore understanding the role that miRNAs play during osteoclastic differentiation is of critical importance. In this review, we highlight and discuss general aspects of miRNA function in osteoclasts, including exciting data demonstrating that miRNAs encapsulated in extracellular vesicles (EVs) either originating from osteoclasts, or signaling to osteoclast from divergent sites, have important roles in bone homeostasis.


Asunto(s)
Resorción Ósea , MicroARNs , Biología , Diferenciación Celular , Humanos , MicroARNs/genética , Osteoclastos
7.
Bone ; 143: 115779, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33253931

RESUMEN

miRNAs play a vital role in post-transcriptional regulation of gene expression in osteoblasts and osteoclasts, and the miR-29 family is expressed in both lineages. Using mice globally expressing a miR-29-3p tough decoy, we demonstrated a modest 30-60% decrease all three miR-29-3p isoforms: miR-29a, miR-29b, and miR-29c. While the miR-29-3p decoy did not impact osteoclast number or function, the tough decoy decreased bone formation in growing mice, which led to decreased trabecular bone volume in mature animals. These data support previous in vitro studies suggesting that miR-29-3p is a positive regulator of osteoblast differentiation. In contrast, when mice were treated with intermittent parathyroid hormone (PTH1-34), inhibition of miR-29-3p augmented the effect of PTH on cortical bone anabolism, increased bone formation rate and osteoblast surface, and increased levels of Ctnnb1/ßcatenin mRNA, which is a miR-29 target. These findings highlight differences in the mechanisms controlling basal level bone formation and bone formation induced by intermittent PTH. Overall, the global miR-29-3p tough decoy model represents a modest loss-of-function, which could be a relevant tool for assessing the possible impact of systemically administered miR-29-3p inhibitors. Our studies provide a potential rationale for co-administration of PTH1-34 and miR-29-3p inhibitors, to boost bone formation in severely affected osteoporosis patients, particularly in the cortical compartment.


Asunto(s)
MicroARNs , Osteogénesis , Animales , Diferenciación Celular , Homeostasis , Humanos , Ratones , MicroARNs/genética , Osteoblastos , Hormona Paratiroidea/farmacología , Isoformas de Proteínas
8.
J Immunol ; 204(4): 868-878, 2020 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-31915261

RESUMEN

Osteoclasts (OC) originate from either bone marrow (BM)-resident or circulating myeloid OC progenitors (OCP) expressing the receptor CX3CR1. Multiple lines of evidence argue that OCP in homeostasis and inflammation differ. We investigated the relative contributions of BM-resident and circulating OCP to osteoclastogenesis during homeostasis and fracture repair. Using CX3CR1-EGFP/TRAP tdTomato mice, we found CX3CR1 expression in mononuclear cells, but not in multinucleated TRAP+ OC. However, CX3CR1-expressing cells generated TRAP+ OC on bone within 5 d in CX3CR1CreERT2/Ai14 tdTomato reporter mice. To define the role that circulating cells play in osteoclastogenesis during homeostasis, we parabiosed TRAP tdTomato mice (CD45.2) on a C57BL/6 background with wild-type (WT) mice (CD45.1). Flow cytometry (CD45.1/45.2) demonstrated abundant blood cell mixing between parabionts after 2 wk. At 4 wk, there were numerous tdTomato+ OC in the femurs of TRAP tdTomato mice but almost none in WT mice. Similarly, cultured BM stimulated to form OC demonstrated multiple fluorescent OC in cell cultures from TRAP tdTomato mice, but not from WT mice. Finally, flow cytometry confirmed low-level engraftment of BM cells between parabionts but significant engraftment in the spleens. In contrast, during fracture repair, we found that circulating CX3CR1+ cells migrated to bone, lost expression of CX3CR1, and became OC. These data demonstrate that OCP, but not mature OC, express CX3CR1 during both homeostasis and fracture repair. We conclude that, in homeostasis mature OC derive predominantly from BM-resident OCP, whereas during fracture repair, circulating CX3CR1+ cells can become OC.

