Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 175
Filtrar
2.
Sci Rep ; 13(1): 21976, 2023 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-38081878

RESUMEN

The complexity of CT perfusion (CTP) acquisition protocols may limit the availability of target mismatch assessment at resource-limited hospitals. We compared CTP mismatch with a mismatch surrogate generated from a simplified dynamic imaging sequence comprising widely available non-contrast CT (NCCT) and multiphase CT angiography (mCTA). Consecutive patients with anterior circulation acute ischemic stroke who received NCCT, mCTA, and CTP were retrospectively included in this study. An mCTA-perfusion (mCTA-P) dynamic series was formed by co-registering NCCT and mCTA. We simulated an ideal mCTA-P study by down-sampling CTP (dCTP) dynamic images according to mCTA timing. Ischemic core and penumbra volumes were estimated by cerebral blood flow and Tmax thresholding, respectively, on perfusion maps calculated independently for CTP, dCTP, and mCTA-P by deconvolution. Concordance in target mismatch (core < 70 ml, penumbra ≥ 15 ml, mismatch ratio ≥ 1.8) determination by dCTP and mCTA-P versus CTP was assessed. Of sixty-one included patients, forty-six had a CTP target mismatch. Concordance with CTP profiles was 90% and 82% for dCTP and mCTA-P, respectively. Lower mCTA-P concordance was likely from differences in collimation width between NCCT and mCTA, which worsened perfusion map quality due to a CT number shift at mCTA. Moderate diagnostic agreement between CTP and mCTA-P was found and may improve with optimal mCTA scan parameter selection as simulated by dCTP. mCTA-P may be a pragmatic alternative where CTP is unavailable or the risks of additional radiation dose, contrast injections, and treatment delays outweigh the potential benefit of a separate CTP scan.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Humanos , Angiografía por Tomografía Computarizada/métodos , Estudios Retrospectivos , Angiografía Cerebral/métodos , Perfusión , Circulación Cerebrovascular
3.
Sci Rep ; 13(1): 21458, 2023 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-38052882

RESUMEN

CTP is an important diagnostic tool in managing patients with acute ischemic stroke, but challenges persist in the agreement of stroke lesion volumes and ischemic core-penumbra mismatch profiles determined with different CTP post-processing software. We investigated a systematic method of calibrating CTP stroke lesion thresholds between deconvolution algorithms using a digital perfusion phantom to improve inter-software agreement of mismatch profiles. Deconvolution-estimated cerebral blood flow (CBF) and Tmax was compared to the phantom ground truth via linear regression for one model-independent and two model-based deconvolution algorithms. Using the clinical standard of model-independent CBF < 30% and Tmax > 6 s as reference thresholds for ischemic core and penumbra, respectively, we determined that model-based CBF < 15% and Tmax > 6 s were the corresponding calibrated thresholds after accounting for quantitative differences revealed at linear regression. Calibrated thresholds were then validated in 63 patients with large vessel stroke by evaluating agreement (concordance and Cohen's kappa, κ) between the two model-based and model-independent deconvolution methods in determining mismatch profiles used for clinical decision-making. Both model-based deconvolution methods achieved 95% concordance with model-independent assessment and Cohen's kappa was excellent (κ = 0.87; 95% confidence interval [CI] 0.72-1.00 and κ = 0.86; 95% CI 0.70-1.00). Our systematic method of calibrating CTP stroke lesion thresholds may help harmonize mismatch profiles determined by different software.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Humanos , Calibración , Tomografía Computarizada por Rayos X/métodos , Accidente Cerebrovascular/patología , Algoritmos , Circulación Cerebrovascular , Isquemia Encefálica/diagnóstico por imagen , Isquemia Encefálica/patología , Perfusión , Estudios Retrospectivos
4.
Mol Imaging Biol ; 25(2): 271-282, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36418769

