Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.268
Filtrar
1.
Small ; : e2403169, 2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-38973079

RESUMEN

Nanopatterning on biomaterials has attracted significant attention as it can lead to the development of biomedical devices capable of performing diagnostic and therapeutic functions while being biocompatible. Among various nanopatterning techniques, electron-beam lithography (EBL) enables precise and versatile nanopatterning in desired shapes. Various biomaterials are successfully nanopatterned as bioresists by using EBL. However, the use of high-energy electron beams (e-beams) for high-resolutive patterning has incorporated functional materials and has caused adverse effects on biomaterials. Moreover, the scattering of electrons not absorbed by the bioresist leads to proximity effects, thus deteriorating pattern quality. Herein, EBL-based nanopatterning is reported by inducing molecular degradation of amorphous silk fibroin, followed by selectively inducing secondary structures. High-resolution EBL nanopatterning is achievable, even at low-energy e-beam (5 keV) and low doses, as it minimizes the proximity effect and enables precise 2.5D nanopatterning via grayscale lithography. Additionally, integrating nanophotonic structures into fluorescent material-containing silk allows for fluorescence amplification. Furthermore, this post-exposure cross-linking way indicates that the silk bioresist can maintain nanopatterned information stored in silk molecules in the amorphous state, utilizing for the secure storage of nanopatterned information as a security patch. Based on the fabrication technique, versatile biomaterial-based nanodevices for biomedical applications can be envisioned.

2.
Case Rep Dent ; 2024: 5559986, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38957457

RESUMEN

Graphite tattoos are rarely reported because they are mainly caused by an accidental injury or habits during childhood that cause a pencil to penetrate the oral mucosa. Unlike other pigmentations, it stains layers that are deeper than the subepithelial and mucosal layers, and in most cases, it takes the form of a grayish black macule. This case report describes depigmentation with the denudation technique that was followed by a novel approach of using platelet-rich fibrin to cover exposed bone. A 41-year-old male patient presented with an aesthetic complaint from a grayish black staining on the labial gingiva near the maxillary central and lateral incisors. The lesion was diagnosed as a graphite tattoo due to the patient's history of sticking his gum with pencils when he was young. The entire pigmented gingiva was surgically removed and covered with two layers of PRF membrane to protect the exposed bone surface and provide an extracellular matrix for migration of gingival fibroblasts. Healing patterns were observed at 1, 2, 4, and 8 weeks, and satisfactory clinical and aesthetic results were obtained. Creeping attachment was observed at 8 years postop, and there was no recurrence for a long-term period of 13 years.

3.
Radiat Oncol J ; 42(2): 139-147, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38946076

RESUMEN

PURPOSE: This study aimed to analyze the treatment outcomes of combined definitive radiation therapy (RT) and androgen deprivation therapy (ADT) for clinically node-positive prostate cancer. MATERIALS AND METHODS: Medical records of 60 patients with clinically suspected metastatic lymph nodes on radiological examination were retrospectively analyzed. Eight patients (13.3%) were suspected to have metastatic common iliac or para-aortic lymph nodes. All patients underwent definitive RT with a dose fractionation of 70 Gy in 28 fractions. ADT was initiated 2-3 months before RT and continued for at least 2 years. Biochemical failure rate (BFR), clinical failure rate (CFR), overall survival (OS), and prostate cancer-specific survival (PCSS) were calculated, and genitourinary and gastrointestinal adverse events were recorded. RESULTS: The median follow-up period was 5.47 years. The 5-year BFR, CFR, OS, and PCSS rates were 19.1%, 11.3%, 89.0%, and 98.2%, respectively. The median duration of ADT was 2.30 years. BFR and CFR increased after 3 years, and 11 out of 14 biochemical failures occurred after the cessation of ADT. Grade 2 and beyond late genitourinary and gastrointestinal toxicity rates were 5.0% and 13.3%, respectively. However, only two grade 3 adverse events were reported, and no grade 4-5 adverse events were reported. Patients with non-regional lymph node metastases did not have worse BFR, CFR, or adverse event rates. CONCLUSION: This study reported the efficacy and tolerable toxicity of hypofractionated definitive RT combined with ADT for clinically node-positive prostate cancer. Additionally, selected patients with adjacent non-regional lymph node metastases might be able to undergo definitive RT combined with ADT.