9.
J Bone Miner Res ; 35(1): 130-142, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31487060

RESUMEN

CD55 is a glycosylphosphatidylinositol (GPI)-anchored protein that regulates complement-mediated and innate and adaptive immune responses. Although CD55 is expressed in various cell types in the bone marrow, its role in bone has not been investigated. In the current study, trabecular bone volume measured by µCT in the femurs of CD55KO female mice was increased compared to wild type (WT). Paradoxically, osteoclast number was increased in CD55KO with no differences in osteoblast parameters. Osteoclasts from CD55KO mice exhibited abnormal actin-ring formation and reduced bone-resorbing activity. Moreover, macrophage colony-stimulating factor (M-CSF) and receptor activator of NF-κB ligand (RANKL) treatment failed to activate Rac guanosine triphosphatase (GTPase) in CD55KO bone marrow macrophage (BMM) cells. In addition, apoptotic caspases activity was enhanced in CD55KO, which led to the poor survival of mature osteoclasts. Our results imply that CD55KO mice have increased bone mass due to defective osteoclast resorbing activity resulting from reduced Rac activity in osteoclasts. We conclude that CD55 plays an important role in the survival and bone-resorption activity of osteoclasts through regulation of Rac activity. © 2019 American Society for Bone and Mineral Research.


Asunto(s)
Resorción Ósea , Osteoclastos , Animales , Células de la Médula Ósea , Diferenciación Celular , Femenino , Factor Estimulante de Colonias de Macrófagos , Ratones , Osteoblastos , Ligando RANK , Transducción de Señal
10.
J Bone Miner Res ; 35(4): 789-800, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31880824

RESUMEN

The Rac1-specific guanosine triphosphatase (GTPase)-activating protein Slit-Robo GAP2 (Srgap2) is dramatically upregulated during RANKL-induced osteoclastogenesis. Srgap2 interacts with the cell membrane to locally inhibit activity of Rac1. In this study, we determined the role of Srgap2 in the myeloid lineage on bone homeostasis and the osteoclastic response to TNFα treatment. The bone phenotype of mice specifically lacking Srgap2 in the myeloid lineage (Srgap2 f/f :LysM-Cre; Srgap2 conditional knockout [cKO]) was investigated using histomorphometric analysis, in vitro cultures and Western blot analysis. Similar methods were used to determine the impact of TNFα challenge on osteoclast formation in Srgap2 cKO mice. Bone parameters in male Srgap2 cKO mice were unaffected. However, female cKO mice displayed higher trabecular bone volume due to increased osteoblast surface and bone formation rate, whereas osteoclastic parameters were unaltered. In vitro, cells from Srgap2 cKO had strongly enhanced Rac1 activation, but RANKL-induced osteoclast formation was unaffected. In contrast, conditioned medium from Srgap2 cKO osteoclasts promoted osteoblast differentiation and had increased levels of the bone anabolic clastokine SLIT3, providing a possible mechanism for increased bone formation in vivo. Rac1 is rapidly activated by the inflammatory cytokine TNFα. Supracalvarial injection of TNFα caused an augmented osteoclastic response in Srgap2 cKO mice. In vitro, cells from Srgap2 cKO mice displayed increased osteoclast formation in response to TNFα. We conclude that Srgap2 plays a prominent role in limiting osteoclastogenesis during inflammation through Rac1, and restricts expression of the paracrine clastokine SLIT3, a positive regulator of bone formation. © 2019 American Society for Bone and Mineral Research.


Asunto(s)
Resorción Ósea , Proteínas Activadoras de GTPasa , Osteogénesis , Animales , Huesos , Diferenciación Celular , Femenino , Proteínas Activadoras de GTPasa/fisiología , Masculino , Proteínas de la Membrana , Ratones , Neuropéptidos , Osteoclastos , Ligando RANK , Proteína de Unión al GTP rac1
11.
J Immunol ; 203(1): 105-116, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31109956