RESUMEN

INTRODUCTION: The reliance on glycolytic metabolism is a hallmark of tumor metabolism. Excess acid and protons are produced, leading to an acidic tumor environment. Therefore, we explored the relationship between the tumor glycolytic metabolism and tissue pH by comparing 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) and hyperpolarized [1-13C]pyruvate MR spectroscopy imaging (MRSI) to chemical exchange saturation transfer (CEST) MRI measurements of tumor pH. METHODS: 106 C6 glioma cells were implanted in the brains of male Wistar rats (N = 11) using stereotactic surgery. A 60-min PET acquisition after a bolus of FDG was performed at 11-13 days post implantation, and standardized uptake value (SUV) was calculated. CEST measurements were acquired the following day before and during constant infusion of glucose solution. Tumor intracellular pH (pHi) was evaluated using amine and amide concentration-independent detection (AACID) CEST MRI. The change of pHi (∆pHi) was calculated as the difference between pHi pre- and during glucose infusion. Rats were imaged immediately with hyperpolarized [1-13C]pyruvate MRSI. Regional maps of the ratio of Lac:Pyr were acquired. The correlations between SUV, Lac:Pyr ratio, and ∆pHi were evaluated using Pearson's correlation. RESULTS: A decrease of 0.14 in pHi was found after glucose infusion in tumor region. Significant correlations between tumor glycolysis measurements of Lac:Pyr and ∆pHi within the tumor (ρ = 0.83, P = 0.01) and peritumoral region (ρ = 0.76, P = 0.028) were observed. No significant correlations were found between tumor SUV and ∆pHi within the tumor (ρ = - 0.45, P = 0.17) and peritumor regions (ρ = - 0.6, P = 0.051). CONCLUSION: AACID detected the changes in pHi induced by glucose infusion. Significant correlations between tumor glycolytic measurement of Lac:Pyr and tumoral and peritumoral pHi and ∆pHi suggest the intrinsic relationship between tumor glycolytic metabolism and the tumor pH environment as well as the peritumor pH environment.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Ratas , Masculino , Animales , Glioblastoma/patología , Neoplasias Encefálicas/patología , Fluorodesoxiglucosa F18 , Glucosa , Concentración de Iones de Hidrógeno , Ratas Wistar , Imagen por Resonancia Magnética/métodos , Glucólisis , Piruvatos
5.
J Stroke Cerebrovasc Dis ; 31(12): 106844, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36323170

RESUMEN

OBJECTIVES: Integration of CT perfusion (CTP) with requisite non-contrast CT and CT angiography (CTA) stroke imaging may allow efficient stroke lesion volume measurement. Using surrogate images from CTP, we simulated the feasibility of using multiphase CTA (mCTA) to generate perfusion maps and assess target mismatch profiles. MATERIALS AND METHODS: Patients with acute ischemic stroke who received admission CTP were included in this study. Four CTP images (surrogate mCTA, one pre-contrast and three post-contrast, starting at the arterial peak then at 8 s intervals) were selected according to the CTP arterial time-density curve to simulate non-contrast CT and mCTA images. Cerebral blood flow (CBF) and Tmax maps were calculated using the same model-based deconvolution algorithm for the standard CTP and surrogate mCTA studies. Infarct and penumbra were delineated with CBF < 20% and Tmax > 6 s threshold, respectively. Classification accuracy of surrogate mCTA target mismatch (infarct <70 ml; penumbra ≥15 ml; mismatch ratio ≥1.8) with respect to standard CTP was assessed. Agreement between infarct and penumbra volumes from standard CTP and surrogate mCTA maps were evaluated by Bland-Altman analysis. RESULTS: Of 34 included patients, 28 had target mismatch and 6 did not by standard CTP. Accuracy of classifying target mismatch profiles with surrogate mCTA was 79% with respect to that from standard CTP. Mean  ±  standard deviation of differences (standard CTP minus surrogate mCTA) of infarct and penumbra volumes were 9.8 ± 14.8 ml and 20.1 ± 45.4 ml, respectively. CONCLUSIONS: Surrogate mCTA ischemic lesion volumes agreed with those from standard CTP and may be an efficient alternative when CTP is not practical.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Humanos , Isquemia Encefálica/diagnóstico por imagen , Angiografía Cerebral/métodos , Circulación Cerebrovascular , Angiografía por Tomografía Computarizada/métodos , Estudios de Factibilidad , Infarto , Perfusión , Imagen de Perfusión/métodos , Accidente Cerebrovascular/diagnóstico por imagen , Tomografía Computarizada por Rayos X/métodos
6.
Clin Cancer Res ; 28(24): 5263-5271, 2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-36037303