4.
Adv Mater ; : e2403952, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39015054

RESUMEN

Human pluripotent stem cells (hPSCs), encompassing human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), hold immense potential in regenerative medicine, offering new opportunities for personalized cell therapies. However, their clinical translation is hindered by the inevitable reliance on xenogeneic components in culture environments. This study addresses this challenge by engineering a fully synthetic, xeno-free culture substrate, whose surface composition is tailored systematically for xeno-free culture of hPSCs. A functional polymer surface, pGC2 (poly(glycidyl methacrylate-grafting-guanidine-co-carboxylic acrylate)), offers excellent cell-adhesive properties as well as non-cytotoxicity, enabling robust hESCs and hiPSCs growth while presenting cost-competitiveness and scalability over Matrigel. This investigation includes comprehensive evaluations of pGC2 across diverse experimental conditions, demonstrating its wide adaptability with various pluripotent stem cell lines, culture media, and substrates. Crucially, pGC2 supports long-term hESCs and hiPSCs expansion, up to ten passages without compromising their stemness and pluripotency. Notably, this study is the first to confirm an identical proteomic profile after ten passages of xeno-free cultivation of hiPSCs on a polymeric substrate compared to Matrigel. The innovative substrate bridges the gap between laboratory research and clinical translation, offering a new promising avenue for advancing stem cell-based therapies.

6.
Bioorg Med Chem Lett ; 110: 129884, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38996939

RESUMEN

Both cyclopropyl amide and piperazine sulfonamide functional groups are known for their various biological properties used for drug development. Herein, we synthesized nine new derivatives with different substituent groups incorporating these moieties and screened them for their anti-osteoclast differentiation activity. After analyzing the structure-activity relationship (SAR), the inhibitory effect against osteoclastogenesis was determined to be dependent on the lipophilicity of the compound. Derivative 5b emerged as the most effective dose-dependent inhibitor after TRAP staining with an IC50 of 0.64 µM against RANKL-induced osteoclast cells. 5b was also able to suppress F-acting ring formation and bone resorption activity of osteoclasts in vitro. Finally, well-acknowledged gene and protein osteoclast-specific marker expression levels were decreased after 5b administration on primary murine osteoclast cells.

7.
Adv Mater ; : e2406179, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39003621

RESUMEN

Hydroxyapatite (HA) exhibits outstanding biocompatibility, bioactivity, osteoconductivity, and natural anti-inflammatory properties. Pure HA, ion-doped HA, and HA-polymer composites are investigated, but critical limitations such as brittleness remain; numerous efforts are being made to address them. Herein, the novel self-crystallization of a polymeric single-stranded deoxyribonucleic acid (ssDNA) without additional phosphate ions for synthesizing deoxyribonucleic apatite (DNApatite) is presented. The synthesized DNApatite, DNA1Ca2.2(PO4)1.3OH2.1, has a repetitive dual phase of inorganic HA crystals and amorphous organic ssDNA at the sub-nm scale, forming nanorods. Its mechanical properties, including toughness and elasticity, are significantly enhanced compared with those of HA nanorod, with a Young's modulus similar to that of natural bone.

8.
Ann Coloproctol ; 40(3): 282-284, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38946098

RESUMEN

Complete mesocolic excision and central vascular ligation with D3 lymphadenectomy are important surgical principles for improving oncological outcomes in colon cancer. The cranial-first approach is a colonic mobilization-first approach to radical right hemicolectomy, which has several advantages, including early feasibility assessment, safe dissection from surrounding organs, preestablished inferior margin of lymph node dissection, and revelation of the tangible anatomy of the tributaries of the gastrocolic trunk. This video demonstrates the cranial-first approach to radical right hemicolectomy in a 66-year-old man with locally advanced cecal cancer.

