Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 13(1): 2518, 2022 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-35523813

RESUMEN

The nervous and endocrine systems coordinate with each other to closely influence physiological and behavioural responses in animals. Here we show that WAKE (encoded by wide awake, also known as wake) modulates membrane levels of GABAA receptor Resistance to Dieldrin (Rdl), in insulin-producing cells of adult male Drosophila melanogaster. This results in changes to secretion of insulin-like peptides which is associated with changes in juvenile hormone biosynthesis in the corpus allatum, which in turn leads to a decrease in 20-hydroxyecdysone levels. A reduction in ecdysone signalling changes neural architecture and lowers the perception of the male-specific sex pheromone 11-cis-vaccenyl acetate by odorant receptor 67d olfactory neurons. These finding explain why WAKE-deficient in Drosophila elicits significant male-male courtship behaviour.


Asunto(s)
Proteínas de Drosophila , Insulinas , Acetatos , Animales , Cortejo , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Sistema Endocrino/metabolismo , Masculino , Percepción , Feromonas , Receptores de GABA-A , Conducta Sexual Animal/fisiología
2.
Front Cell Dev Biol ; 9: 755574, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34858982

RESUMEN

Memory consolidation is a time-dependent process through which an unstable learned experience is transformed into a stable long-term memory; however, the circuit and molecular mechanisms underlying this process are poorly understood. The Drosophila mushroom body (MB) is a huge brain neuropil that plays a crucial role in olfactory memory. The MB neurons can be generally classified into three subsets: γ, αß, and α'ß'. Here, we report that water-reward long-term memory (wLTM) consolidation requires activity from α'ß'-related mushroom body output neurons (MBONs) in a specific time window. wLTM consolidation requires neurotransmission in MBON-γ3ß'1 during the 0-2 h period after training, and neurotransmission in MBON-α'2 is required during the 2-4 h period after training. Moreover, neurotransmission in MBON-α'1α'3 is required during the 0-4 h period after training. Intriguingly, blocking neurotransmission during consolidation or inhibiting serotonin biosynthesis in serotoninergic dorsal paired medial (DPM) neurons also disrupted the wLTM, suggesting that wLTM consolidation requires serotonin signals from DPM neurons. The GFP Reconstitution Across Synaptic Partners (GRASP) data showed the connectivity between DPM neurons and MBON-γ3ß'1, MBON-α'2, and MBON-α'1α'3, and RNAi-mediated silencing of serotonin receptors in MBON-γ3ß'1, MBON-α'2, or MBON-α'1α'3 disrupted wLTM. Taken together, our results suggest that serotonin released from DPM neurons modulates neuronal activity in MBON-γ3ß'1, MBON-α'2, and MBON-α'1α'3 at specific time windows, which is critical for the consolidation of wLTM in Drosophila.

3.
Mol Neurobiol ; 58(10): 5224-5238, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34273104

RESUMEN

Accumulated beta-amyloid (Aß) in the brain is the hallmark of Alzheimer's disease (AD). Despite Aß accumulation is known to trigger cellular dysfunctions and learning and memory damage, the detailed molecular mechanism remains elusive. Recent studies have shown that the onset of memory impairment and learning damage in the AD animal is different, suggesting that the underlying mechanism of the development of memory impairment and learning damage may not be the same. In the current study, with the use of Aß42 transgenic flies as models, we found that Aß induces memory damage and learning impairment via differential molecular signaling pathways. In early stage, Aß activates both Ras and PI3K to regulate Rac1 activity, which affects mostly on memory performance. In later stage, PI3K-Akt is strongly activated by Aß, which leads to learning damage. Moreover, reduced Akt, but not Rac1, activity promotes cell viability in the Aß42 transgenic flies, indicating that Akt and Rac1 exhibit differential roles in Aß regulating toxicity. Taken together, different molecular and cellular mechanisms are involved in Aß-induced learning damage and memory decline; thus, caution should be taken during the development of therapeutic intervention in the future.


Asunto(s)
Péptidos beta-Amiloides/toxicidad , Proteínas de Drosophila/metabolismo , Aprendizaje por Laberinto/fisiología , Trastornos de la Memoria/metabolismo , Fragmentos de Péptidos/toxicidad , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas de Unión al GTP rac/metabolismo , Animales , Animales Modificados Genéticamente , Drosophila , Proteínas de Drosophila/genética , Femenino , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Trastornos de la Memoria/inducido químicamente , Trastornos de la Memoria/genética , Ratones Transgénicos , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas de Unión al GTP rac/genética
4.
PLoS Genet ; 16(8): e1008963, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32780743

RESUMEN

Long-term memory (LTM) formation depends on the conversed cAMP response element-binding protein (CREB)-dependent gene transcription followed by de novo protein synthesis. Thirsty fruit flies can be trained to associate an odor with water reward to form water-reward LTM (wLTM), which can last for over 24 hours without a significant decline. The role of de novo protein synthesis and CREB-regulated gene expression changes in neural circuits that contribute to wLTM remains unclear. Here, we show that acute inhibition of protein synthesis in the mushroom body (MB) αß or γ neurons during memory formation using a cold-sensitive ribosome-inactivating toxin disrupts wLTM. Furthermore, adult stage-specific expression of dCREB2b in αß or γ neurons also disrupts wLTM. The MB αß and γ neurons can be further classified into five different neuronal subsets including αß core, αß surface, αß posterior, γ main, and γ dorsal. We observed that the neurotransmission from αß surface and γ dorsal neuron subsets is required for wLTM retrieval, whereas the αß core, αß posterior, and γ main are dispensable. Adult stage-specific expression of dCREB2b in αß surface and γ dorsal neurons inhibits wLTM formation. In vivo calcium imaging revealed that αß surface and γ dorsal neurons form wLTM traces with different dynamic properties, and these memory traces are abolished by dCREB2b expression. Our results suggest that a small population of neurons within the MB circuits support long-term storage of water-reward memory in Drosophila.