RESUMEN

We found that protease-activated receptor 1 (PAR1) was transiently induced in cultured osteoclast precursor cells. Therefore, we examined the bone phenotype and response to resorptive stimuli of PAR1-deficient (knockout [KO]) mice. Bones and bone marrow-derived cells from PAR1 KO and wild-type (WT) mice were assessed using microcomputed tomography, histomorphometry, in vitro cultures, and RT-PCR. Osteoclastic responses to TNF-α (TNF) challenge in calvaria were analyzed with and without a specific neutralizing Ab to the Notch2-negative regulatory region (N2-NRR Ab). In vivo under homeostatic conditions, there were minimal differences in bone mass or bone cells between PAR1 KO and WT mice. However, PAR1 KO myeloid cells demonstrated enhanced osteoclastogenesis in response to receptor activator of NF-κB ligand (RANKL) or the combination of RANKL and TNF. Strikingly, in vivo osteoclastogenic responses of PAR1 KO mice to TNF were markedly enhanced. We found that N2-NRR Ab reduced TNF-induced osteoclastogenesis in PAR1 KO mice to WT levels without affecting WT responses. Similarly, in vitro N2-NRR Ab reduced RANKL-induced osteoclastogenesis in PAR1 KO cells to WT levels without altering WT responses. We conclude that PAR1 functions to limit Notch2 signaling in responses to RANKL and TNF and moderates osteoclastogenic response to these cytokines. This effect appears, at least in part, to be cell autonomous because enhanced osteoclastogenesis was seen in highly purified PAR1 KO osteoclast precursor cells. It is likely that this pathway is involved in regulating the response of bone to diseases associated with inflammatory signals.


Asunto(s)
Enfermedades Óseas/inmunología , Inflamación/inmunología , Osteoclastos/fisiología , Receptor Notch2/metabolismo , Receptor PAR-1/metabolismo , Animales , Anticuerpos Neutralizantes/metabolismo , Células Cultivadas , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Osteogénesis/genética , Ligando RANK/metabolismo , Receptor Notch2/inmunología , Receptor PAR-1/genética , Transducción de Señal , Factor de Necrosis Tumoral alfa/metabolismo
12.
Curr Mol Biol Rep ; 5(1): 65-74, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30800633

RESUMEN

PURPOSE OF REVIEW: Our goal is to comprehensively review the most recent reports of microRNA (miRNA) regulation of osteoclastogenesis. We highlight validated miRNA-target interactions and their place in the signaling networks controlling osteoclast differentiation and function. RECENT FINDINGS: Using unbiased approaches to identify miRNAs of interest and reporter-3'UTR assays to validate interactions, recent studies have elucidated the impact of specific miRNA-mRNA interactions during in vitro osteoclastogenesis. There has been a focus on signaling mediators downstream of the RANK and CSF1R signaling, and genes essential for differentiation and function. For example, several miRNAs directly and indirectly target the master osteoclast transcription factor, Nfatc1 (e.g. miR-124 and miR-214) and Rho-GTPases, Cdc42 and Rac1 (e.g. miR-29 family). SUMMARY: Validating miRNA expression patterns, targets, and impact in osteoclasts and other skeletal cells is critical for understanding basic bone biology and for fulfilling the therapeutic potential of miRNA-based strategies in the treatment bone diseases.