9.
ACS Pharmacol Transl Sci ; 7(7): 2023-2043, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39022350

RESUMEN

Estrogen receptor coregulator binding modulators (ERXs) are a novel class of molecules targeting the interaction between estrogen receptor α (ERα) and its coregulator proteins, which has proven to be an attractive strategy for overcoming endocrine resistance in breast cancer. We previously reported ERX-11, an orally bioavailable tris-benzamide, that demonstrated promising antitumor activity against ERα-positive breast cancer cells. To comprehend the significance of the substituents in ERX-11, we carried out structure-activity relationship studies. In addition, we introduced additional alkyl substituents at either the N- or C-terminus to improve binding affinity and biological activity. Further optimization guided by conformational restriction led to the identification of a trans-4-phenylcyclcohexyl group at the C-terminus (18h), resulting in a greater than 10-fold increase in binding affinity and cell growth inhibition potency compared to ERX-11. Tris-benzamide 18h disrupted the ERα-coregulator interaction and inhibited the ERα-mediated transcriptional activity. It demonstrated strong antiproliferative activity on ERα-positive breast cancer cells both in vitro and in vivo, offering a promising potential as a therapeutic candidate for treating ERα-positive breast cancer.

10.
J Control Release ; 373: 224-239, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39002796

RESUMEN

Intravitreal injection of biodegradable implant drug carriers shows promise in reducing the injection frequency for neovascular retinal diseases. However, current intravitreal ocular devices have limitations in adjusting drug release rates for individual patients, thereby affecting treatment effectiveness. Accordingly, we developed mesoporous silica nanoparticles (MSNs) featuring a surface that reverse its charge in response to reactive oxygen species (ROS) for efficient delivery of humanin peptide (HN) to retinal epithelial cells (ARPE-19). The MSN core, designed with a pore size of 2.8 nm, ensures a high HN loading capacity 64.4% (w/w). We fine-tuned the external surface of the MSNs by incorporating 20% Acetyl-L-arginine (Ar) to create a partial positive charge, while 80% conjugated thioketal (TK) methoxy polyethylene glycol (mPEG) act as ROS gatekeeper. Ex vivo experiments using bovine eyes revealed the immobilization of Ar-MSNs-TK-PEG (mean zeta potential: 2 mV) in the negatively charged vitreous. However, oxidative stress reversed the surface charge to -25 mV by mPEG loss, facilitating the diffusion of the nanoparticles impeded with HN. In vitro studies showed that ARPE-19 cells effectively internalize HN-loaded Ar-MSNs-TK, subsequently releasing the peptide, which offered protection against oxidative stress-induced apoptosis, as evidenced by reduced TUNEL and caspase3 activation. The inhibition of retinal neovascularization was further validated in an in vivo oxygen-induced retinopathy (OIR) mouse model.

11.
Bioorg Chem ; 150: 107603, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38968905

RESUMEN

Inhibition of LSD1 was proposed as promising and attractive therapies for treating osteoporosis. Here, we synthesized a series of novel TCP-(MP)-Caffeic acid analogs as potential LSD1 inhibitors to assess their inhibitory effects on osteoclastogenesis by using TRAP-staining assay and try to explore the preliminary SAR. Among them, TCP-MP-CA (11a) demonstrated osteoclastic bone loss both in vitro and in vivo, showing a significant improvement in the in vivo effects compared to the LSD1 inhibitor GSK-LSD1. Additionally, we elucidated a mechanism that 11a and its precursor that 11e directly bind to LSD1/CoREST complex through FAD to inhibit LSD1 demethylation activity and influence its downstream IκB/NF-κB signaling pathway, and thus regulate osteoclastic bone loss. These findings suggested 11a or 11e as potential novel candidates for treating osteoclastic bone loss, and a concept for further development of TCP-(MP)-Caffeic acid analogs for therapeutic use in osteoporosis clinics.