RESUMEN

PURPOSE: Tumor hypoxia is associated with poor response to radiation (RT). We previously discovered a novel mechanism of metformin: enhancing tumor RT response by decreasing tumor hypoxia. We hypothesized that metformin would decrease tumor hypoxia and improve cervical cancer response to RT. PATIENTS AND METHODS: A window-of-opportunity, phase II randomized trial was performed in stage IB-IVA cervical cancer. Patients underwent screening positron emission tomography (PET) imaging with hypoxia tracer fluoroazomycin arabinoside (FAZA). Only patients with FAZA uptake (hypoxic tumor) were included and randomized 2:1 to receive metformin in combination with chemoRT or chemoRT alone. A second FAZA-PET/CT scan was performed after 1 week of metformin or no intervention (control). The primary endpoint was a change in fractional hypoxic volume (FHV) between FAZA-PET scans, compared using the Wilcoxon signed-rank test. The study was closed early due to FAZA availability and the COVID-19 pandemic. RESULTS: Of the 20 consented patients, 6 were excluded due to no FAZA uptake and 1 withdrew. FHV of 10 patients in the metformin arm decreased by an average of 10.2% (44.4%-34.2%) ± SD 16.9% after 1 week of metformin, compared with an average increase of 4.7% (29.1%-33.8%) ± 11.5% for the 3 controls (P = 0.027). Those with FHV reduction after metformin had significantly lower MATE2 expression. With a median follow-up of 2.8 years, the 2-year disease-free survival was 67% for the metformin arm versus 33% for controls (P = 0.09). CONCLUSIONS: Metformin decreased cervical tumor hypoxia in this trial that selected for patients with hypoxic tumor. See related commentary by Lyng et al., p. 5233.


Asunto(s)
COVID-19 , Metformina , Nitroimidazoles , Neoplasias del Cuello Uterino , Femenino , Humanos , Neoplasias del Cuello Uterino/diagnóstico por imagen , Neoplasias del Cuello Uterino/tratamiento farmacológico , Tomografía Computarizada por Tomografía de Emisión de Positrones , Metformina/uso terapéutico , Pandemias , Tomografía de Emisión de Positrones/métodos , Hipoxia , Radiofármacos
7.
Med Phys ; 49(9): 6137-6149, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35650012

RESUMEN

BACKGROUND: Targeted radionuclide therapy (TRT) is a fast-growing field garnering much interest, with several clinical trials currently underway, that has a steady increase in development of treatment techniques. Unfortunately, within the field and many clinical trials, the dosimetry calculation techniques used remain relatively simple, often using a mix of S-value calculations and kernel convolutions. PURPOSE: The common TRT calculation techniques, although very quick, can often ignore important aspects of patient anatomy and radionuclide distribution, as well as the interplay there-in. This paper introduces egs_mird, a new Monte Carlo (MC) application built in EGSnrc which allows users to model full patient tissue and density (using clinical CT images) and radionuclide distribution (using clinical PET images) for fast and detailed dose TRT calculation. METHODS: The novel application egs_mird is introduced along with a general outline of the structure of egs_mird simulations. The general structure of the code, and the track-length (TL) estimator scoring implementation for variance reduction, is described. A new egs++ source class egs_internal_source, created to allow detailed patient-wide source distribution, and a modified version of egs_radionuclide_source, changed to be able to work with egs_internal_source, are also described. The new code is compared to other MC calculations of S-values kernels of 131 I, 90 Y, and 177 Lu in the literature, along with further self-validation using a histogram variant of the electron Fano test. Several full patient prostate 177 Lu TRT prostate cancer treatment simulations are performed using a single set of patient DICOM CT and [18 F]-DCFPyL PET data. RESULTS: Good agreement is found between S-value kernels calculated using egs_mird with egs_internal_source and those found in the literature. Calculating 1000 doses (individual voxel uncertainties of ∼0.05%) in a voxel grid Fano test for monoenergetic 500 keV electrons and 177 Lu electrons results in 94% and 99% of the doses being within 0.1% of the expected dose, respectively. For a hypothetical 177 Lu treatment, patient prostate, rectum, bone marrow, and bladder dose volume histograms (DVHs) results did not vary significantly when using the TL estimator and not modeling electron transport, modeling bone marrow explicitly (rather than using generic tissue compositions), and reducing activity to voxels containing partial or full calcifications to half or none, respectively. Dose profiles through different regions demonstrate there are some differences with model choices not seen in the DVH. Simulations using the TL estimator can be completed in under 15 min (∼30 min when using standard interaction scoring). CONCLUSION: This work shows egs_mird to be a reliable MC code for computing TRT doses as realistically as the patient Computed Tomography (CT) and Positron Emission Tomography (PET) data allow. Furthermore, the code can compute doses to sub-1% uncertainty within 15 min, with little to no optimization. Thus, this work supports the use of egs_mird for dose calculations in TRT.