Asunto(s)
Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Memoria a Largo Plazo/fisiología , Neuronas/metabolismo , Olfato/genética , Transactivadores/genética , Animales , Animales Modificados Genéticamente , Calcio/metabolismo , Drosophila melanogaster/fisiología , Cuerpos Pedunculados/fisiología , Neuronas/fisiología , Biosíntesis de Proteínas/genética , Recompensa , Olfato/fisiología , Transmisión Sináptica/genética , Agua
5.
PLoS Genet ; 15(5): e1008153, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31071084

RESUMEN

Electrical synapses between neurons, also known as gap junctions, are direct cell membrane channels between adjacent neurons. Gap junctions play a role in the synchronization of neuronal network activity; however, their involvement in cognition has not been well characterized. Three-hour olfactory associative memory in Drosophila has two components: consolidated anesthesia-resistant memory (ARM) and labile anesthesia-sensitive memory (ASM). Here, we show that knockdown of the gap junction gene innexin5 (inx5) in mushroom body (MB) neurons disrupted ARM, while leaving ASM intact. Whole-mount brain immunohistochemistry indicated that INX5 protein was preferentially expressed in the somas, calyxes, and lobes regions of the MB neurons. Adult-stage-specific knockdown of inx5 in αß neurons disrupted ARM, suggesting a specific requirement of INX5 in αß neurons for ARM formation. Hyperpolarization of αß neurons during memory retrieval by expressing an engineered halorhodopsin (eNpHR) also disrupted ARM. Administration of the gap junction blocker carbenoxolone (CBX) reduced the proportion of odor responsive αß neurons to the training odor 3 hours after training. Finally, the α-branch-specific 3-hour ARM-specific memory trace was also diminished with CBX treatment and in inx5 knockdown flies. Altogether, our results suggest INX5 gap junction channels in αß neurons for ARM retrieval and also provide a more detailed neuronal mechanism for consolidated memory in Drosophila.


Asunto(s)
Conexinas/genética , Sinapsis Eléctricas/fisiología , Cuerpos Pedunculados/metabolismo , Animales , Encéfalo/metabolismo , Carbenoxolona/farmacología , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Sinapsis Eléctricas/metabolismo , Uniones Comunicantes/metabolismo , Uniones Comunicantes/fisiología , Memoria/fisiología , Cuerpos Pedunculados/fisiología , Neuronas/metabolismo , Odorantes , Olfato/genética , Transmisión Sináptica/fisiología
6.
Hum Mol Genet ; 26(20): 3909-3921, 2017 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-29016849

RESUMEN

Impaired clearance of amyloid-ß peptide (Aß) leads to abnormal extracellular accumulation of this neurotoxic protein that drives neurodegeneration in sporadic Alzheimer's disease (AD). Connective tissue growth factor (CTGF/CCN2) expression is elevated in plaque-surrounding astrocytes in AD patients. However, the role of CTGF in AD pathogenesis remains unclear. Here we characterized the neuroprotective activity of CTGF. We found that CTGF facilitated Aß uptake and subsequent degradation within primary glia and neuroblastoma cells. CTGF enhanced extracellular Aß degradation via membrane-bound matrix metalloproteinase-14 (MMP14) in glia and extracellular MMP13 in neurons. In the brain of a Drosophila AD model, glial-expression of CTGF reduced Aß deposits, improved locomotor function, and rescued memory deficits. Neuroprotective potential of CTGF against Aß42-induced photoreceptor degeneration was disrupted through silencing MMPs. Therefore, CTGF may represent a node for potential AD therapeutics as it intervenes in glia-neuron communication via specific MMPs to alleviate Aß neurotoxicity in the central nervous system.


Asunto(s)
Péptidos beta-Amiloides/toxicidad , Factor de Crecimiento del Tejido Conjuntivo/metabolismo , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Animales Modificados Genéticamente , Astrocitos/metabolismo , Encéfalo/metabolismo , Factor de Crecimiento del Tejido Conjuntivo/fisiología , Modelos Animales de Enfermedad , Drosophila , Humanos , Metaloproteinasa 14 de la Matriz/metabolismo , Ratones , Neuroglía/metabolismo , Neuroglía/fisiología , Neuronas/metabolismo , Neuronas/fisiología , Fármacos Neuroprotectores/metabolismo , Fármacos Neuroprotectores/farmacología , Síndromes de Neurotoxicidad/metabolismo , Fragmentos de Péptidos/metabolismo , Placa Amiloide/metabolismo , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...