13.
Nutrients ; 10(11)2018 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-30400569

RESUMEN

Due to deleterious side effects of currently available medications, the search for novel, safe, and effective preventive agents for improving bone health in aging continues and is urgently needed. This study aimed to determine whether dietary blackcurrants (BC), an anthocyanin-rich berry, can improve bone mass in a mouse model of age-related bone loss. Thirty-five female C57BL/6J mice, 3 months old (n = 20) and 18 months old (n = 15), were randomized to consume either a standard chow diet or a standard chow diet with 1% (w/w) BC for four months. Dual-energy X-ray absorptiometry, Micro computed tomography (µCT), and histomorphometric analyses were conducted to assess bone parameters on femurs. Biochemical assays were conducted to determine bone resorption, antioxidant activity, and inflammation in humerus homogenates. Trabecular bone volume (BV/TV) was significantly lower in aged mice compared to young mice (young control, 3.7 ± 0.4% vs aged control, 1.5 ± 0.5%, mean ± SEM (standard error of mean), p < 0.01; young BC, 5.3 ± 0.6% vs aged BC, 1.1 ± 0.3%, p < 0.001). µCT analysis revealed that BC supplementation increased trabecular BV/TV in young mice by 43.2% (p < 0.05) compared to controls. Histomorphometric analysis revealed a 50% increase, though this effect was not statistically significant (p = 0.07). The osteoblast surface increased by 82.5% in aged mice with BC compared to controls (p < 0.01). In humerus homogenates of young mice, BC consumption reduced C-telopeptide of type I collagen by 12.4% (p < 0.05) and increased glutathione peroxidase by 96.4% (p < 0.05). In humerus homogenates of aged mice, BC consumption increased catalase by 12% (p = 0.09). Aged mice had significantly elevated concentrations of tumor necrosis factor α (TNF-α), a pro-inflammatory cytokine contributing to bone resorption, which was reduced by 43.3% with BC consumption (p = 0.06). These results suggest that early consumption of BC may protect from aging-associated bone loss.


Asunto(s)
Envejecimiento , Hueso Esponjoso/metabolismo , Ribes/química , Absorciometría de Fotón , Animales , Antocianinas/farmacología , Densidad Ósea , Resorción Ósea/prevención & control , Dieta , Modelos Animales de Enfermedad , Femenino , Glutatión Peroxidasa/metabolismo , Ratones , Ratones Endogámicos C57BL , Osteoblastos/metabolismo , Osteoporosis/prevención & control , Distribución Aleatoria , Factor de Necrosis Tumoral alfa/metabolismo , Microtomografía por Rayos X
14.
J Clin Invest ; 128(4): 1429-1441, 2018 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-29504949

RESUMEN

Coupling is the process that links bone resorption to bone formation in a temporally and spatially coordinated manner within the remodeling cycle. Several lines of evidence point to the critical roles of osteoclast-derived coupling factors in the regulation of osteoblast performance. Here, we used a fractionated secretomic approach and identified the axon-guidance molecule SLIT3 as a clastokine that stimulated osteoblast migration and proliferation by activating ß-catenin. SLIT3 also inhibited bone resorption by suppressing osteoclast differentiation in an autocrine manner. Mice deficient in Slit3 or its receptor, Robo1, exhibited osteopenic phenotypes due to a decrease in bone formation and increase in bone resorption. Mice lacking Slit3 specifically in osteoclasts had low bone mass, whereas mice with either neuron-specific Slit3 deletion or osteoblast-specific Slit3 deletion had normal bone mass, thereby indicating the importance of SLIT3 as a local determinant of bone metabolism. In postmenopausal women, higher circulating SLIT3 levels were associated with increased bone mass. Notably, injection of a truncated recombinant SLIT3 markedly rescued bone loss after an ovariectomy. Thus, these results indicate that SLIT3 plays an osteoprotective role by synchronously stimulating bone formation and inhibiting bone resorption, making it a potential therapeutic target for metabolic bone diseases.


Asunto(s)
Comunicación Autocrina , Resorción Ósea/metabolismo , Proteínas de la Membrana/metabolismo , Osteoclastos/metabolismo , Osteogénesis , Animales , Enfermedades Óseas Metabólicas/genética , Enfermedades Óseas Metabólicas/metabolismo , Enfermedades Óseas Metabólicas/patología , Resorción Ósea/genética , Resorción Ósea/patología , Diferenciación Celular , Femenino , Humanos , Masculino , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Osteoblastos/metabolismo , Osteoblastos/patología , Osteoclastos/patología , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo , Proteínas Roundabout
15.
Nat Commun ; 8(1): 1519, 2017 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-29142196