Asunto(s)
Radioisótopos , Radiometría , Electrones , Humanos , Masculino , Método de Montecarlo , Radioisótopos/uso terapéutico , Radiometría/métodos , Planificación de la Radioterapia Asistida por Computador/métodos
8.
Front Med (Lausanne) ; 9: 810825, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35492302

RESUMEN

Importance: Accurate monitoring of core body temperature is integral to targeted temperature management (TTM) following cardiac arrest. However, there are no reliable non-invasive methods for monitoring temperature during TTM. Objectives: We compared the accuracy and precision of a novel non-invasive Zero-Heat-Flux Thermometer (SpotOn™) to a standard invasive esophageal probe in a cohort of patients undergoing TTM post-cardiac arrest. Design Setting and Participants: We prospectively enrolled 20 patients undergoing post-cardiac arrest care in the intensive care units at the London Health Sciences Centre in London, Canada. A SpotOn™ probe was applied on each patient's forehead, while an esophageal temperature probe was inserted, and both temperature readings were recorded at 1-min intervals for the duration of TTM. Main outcomes and Measures: We compared the SpotOn™ and esophageal monitors using the Bland-Altman analysis and the Pearson correlation, with accuracy set as a primary outcome. Secondary outcomes included precision and correlation. Bias exceeding 0.1°C and limits of agreement exceeding 0.5°C were considered clinically important. Results: Sixteen (80%) of patients had complete data used in the final analysis. The median (interquartile range) duration of recording was 38 (12-56) h. Compared to the esophageal probe, SpotOn™ had a bias of 0.06 ± 0.45°C and 95% limits of agreement of -0.83 to 0.95°C. The Pearson correlation coefficient was 0.97 (95% confidence interval 0.9663-0.9678), with a two-tailed p < 0.0001. Conclusion and Relevance: The SpotOn™ is an accurate method that may enable non-invasive monitoring of core body temperature during TTM, although its precision is slightly worse than the predefined 0.5°C when compared to invasive esophageal probe.

9.
Front Oncol ; 12: 863848, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35494042

RESUMEN

Advances in imaging have changed prostate radiotherapy through improved biochemical control from focal boost and improved detection of recurrence. These advances are reviewed in the context of prostate stereotactic body radiation therapy (SBRT) and the ARGOS/CLIMBER trial protocol. ARGOS/CLIMBER will evaluate 1) the safety and feasibility of SBRT with focal boost guided by multiparametric MRI (mpMRI) and 18F-PSMA-1007 PET and 2) imaging and laboratory biomarkers for response to SBRT. To date, response to prostate SBRT is most commonly evaluated using the Phoenix Criteria for biochemical failure. The drawbacks of this approach include lack of lesion identification, a high false-positive rate, and delay in identifying treatment failure. Patients in ARGOS/CLIMBER will receive dynamic 18F-PSMA-1007 PET and mpMRI prior to SBRT for treatment planning and at 6 and 24 months after SBRT to assess response. Imaging findings will be correlated with prostate-specific antigen (PSA) and biopsy results, with the goal of early, non-invasive, and accurate identification of treatment failure.

11.
Tomography ; 8(2): 1113-1128, 2022 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-35448725

RESUMEN

For multicenter clinical studies, characterizing the robustness of image-derived radiomics features is essential. Features calculated on PET images have been shown to be very sensitive to image noise. The purpose of this work was to investigate the efficacy of a relatively simple harmonization strategy on feature robustness and agreement. A purpose-built texture pattern phantom was scanned on 10 different PET scanners in 7 institutions with various different image acquisition and reconstruction protocols. An image harmonization technique based on equalizing a contrast-to-noise ratio was employed to generate a "harmonized" alongside a "standard" dataset for a reproducibility study. In addition, a repeatability study was performed with images from a single PET scanner of variable image noise, varying the binning time of the reconstruction. Feature agreement was measured using the intraclass correlation coefficient (ICC). In the repeatability study, 81/93 features had a lower ICC on the images with the highest image noise as compared to the images with the lowest image noise. Using the harmonized dataset significantly improved the feature agreement for five of the six investigated feature classes over the standard dataset. For three feature classes, high feature agreement corresponded with higher sensitivity to the different patterns, suggesting a way to select suitable features for predictive models.