Asunto(s)
Ácidos Cafeicos , Osteoclastos , Osteoclastos/efectos de los fármacos , Osteoclastos/metabolismo , Ácidos Cafeicos/farmacología , Ácidos Cafeicos/química , Ácidos Cafeicos/síntesis química , Animales , Relación Estructura-Actividad , Ratones , Estructura Molecular , Relación Dosis-Respuesta a Droga , Descubrimiento de Drogas , Humanos , Osteoporosis/tratamiento farmacológico , Resorción Ósea/tratamiento farmacológico , Células RAW 264.7 , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/síntesis química
12.
Chemosphere ; 361: 142570, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38852636

RESUMEN

Various contaminants of emerging concern (CECs) including pharmaceuticals and personal care products (PPCPs) have been known to threaten the aquatic ecosystem and human health even at low levels in surface water. Among them, the wide variety use of parabens as preservatives may pose potential threat to human because parabens may present estrogenic activity. Various advanced oxidation processes have been attempted to reduce parabens, but challenges using cold plasma (CP) are very rare. CP is worth paying attention to in reducing parabens because it has the advantage of generating radical ions, including reactive oxygen/nitrogen species and various ions. Accordingly, this study demonstrates how CP can be utilized and how CP competes with other advanced oxidation processes in energy requirements. Quantified ethyl-, propyl-, and butyl-paraben indicate that CP can effectively degrade them up to 99.1% within 3 h. Regression reveals that the kinetic coefficients of degradation can be increased to as high as 0.0328 min-1, comparable to other advanced oxidation processes. Many by-products generated from the oxidation of parabens provide evidence of the potential degradation pathway through CP treatment. In addition, we found that the electrical energy consumption per order of CP (39-95 kWh/m3/order) is superior to other advanced oxidation processes (69∼31,716 kWh/m3/order). Overall, these results suggest that CP may be a viable option to prevent adverse health-related consequences associated with parabens in receiving water.


Asunto(s)
Oxidación-Reducción , Parabenos , Contaminantes Químicos del Agua , Parabenos/química , Contaminantes Químicos del Agua/química , Gases em Plasma/química , Cinética , Conservadores Farmacéuticos/química
13.
Vaccines (Basel) ; 12(6)2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38932324

RESUMEN

Mumps virus (MuV) causes an acute contagious human disease characterized by swelling of the parotid glands. Despite the near elimination of mumps in many countries, the disease has recurred, even in vaccinated populations, especially adolescents. Immunization effectivity of the genotype A vaccine strain Jeryl Lynn (JL) is declining as genotype A is no longer predominant; therefore, a new vaccine strain and booster vaccine are required. We generated a cell culture-adapted MuV genotype F called F30 and evaluated its immunogenicity and cross-protective activity against diverse genotypes. F30 genome nucleotide sequence determination revealed changes in the NP, L, SH, and HN genes, leading to five amino acid changes compared to a minimally passaged stock (F10). F30 showed delayed growth, smaller plaque size in Vero cells, and lower neurotoxicity in neonatal mice than F10. Furthermore, F30 was immunogenic to other genotypes, including the JL vaccine strain, with higher efficacy than that of JL for homologous and heterologous immunization. Further, F30 exhibited cross-protective immunity against MuV genotypes F and G in Ifnar-/- mice after a third immunization with F30 following two doses of JL. Our data suggest that the live-attenuated virus F30 could be an effective booster vaccine to control breakthrough infections and mumps epidemics.

14.
Small ; : e2400959, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38940380

RESUMEN

Synthesis of perovskites that exhibit pure-blue emission with high photoluminescence quantum yield (PLQY) in both nanocrystal solutions and nanocrystal-only films presents a significant challenge. In this work, a room-temperature method is developed to synthesize ultrasmall, monodispersed, Sn-doped methylammonium lead bromide (MAPb1- xSnxBr3) perovskite nanoplatelets (NPLs) in which the strong quantum confinement effect endows pure blue emission (460 nm) and a high quantum yield (87%). Post-treatment using n-hexylammonium bromide (HABr) repaired surface defects and thus substantially increased the stability and PLQY (80%) of the NPL films. Concurrently, high-precision patterned films (200-µm linewidth) are successfully fabricated by using cost-effective spray-coating technology. This research provides a novel perspective for the preparation of high PLQY, highly stable, and easily processable perovskite nanomaterials.