RESUMEN

Receptor activator of NF-kB ligand (RANKL) generates intracellular reactive oxygen species (ROS), which increase RANKL-mediated signaling in osteoclast (OC) precursor bone marrow macrophages (BMMs). Here we show that a ROS scavenging protein DJ-1 negatively regulates RANKL-driven OC differentiation, also called osteoclastogenesis. DJ-1 ablation in mice leads to a decreased bone volume and an increase in OC numbers. In vitro, the activation of RANK-dependent signals is enhanced in DJ-1-deficient BMMs as compared to wild-type BMMs. DJ-1 suppresses the activation of both RANK-TRAF6 and RANK-FcRγ/Syk signaling pathways because of activation of Src homology region 2 domain-containing phosphatase-1, which is inhibited by ROS. Ablation of DJ-1 in mouse models of arthritis and RANKL-induced bone disease leads to an increase in the number of OCs, and exacerbation of bone damage. Overall, our results suggest that DJ-1 plays a role in bone homeostasis in normal physiology and in bone-associated pathology by negatively regulating osteoclastogenesis.


Asunto(s)
Huesos/metabolismo , Diferenciación Celular , Homeostasis , Osteoclastos/metabolismo , Proteína Desglicasa DJ-1/metabolismo , Animales , Femenino , Macrófagos/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Osteogénesis , Proteína Desglicasa DJ-1/genética , Ligando RANK/metabolismo , Transducción de Señal , Factor 6 Asociado a Receptor de TNF/metabolismo
16.
Bone ; 103: 1-11, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28600151

RESUMEN

Osteogenesis imperfecta (OI) is a disease caused by defects in type I collagen production that results in brittle bones. While the pathology is mainly caused by defects in the osteoblast lineage, there is also elevated bone resorption by osteoclasts resulting in high bone turnover in severe forms of the disease. Osteoclasts originate from hematopoietic myeloid cells, however changes in hematopoiesis have not been previously documented in OI. In this study, we evaluated hematopoietic lineage distribution and osteoclast progenitor cell frequency in bone marrow, spleen and peripheral blood of osteogenesis imperfecta murine (OIM) mice, a model of severe OI. We found splenomegaly in all ages examined, and expansion of myeloid lineage cells (CD11b+) in bone marrow and spleen of 7-9week old male OIM animals. OIM spleens also showed an increased frequency of purified osteoclast progenitors. This phenotype is suggestive of chronic inflammation. Isolated osteoclast precursors from both spleen and bone marrow formed osteoclasts more rapidly than wild-type controls. We found that serum TNFα levels were increased in OIM, as was IL1α in OIM females. We targeted inflammation therapeutically by treating growing animals with murine TNFR2:Fc, a compound that blocks TNFα activity. Anti-TNFα treatment marginally decreased spleen mass in OIM females, but failed to reduce bone resorption, or improve bone parameters or fracture rate in OIM animals. We have demonstrated that OIM mice have changes in their hematopoietic system, and form osteoclasts more rapidly even in the absence of OI osteoblast signals, however therapy targeting TNFα did not improve disease parameters.


Asunto(s)
Células Mieloides/patología , Osteoclastos/patología , Osteogénesis Imperfecta/patología , Osteogénesis/fisiología , Esplenomegalia/etiología , Animales , Células de la Médula Ósea/patología , Femenino , Células Madre Hematopoyéticas/patología , Masculino , Ratones
17.
Endocrinology ; 157(7): 2621-35, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27145004

RESUMEN

Free fatty acid receptor 4 (FFA4) has been reported to be a receptor for n-3 fatty acids (FAs). Although n-3 FAs are beneficial for bone health, a role of FFA4 in bone metabolism has been rarely investigated. We noted that FFA4 was more abundantly expressed in both mature osteoclasts and osteoblasts than their respective precursors and that it was activated by docosahexaenoic acid. FFA4 knockout (Ffar4(-/-)) and wild-type mice exhibited similar bone masses when fed a normal diet. Because fat-1 transgenic (fat-1(Tg+)) mice endogenously converting n-6 to n-3 FAs contain high n-3 FA levels, we crossed Ffar4(-/-) and fat-1(Tg+) mice over two generations to generate four genotypes of mice littermates: Ffar4(+/+);fat-1(Tg-), Ffar4(+/+);fat-1(Tg+), Ffar4(-/-);fat-1(Tg-), and Ffar4(-/-);fat-1(Tg+). Female and male littermates were included in ovariectomy- and high-fat diet-induced bone loss models, respectively. Female fat-1(Tg+) mice decreased bone loss after ovariectomy both by promoting osteoblastic bone formation and inhibiting osteoclastic bone resorption than their wild-type littermates, only when they had the Ffar4(+/+) background, but not the Ffar4(-/-) background. In a high-fat diet-fed model, male fat-1(Tg+) mice had higher bone mass resulting from stimulated bone formation and reduced bone resorption than their wild-type littermates, only when they had the Ffar4(+/+) background, but not the Ffar4(-/-) background. In vitro studies supported the role of FFA4 as n-3 FA receptor in bone metabolism. In conclusion, FFA4 is a dual-acting factor that increases osteoblastic bone formation and decreases osteoclastic bone resorption, suggesting that it may be an ideal target for modulating metabolic bone diseases.