Asunto(s)
Tomografía de Emisión de Positrones , Fantasmas de Imagen , Tomografía de Emisión de Positrones/métodos , Reproducibilidad de los Resultados
12.
Tomography ; 8(2): 1129-1140, 2022 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-35448726

RESUMEN

Purpose: The aortic time-enhancement curve obtained from dynamic CT myocardial perfusion imaging can be used to derive the cardiac output (CO) index based on the indicator dilution principle. The objective of this study was to investigate the effect of cardiac phase at which CT myocardial perfusion imaging is triggered on the CO index measurement with this approach. Methods: Electrocardiogram (ECG) gated myocardial perfusion imaging was performed on farm pigs with consecutive cardiac axial scans using a large-coverage CT scanner (Revolution, GE Healthcare) after intravenous contrast administration. Multiple sets of dynamic contrast-enhanced (DCE) cardiac images were reconstructed retrospectively from 30% to 80% R-R intervals with a 5% phase increment. The time-enhancement curve sampled from above the aortic orifice in each DCE image set was fitted with a modified gamma variate function (MGVF). The fitted curve was then normalized to the baseline data point unaffected by the streak artifact emanating from the contrast solution in the right heart chamber. The Stewart−Hamilton equation was used to calculate the CO index based on the integral of the fitted normalized aortic curve, and the results were compared among different cardiac phases. Results: The aortic time-enhancement curves sampled at different cardiac phases were different from each other, especially in the baseline portion of the curve where the effect of streak artifact was prominent. After properly normalizing and denoising with a MGVF, the integrals of the aortic curve were minimally different among cardiac phases (0.228 ± 0.001 Hounsfield Unit × second). The corresponding mean CO index was 4.031 ± 0.028 L/min. There were no statistical differences in either the integral of the aortic curve or CO index among different cardiac phases (p > 0.05 for all phases).


Asunto(s)
Imagen de Perfusión Miocárdica , Animales , Gasto Cardíaco , Corazón/diagnóstico por imagen , Imagen de Perfusión Miocárdica/métodos , Estudios Retrospectivos , Porcinos , Tomografía Computarizada por Rayos X/métodos
13.
Acad Radiol ; 29(10): 1502-1511, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35300907

RESUMEN

RATIONALE AND OBJECTIVES: Radiation dose associated with computed tomography (CT) perfusion (CTP) may discourage its use despite its added diagnostic benefit in quantifying ischemic lesion volume. Sparse-view CT reduces scan dose by acquiring fewer X-ray projections per gantry rotation but is contaminated by streaking artifacts using filtered back projection (FBP). We investigated the achievable dose reduction by sparse-view CTP with FBP without affecting CTP lesion volume estimations. MATERIALS AND METHODS: Thirty-eight consecutive patients with acute ischemic stroke and CTP were included in this simulation study. CTP projection data was simulated by forward projecting original reconstructions with 984 views and adding Gaussian noise. Full-view (984 views) and sparse-view (492, 328, 246, and 164 views) CTP studies were simulated by FBP of simulated projection data. Cerebral blood flow (CBF) and time-to-maximum of the impulse residue function (Tmax) maps were generated by deconvolution for each simulated CTP study. Ischemic volumes were measured by CBF<30% relative to the contralateral hemisphere and Tmax > 6 s. Volume accuracy was evaluated with respect to the full-view CTP study by the Friedman test with post hoc multiplicity-adjusted pairwise tests and Bland-Altman analysis. RESULTS: Friedman and multiplicity-adjusted pairwise tests indicated that 164-view CBF < 30%, 246- and 164-view Tmax > 6 s volumes were significantly different to full-view volumes (p < 0.001). Mean difference ± standard deviation (sparse minus full-view lesion volume) ranged from -1.0 ± 2.8 ml to -4.1 ± 11.7 ml for CBF < 30% and -2.9 ± 3.8 ml to -12.5 ± 19.9 ml for Tmax > 6 s from 492 to 164 views, respectively. CONCLUSION: By ischemic volume accuracy, our study indicates that sparse-view CTP may allow dose reduction by up to a factor of 3.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Humanos , Isquemia Encefálica/diagnóstico por imagen , Circulación Cerebrovascular , Perfusión , Imagen de Perfusión/métodos , Accidente Cerebrovascular/diagnóstico por imagen , Tomografía Computarizada por Rayos X/métodos
14.
Nutrients ; 13(12)2021 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-34959870