15.
Pharmaceutics ; 16(6)2024 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-38931935

RESUMEN

EGFRvIII is expressed only in tumor cells and strongly in glioblastoma and is considered a promising target in cancer diagnosis and therapy. Aptamers are synthetic single-stranded oligonucleotides that bind to biochemical target molecules with high binding affinity and specificity. This study examined the potential of the 68Ga-NOTA-EGFRvIII aptamer as a nuclear imaging probe for visualizing EGFRvIII-expressing glioblastoma by positron emission tomography (PET). EGFRvIII aptamer was selected using the SELEX technology, and flow cytometry and fluorescence microscopy verified the high binding affinity to EGFRvIII positive U87MG vIII 4.12 glioma cells but not to EGFRvIII negative U87MG cells. The EGFRvIII aptamer was conjugated with a chelator (1,4,7-triazanonane-1,4,7-triyl)triacetic acid (NOTA) for 68Ga-labeling. The 68Ga-NOTA-EGFRvIII aptamer was prepared using the preconcentration-based labeling method with a high radiolabeling yield at room temperature. Ex vivo biodistribution analyses confirmed the significantly higher tumor uptake of the 68Ga-NOTA-EGFRvIII aptamer in EGFRvIII-expressing xenograft tumors than that in EGFRvIII negative tumors, confirming the specific tumor uptake of the 68Ga-NOTA-EGFRvIII aptamer in vivo. PET imaging studies revealed a high retention rate of the 68Ga-NOTA-EGFRvIII aptamer in U87MG vIII 4.12 tumors but only low uptake levels in U87-MG tumors, suggesting that the 68Ga-NOTA-EGFRvIII aptamer may be used as a PET imaging agent for EGFRvIII-expressing glioblastoma.

16.
ACS Nano ; 18(26): 16905-16913, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38904449

RESUMEN

While two-dimensional transition metal dichalcogenides (TMDCs)-based photodetectors offer prospects for high integration density and flexibility, their thinness poses a challenge regarding low light absorption, impacting photodetection sensitivity. Although the integration of TMDCs with metal halide perovskite nanocrystals (PNCs) has been known to be promising for photodetection with a high absorption coefficient of PNCs, the low charge mobility of PNCs delays efficient photocarrier injection into TMDCs. In this study, we integrated MoS2 with in situ formed core/shell PNCs with short ligands that minimize surface defects and enhance photocarrier injection. The PNCs/MoS2 heterostructure efficiently separates electrons and holes by establishing type II band alignment and consequently inducing a photogating effect. The synergistic interplay between photoconductive and photogating effects yields a high responsivity of 2.2 × 106 A/W and a specific detectivity of 9.0 × 1011 Jones. Our findings offer a promising pathway for developing low-cost, high-performance phototransistors leveraging the advantages of two-dimensional (2D) materials.

17.
Biosens Bioelectron ; 261: 116444, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38850740

RESUMEN

Electrolyte-gated organic synaptic transistors (EGOSTs) can have versatile synaptic plasticity in a single device, so they are promising as components of neuromorphic implants that are intended for use in neuroprosthetic electronic nerves that are energy-efficient and have simple system structure. With the advancement in transistor properties of EGOSTs, the commercialization of neuromorphic implants for practical long-term use requires consistent operation, so they must be stable in vivo. This requirement demands strategies that maintain electronic and ionic transport in the devices while implanted in the human body, and that are mechanically, environmentally, and operationally stable. Here, we cover the structure, working mechanisms, and electrical responses of EGOSTs. We then focus on strategies to ensure their stability to maintain these characteristics and prevent adverse effects on biological tissues. We also highlight state-of-the-art neuromorphic implants that incorporate these strategies. We conclude by presenting a perspective on improvements that are needed in EGOSTs to develop practical, neuromorphic implants that are long-term useable.


Asunto(s)
Técnicas Biosensibles , Electrólitos , Transistores Electrónicos , Humanos , Técnicas Biosensibles/instrumentación , Electrólitos/química , Prótesis e Implantes , Diseño de Equipo , Plasticidad Neuronal , Sinapsis/fisiología , Animales
18.
ACS Nano ; 18(27): 17681-17693, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38920103