Asunto(s)
Resorción Ósea/metabolismo , Ácidos Grasos Omega-3/sangre , Fémur/metabolismo , Osteogénesis/fisiología , Receptores Acoplados a Proteínas G/metabolismo , Animales , Resorción Ósea/genética , Dieta Alta en Grasa , Femenino , Macrófagos/metabolismo , Masculino , Ratones , Ratones Transgénicos , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Ovariectomía , Receptores Acoplados a Proteínas G/genética
18.
J Med Food ; 19(4): 390-7, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27074619

RESUMEN

Although several animal and cell studies have indicated that blackcurrant anthocyanins exert antioxidative and anti-inflammatory properties, which could potentially improve bone mass, the effect of blackcurrant on bone health has not been reported yet. Thus, this study was aimed to evaluate the effect of blackcurrant anthocyanins on bone mass in an estrogen deficiency mouse model. Fourteen-week-old C57BL/6J mice (n = 54) were ovariectomized or sham operated. The ovariectomized mice were divided into two groups, basal diet (OVX) or basal diet containing 1% anthocyanin-rich blackcurrant extract (OVX+BC), and sacrificed at 4, 8, and 12 weeks. Femoral bone mineral density (BMD) and trabecular bone volume by dual-energy X-ray absorptiometry and micro-computed tomography, respectively, and serum bone markers were measured. Ovariectomy significantly reduced BMD and trabecular bone volume at all time points (P < .05). Blackcurrant supplementation attenuated ovariectomy-induced bone loss measured by BMD and trabecular bone volume at 8 weeks (P = .055 and P = .057) and the effect was more pronounced at 12 weeks (P = .053 and P < .05). Ovariectomy and blackcurrant treatment did not alter serum biomarkers of bone formation and resorption. Bone marrow cells extracted from OVX mice significantly induced osteoclast-like (OCL) cell formation compared with cells from sham controls (P < .05). Blackcurrant treatment decreased the number of TRAP(+) OCL compared with OVX mice at 8 and 12 weeks (P < .05). Furthermore, blackcurrant supplementation reduced bone resorption activity when measured by resorption pit assay, compared with OVX group (P < .05). These results demonstrate that blackcurrant may be effective in mitigating osteoclast-induced postmenopausal bone loss.


Asunto(s)
Antocianinas/administración & dosificación , Osteoporosis Posmenopáusica/tratamiento farmacológico , Extractos Vegetales/administración & dosificación , Ribes/química , Animales , Densidad Ósea , Diferenciación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Femenino , Fémur/efectos de los fármacos , Fémur/fisiopatología , Humanos , Ratones Endogámicos C57BL , Osteoclastos/citología , Osteoclastos/efectos de los fármacos , Osteoporosis Posmenopáusica/fisiopatología , Ovariectomía
19.
J Med Food ; 19(1): 1-14, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26670451