RESUMEN

Low birth weight (LBW) offspring are at increased risk for developing insulin resistance, a key precursor in metabolic syndrome and type 2 diabetes mellitus. Altered skeletal muscle vasculature, extracellular matrix, amino acid and mitochondrial lipid metabolism, and insulin signaling are implicated in this pathogenesis. Using uteroplacental insufficiency (UPI) to induce intrauterine growth restriction (IUGR) and LBW in the guinea pig, we investigated the relationship between UPI-induced IUGR/LBW and later life skeletal muscle arteriole density, fibrosis, amino acid and mitochondrial lipid metabolism, markers of insulin signaling and glucose uptake, and how a postnatal high-fat, high-sugar "Western" diet (WD) modulates these changes. Muscle of 145-day-old male LBW glucose-tolerant offspring displayed diminished vessel density and altered acylcarnitine levels. Disrupted muscle insulin signaling despite maintained whole-body glucose homeostasis also occurred in both LBW and WD-fed male "lean" offspring. Additionally, postnatal WD unmasked LBW-induced impairment of mitochondrial lipid metabolism, as reflected by increased acylcarnitine accumulation. This study provides evidence that early markers of skeletal muscle metabolic dysfunction appear to be influenced by the in utero environment and interact with a high-fat/high-sugar postnatal environment to exacerbate altered mitochondrial lipid metabolism, promoting mitochondrial overload.


Asunto(s)
Fenómenos Fisiológicos Nutricionales de los Animales , Dieta Occidental/efectos adversos , Insulina/sangre , Mitocondrias/metabolismo , Músculo Esquelético/irrigación sanguínea , Animales , Animales Recién Nacidos , Peso al Nacer , Glucemia/metabolismo , Carnitina/análogos & derivados , Carnitina/sangre , Modelos Animales de Enfermedad , Femenino , Retardo del Crecimiento Fetal , Cobayas , Metabolismo de los Lípidos , Masculino , Insuficiencia Placentaria , Embarazo , Transducción de Señal
15.
EJNMMI Res ; 11(1): 107, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34652551

RESUMEN

PURPOSE: Localized prostate cancer (PCa) in patients is characterized by a dominant focus in the gland (dominant intraprostatic lesion, DIL). Accurate DIL identification may enable more accurate diagnosis and therapy through more precise targeting of biopsy, radiotherapy and focal ablative therapies. The goal of this study is to validate the performance of [18F]DCFPyL PET and CT perfusion (CTP) for detecting and localizing DIL against digital histopathological images. METHODS: Multi-modality image sets: in vivo T2-weighted (T2w)-MRI, 22-min dynamic [18F]DCFPyL PET/CT, CTP, and 2-h post-injection PET/MR were acquired in patients prior to radical prostatectomy. The explanted gland with implanted fiducial markers was imaged with T2w-MRI. All images were co-registered to the pathologist-annotated digital images of whole-mount mid-gland histology sections using fiducial markers and anatomical landmarks. Regions of interest encompassing DIL and non-DIL tissue were drawn on the digital histopathological images and superimposed on PET and CTP parametric maps. Logistic regression with backward elimination of parameters was used to select the most sensitive parameter set to distinguish DIL from non-DIL voxels. Leave-one-patient-out cross-validation was performed to determine diagnostic performance. RESULTS: [18F]DCFPyL PET and CTP parametric maps of 15 patients were analyzed. SUVLate and a model combining Ki and k4 of [18F]DCFPyL achieved the most accurate performance distinguishing DIL from non-DIL voxels. Both detection models achieved an AUC of 0.90 and an error rate of < 10%. Compared to digital histopathology, the detected DILs had a mean dice similarity coefficient of 0.8 for the Ki and k4 model and 0.7 for SUVLate. CONCLUSIONS: We have validated using co-registered digital histopathological images that parameters from kinetic analysis of 22-min dynamic [18F]DCFPyL PET can accurately localize DILs in PCa for targeting of biopsy, radiotherapy, and focal ablative therapies. Short-duration dynamic [18F]DCFPyL PET was not inferior to SUVLate in this diagnostic task. CLINICAL TRIAL REGISTRATION NUMBER: NCT04009174 (ClinicalTrials.gov).

16.
Blood Adv ; 5(20): 4211-4218, 2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34521110

RESUMEN

Immune-mediated thrombotic thrombocytopenic purpura (iTTP) is a rare, life-threatening disorder of systemic microthrombosis and organ ischemia. The etiology of chronic cerebrovascular outcomes in iTTP survivors is largely unknown. In this pilot study, we measured blood-brain barrier (BBB) permeability in patients with iTTP at the start of remission and 6 months later. This prospective pilot study included 7 adult patients with incident iTTP. Eligibility criteria included ADAMTS13 activity < 10% and detectable inhibitor at diagnosis. Patients were recruited from London Health Sciences Centre in Canada (2017-2019) within 3 days of hospital admission and followed for 6 months after remission (defined as normalization of platelet count and lactate dehydrogenase with no clinical signs or symptoms of microvascular injury for more than 30 days after the last plasma exchange). All patients had cerebral computed tomography perfusion scans with BBB permeability surface product measurements. Patients (5 women, 2 men) had a mean age of 48 years (range, 21-77 years). At diagnosis, patients had a mean platelet count of 22 (standard deviation [SD], 25) × 109/L. At the start of remission, mean BBB permeability surface product was 0.91 (0.30) mL/min/100 g. Six months later, the mean permeability surface product was 0.56 (0.22) mL/min/100 g, with a mean difference of -0.312 mL/min/100 g (95% confidence interval: -0.4729 to -0.1510; P = .0032). In this pilot study of patients with iTTP, pathologically increased BBB permeability was evident, and although there was some improvement, this persisted 6 months after remission. Future work will explore the chronicity of these findings and their clinical implications.