RESUMEN

This study investigates the applicability of six transition metal dichalcogenides to efficient therapeutic drug monitoring of ten antiepileptic drugs using laser desorption/ionization-mass spectrometry. We found that molybdenum ditelluride and tungsten ditelluride are suitable for the sensitive quantification of therapeutic drugs. The contribution of tellurium to the enhanced efficiency of laser desorption ionization was validated through theoretical calculations utilizing an integrated model that incorporates transition-metal dichalcogenides and antiepileptic drugs. The results of our theoretical calculations suggest that the relatively low surface electron density for the tellurium-containing transition metal dichalcogenides induces stronger Coulombic interactions, which results in enhanced laser desorption and ionization efficiency. To demonstrate applicability, up to 120 patient samples were analyzed to determine drug concentrations, and the results were compared with those of immunoassay and liquid chromatography-tandem mass spectrometry. Agreements among these methods were statistically evaluated using the Passing-Bablok regression and Bland-Altman analysis. Furthermore, our method has been shown to be applicable to the simultaneous detection and multiplexed quantification of antiepileptic drugs.


Asunto(s)
Anticonvulsivantes , Monitoreo de Drogas , Monitoreo de Drogas/métodos , Humanos , Anticonvulsivantes/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Calcógenos/química
19.
Exp Neurol ; 379: 114867, 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38914274

RESUMEN

An ischemic stroke (IS) is caused due to the lack of blood flow to cerebral tissue. Most of the studies have focused on how stroke affects the localized tissue, but it has been observed that a stroke can cause secondary complications in distant organs, such as Bone Marrow (BM). Our study focused on the effect of ischemic strokes on the bone marrow microenvironment. Bone marrow (BM) is a vital organ that maintains inflammatory homeostasis and aids in the repair of damaged tissue after injury/IS. We used the middle cerebral artery occlusion (MCAO) model of ischemic stroke on adult mice (6 months) and investigated the changes in the BM environment. BM cells were used for western blot and RT-PCR, and the BM supernatant was used for cytokine analysis and extracellular vesicle (EVs) isolation. We observed a significant increase in the total cell number within the BM and an increase in TNF-alpha and MCP-1, which are known for inducing a pro-inflammatory environment. Western blots analysis on the whole BM cell lysate demonstrated elevated levels of inflammatory factors (IL-6, TNF-alpha, and TLR-4) and senescence markers (p21 p16). EVs isolated from the BM supernatant showed no change in size or concentration; however, we found that the EVs carried increased miRNA-141-3p and miRNA-34a. Proteomic analysis on BM-derived EVs showed an alteration in the protein cargo of IS. We observed an increase in FgB, C3, Fn1, and Tra2b levels. The signaling pathway analysis showed mitochondrial function is most affected within the bone marrow. Our study demonstrated that IS induces changes in the BM environment and EVs secreted in the BM.

20.
Turk Neurosurg ; 34(4): 678-685, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38874250

RESUMEN

AIM: To compare the clinical and radiological results of patients who underwent multilevel posterior cervical fusion (PCF) with different end levels (C6 or C7). MATERIAL AND METHODS: We collected radiographs and clinical results of all subjects who underwent 3 level or more PCF for degenerative disease from May 2012 to December 2020. Based on the location of the end of fusion during surgery, patients were divided into C6 (group 1) and C7 patients (group 2). The clinical and radiological results of both groups were compared over two years. RESULTS: A total of 52 patients met the inclusion criteria of this study (21 in group 1 and 31 in group 2). The clinical results demonstrated a statistically significant difference with respect to a lower neck visual analog scale score in group 1 than in group 2 at the last follow-up (p=0.03). With regard to the radiological results, the C2-C7 sagittal vertical axis showed significantly greater values in group 2 than in group 1 at the final follow-up (p=0.02). For thoracic kyphosis (TK), group 2 had lower TK values than group 1 (p=0.03), and the T9 spinopelvic inclination was significantly greater in group 2 than in group 1 (p=0.01). CONCLUSION: In this study, aggravation of cervical kyphosis and neck pain was observed when C7 was included in multilevel PCF surgery. The inclusion of C7 also affected the thoracolumbar parameters and global spine alignment.


Asunto(s)
Vértebras Cervicales , Fusión Vertebral , Humanos , Fusión Vertebral/métodos , Vértebras Cervicales/cirugía , Vértebras Cervicales/diagnóstico por imagen , Femenino , Masculino , Persona de Mediana Edad , Anciano , Adulto , Resultado del Tratamiento , Cifosis/cirugía , Cifosis/diagnóstico por imagen , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...