RESUMEN

Osteoporosis is an age-related disorder that affects both women and men, although estrogen deficiency induced by menopause accelerates bone loss in older women. As the demographic shifts to a more aged population, a growing number of men and women will be afflicted with osteoporosis. Since the current drug therapies available have multiple side effects, including increased risk of developing certain types of cancer or complications, a search for potential nonpharmacologic alternative therapies for osteoporosis is of prime interest. Soy isoflavones (SI) have demonstrated potential bone-specific effects in a number of studies. This article provides a systematic review of studies on osteoporotic bone loss in relation to SI intake from diet or supplements to comprehensively explain how SI affect the modulation of bone remodeling. Evidence from epidemiologic studies supports that dietary SI attenuate menopause-induced osteoporotic bone loss by decreasing bone resorption and stimulating bone formation. Other studies have also illustrated that bone site-specific trophic and synergistic effects combined with exercise intervention might contribute to improve the bioavailability of SI or strengthen the bone-specific effects. To date, however, the effects of dietary SI on osteoporotic bone loss remain inconclusive, and study results vary from study to study. The current review will discuss the potential factors that result in the conflicting outcomes of these studies, including dosages, intervention materials, study duration, race, and genetic differences. Further well-designed studies are needed to fully understand the underlying mechanism and evaluate the effects of SI on osteoporosis in humans.


Asunto(s)
Isoflavonas/administración & dosificación , Osteoporosis/tratamiento farmacológico , Extractos Vegetales/administración & dosificación , Animales , Remodelación Ósea/efectos de los fármacos , Humanos , Osteoporosis/genética , Osteoporosis/fisiopatología , Glycine max/química
20.
Arthritis Rheumatol ; 68(5): 1301-13, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26663852

RESUMEN

OBJECTIVE: CD97, a member of the 7-transmembrane epidermal growth factor family of adhesion G protein-coupled receptors, is expressed on various cell types. This study was undertaken to elucidate the functions of CD97 in bone and inflammation in an experimental mouse model, by examining the effect of CD97 on osteoclastogenesis in vitro, characterizing the skeletal phenotype of CD97-deficient (CD97-knockout [KO]) mice, and assessing the responses to tumor necrosis factor (TNF) treatment. METHODS: Femoral tissue and bone marrow (BM)-derived cells from CD97-KO and wild-type (WT) mice were assessed using histomorphometric analyses, in vitro cultures, and reverse transcription-polymerase chain reaction. Serum cytokine and chemokine levels in the presence or absence of TNF challenge were analyzed by multiplex assay. RESULTS: In cultures of mouse BM-derived macrophages in vitro, RANKL induced the expression of CD97. In vivo, the trabecular bone volume of the femurs of female CD97-KO mice was increased, and this was associated with a decrease in the number of osteoclasts. Compared to WT mice, CD97-KO mice had a reduced potential to form osteoclast-like cells in vitro. Furthermore, TNF treatment augmented the formation of osteoclasts in the calvaria of CD97-KO mice in vivo, by increasing the production of RANKL and other cytokines and chemokines and by reducing the production of osteoprotegerin by calvarial cells. CONCLUSION: These findings demonstrate that CD97 is a positive regulator of osteoclast-like cell differentiation, a mechanism that influences bone homeostasis. However, the presence of CD97 may be essential to suppress the initial osteoclastogenesis that occurs in response to acute and local inflammatory stimuli.


Asunto(s)
Hueso Esponjoso/diagnóstico por imagen , Fémur/diagnóstico por imagen , Glicoproteínas de Membrana/genética , Osteogénesis/genética , Cráneo/diagnóstico por imagen , Factor de Necrosis Tumoral alfa/farmacología , Animales , Western Blotting , Huesos/diagnóstico por imagen , Huesos/efectos de los fármacos , Huesos/metabolismo , Huesos/patología , Hueso Esponjoso/efectos de los fármacos , Hueso Esponjoso/inmunología , Hueso Esponjoso/patología , Citocinas/inmunología , Femenino , Fémur/efectos de los fármacos , Fémur/metabolismo , Fémur/patología , Factor Estimulante de Colonias de Macrófagos/farmacología , Macrófagos/efectos de los fármacos , Masculino , Ratones , Ratones Noqueados , Osteogénesis/efectos de los fármacos , Osteogénesis/inmunología , Ligando RANK/farmacología , Receptores Acoplados a Proteínas G , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Cráneo/efectos de los fármacos , Cráneo/patología , Microtomografía por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...