Asunto(s)
Púrpura Trombocitopénica Idiopática , Púrpura Trombocitopénica Trombótica , Adulto , Anciano , Barrera Hematoencefálica , Femenino , Humanos , Masculino , Persona de Mediana Edad , Permeabilidad , Proyectos Piloto , Estudios Prospectivos , Sobrevivientes , Adulto Joven
17.
J Appl Clin Med Phys ; 22(8): 295-302, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34240548

RESUMEN

PURPOSE: For lung and liver tumors requiring radiotherapy, motion artifacts are common in 4D-CT images due to the small axial field-of-view (aFOV) of conventional CT scanners. This may negatively impact contouring and dose calculation accuracy and could lead to a geographic miss during treatment. Recent advancements in volumetric CT (vCT) enable an aFOV up to 160 mm in a single rotation, which may reduce motion artifacts. However, the impact of large aFOV on CT number required for dose calculation needs to be evaluated before clinical implementation. The objective of this study was to determine the utility of a 256-slice vCT scanner for 4D-CT simulation by evaluating image quality and generating relative electron density (RED) curves. METHODS: Images were acquired on a 256-slice GE Revolution CT scanner with 40 mm, 80 mm, 120 mm, 140 mm, and 160 mm aFOV. Image quality was assessed by evaluating CT number linearity, uniformity, noise, and low-contrast resolution. The relationship between each quality metric and aFOV was assessed. RESULTS: CT number linearity, uniformity, noise, and low-contrast resolution were within the expected range for each image set, except CT number in Teflon and Delrin, which were underestimated. Spearman correlation coefficient (ρ) showed that the CT number for Teflon (ρ = 1.0, p = 0.02), Delrin (ρ = 1.0, p = 0.02), and air (ρ = 1.0, p = 0.02) was significantly related to aFOV, while all other measurements were not. The measured deviations from expected values were not clinically significant. CONCLUSION: These results suggest that vCT can be used for CT simulation for radiation treatment planning.


Asunto(s)
Tomografía Computarizada de Haz Cónico , Oncología por Radiación , Simulación por Computador , Humanos , Fantasmas de Imagen , Dosificación Radioterapéutica , Tomógrafos Computarizados por Rayos X
18.
Kidney Int Rep ; 6(5): 1336-1345, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-34013112

RESUMEN

INTRODUCTION: The liver receives gut-derived endotoxin via the portal vein, clearing it before it enters systemic circulation. Hemodialysis negatively impacts the perfusion and function of multiple organs systems. Dialysate cooling reduces hemodialysis-induced circulatory stress and protects organs from ischemic injury. This study examined how hemodialysis disrupts liver hemodynamics and function, its effect on endotoxemia, and the potential protective effect of dialysate cooling. METHODS: Fifteen patients were randomized to receive either standard (36.5°C dialysate temperature) or cooled (35.0°C) hemodialysis first in a two-visit crossover trial. We applied computed tomography (CT) liver perfusion imaging to patients before, 3 hours into and after each hemodialysis session. We measured hepatic perfusion and perfusion heterogeneity. Hepatic function was measured by indocyanine green (ICG) clearance. Endotoxin levels in blood throughout dialysis were also measured. RESULTS: During hemodialysis, overall liver perfusion did not significantly change, but portal vein perfusion trended towards increasing (P = 0.14) and perfusion heterogeneity significantly increased (P = 0.038). In addition, ICG clearance decreased significantly during hemodialysis (P = 0.016), and endotoxin levels trended towards increasing during hemodialysis (P = 0.15) and increased significantly after hemodialysis (P = 0.037). Applying dialysate cooling trended towards abrogating these changes but did not reach statistical significance compared to standard hemodialysis. CONCLUSION: Hemodialysis redistributes liver perfusion, attenuates hepatic function, and results in endotoxemia. Higher endotoxin levels in end-stage renal disease (ESRD) patients may result from the combination of decreased hepatic clearance function and increasing fraction of liver perfusion coming from toxin-laden portal vein during hemodialysis. The protective potential of dialysate cooling should be explored further in future research studies.

19.
Mol Imaging Biol ; 23(4): 516-526, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33534038

RESUMEN

PURPOSE: Chemical exchange saturation transfer MRI using an infusion of glucose (glucoCEST) is sensitive to the distribution of glucose in vivo; however, whether glucoCEST is more related to perfusion or glycolysis is still debatable. We compared glucoCEST to computed tomography perfusion (CTP), [18F] fluorodeoxyglucose positron emission tomography (FDG-PET), and hyperpolarized [1-13C] pyruvate magnetic resonance spectroscopy imaging (MRSI) in a C6 rat model of glioma to determine if glucoCEST is more strongly correlated with measurements of perfusion or glycolysis. METHODS: 106 C6 glioma cells were implanted in Wistar rat brains (n = 11). CTP (including blood volume, BV; blood flow, BF; and permeability surface area product, PS) and FDG-PET standardized uptake value (SUV) were acquired at 11 to 13 days post-surgery. GlucoCEST measurements (∆CEST) were acquired the following day on a 9.4 T MRI before and after an infusion of glucose solution. This was followed by MRSI on a 3.0 T MRI after the injection of hyperpolarized [1-13C] pyruvate to generate regional maps of the lactate:pyruvate ratio (Lac:Pyr). Pearson's correlations between glucoCEST, CTP, FDG-PET, and Lac:Pyr ratio were evaluated. RESULTS: Tumors had significantly higher SUV, BV, and PS than the contralateral brain. Tumor ∆CEST was most strongly correlated with CTP measurements of BV (ρ = 0.74, P = 0.01) and PS (ρ = 0.55, P = 0.04). No significant correlation was found between glycolysis measurements of SUV or Lac:Pyr with tumor ∆CEST. PS significantly correlated with SUV (ρ = 0.58, P = 0.005) and Lac:Pyr (ρ = 0.75, P = 0.005). BV significantly correlated with Lac:Pyr (ρ = 0.57, P = 0.02), and BF significantly correlated with SUV (ρ = 0.49, P = 0.02). CONCLUSION: This study determined that glucoCEST is more strongly correlated to measurements of perfusion than glycolysis. GlucoCEST measurements have additional confounds, such as sensitivity to changing pH, that merit additional investigation.


Asunto(s)
Neoplasias Encefálicas/diagnóstico por imagen , Glioma/diagnóstico por imagen , Glucosa/metabolismo , Ácido Pirúvico/metabolismo , Animales , Apoptosis/fisiología , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Proliferación Celular/fisiología , Fluorodesoxiglucosa F18 , Glioma/metabolismo , Glioma/patología , Glucólisis , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Imagen Multimodal/métodos , Perfusión , Tomografía de Emisión de Positrones/métodos , Radiofármacos/metabolismo , Ratas , Ratas Wistar , Tomografía Computarizada por Rayos X/métodos , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
20.
J Biomech Eng ; 143(6)2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33564841

RESUMEN

Delayed diagnosis of dynamic carpal instability often occurs because early changes in bone alignment and movement are difficult to detect and manifest mainly during a dynamic/functional task. Current diagnostic tools are only able to examine the carpal bones under static or sequential-static conditions. Four-dimensional (three dimensions + time) computed tomography (4DCT) enables quantification of carpal mechanics through 3D volume sequences of the wrist in motion. A comprehensive understanding of carpal mechanics is needed to define normal function and structure and provide targets for treatment of carpal injuries. In this study, measurements of scaphoid translation and joint congruency were taken by creating models from the CT scans of the carpals in extreme frames of motion, registering those models to the neutral position, transforming the models into a local coordinate system, and using software to calculate the joint surface areas (JSA). Results indicated that the centroid of the scaphoid translated 6.4 ± 1.3 mm and extended from extreme radial to extreme ulnar deviation. Results are consistent with the literature. An additional study was performed to measure the responsiveness of the 4DCT technique presented. Bone models from each frame of motion for radio ulnar deviation (RUD) and flexion extension (FE) were created and distinct differences between their JSA were measured qualitatively and quantitatively. The results show that there was statistically significantly different JSA within carpal joints between RUD and FE. These studies provide the first step in developing the methodology when using 4DCT scanning to measure subtle abnormalities in the wrist.


Asunto(s)
Huesos del Carpo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...