Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Endocrinology ; 160(3): 484-503, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30649248

RESUMEN

The biology of transport of spermatids and spermatid adhesion across the seminiferous epithelium during the epithelial cycle remains largely unexplored. Nonetheless, studies have implicated the role of motor proteins in these cellular events. In this article, we report findings to unravel the role of myosin VIIa, an F-actin-based barbed (+)-end-directed motor protein, to support cellular transport and adhesion in the testis. Using RNA interference to knock down myosin VIIa in Sertoli cells cultured in vitro as a study model was shown to perturb the Sertoli cell tight junction permeability barrier, mediated through disorganization of actin- or microtubule (MT)-based cytoskeletons owing to disruptive changes on the spatiotemporal expression of F-actin or MT-regulatory proteins. Consistent with these in vitro findings, knockdown of myosin VIIa in the testis in vivo also induced disorganization of the actin- and MT-based cytoskeletons across the seminiferous epithelium, mediated by disruptive changes in the spatiotemporal expression of actin- and MT-based regulatory proteins. More important, the transport of spermatids and organelles across the epithelium, as well as cell adhesion, was grossly disrupted. For instance, step 19 spermatids failed to be transported to the adluminal compartment near the tubule lumen to undergo spermiation; in this manner, step 19 spermatids were persistently detected in stage IX and XII tubules, intermingling with step 9 and 12 spermatids, respectively. Also, phagosomes were detected near the tubule lumen in stage I to III tubules when they should have been degraded near the base of the seminiferous epithelium via the lysosomal pathway. In summary, myosin VIIa motor protein was crucial to support cellular transport and adhesion during spermatogenesis.


Asunto(s)
Uniones Adherentes/metabolismo , Miosina VIIa/fisiología , Epitelio Seminífero/fisiología , Células de Sertoli/fisiología , Espermatogénesis , Actinas/metabolismo , Animales , Adhesión Celular , Citoesqueleto/metabolismo , Masculino , Fagosomas/metabolismo , Interferencia de ARN , Ratas Sprague-Dawley , Espermátides , Proteínas de Uniones Estrechas/metabolismo
2.
Am J Physiol Endocrinol Metab ; 315(5): E924-E948, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30016153

RESUMEN

In the mammalian testis, spermatogenesis is dependent on the microtubule (MT)-specific motor proteins, such as dynein 1, that serve as the engine to support germ cell and organelle transport across the seminiferous epithelium at different stages of the epithelial cycle. Yet the underlying molecular mechanism(s) that support this series of cellular events remain unknown. Herein, we used RNAi to knockdown cytoplasmic dynein 1 heavy chain (Dync1h1) and an inhibitor ciliobrevin D to inactivate dynein in Sertoli cells in vitro and the testis in vivo, thereby probing the role of dynein 1 in spermatogenesis. Both treatments were shown to extensively induce disruption of MT organization across Sertoli cells in vitro and the testis in vivo. These changes also perturbed the transport of spermatids and other organelles (such as phagosomes) across the epithelium. These changes thus led to disruption of spermatogenesis. Interestingly, the knockdown of dynein 1 or its inactivation by ciliobrevin D also perturbed gross disruption of F-actin across the Sertoli cells in vitro and the seminiferous epithelium in vivo, illustrating there are cross talks between the two cytoskeletons in the testis. In summary, these findings confirm the role of cytoplasmic dynein 1 to support the transport of spermatids and organelles across the seminiferous epithelium during the epithelial cycle of spermatogenesis.


Asunto(s)
Dineínas/metabolismo , Espermátides/metabolismo , Espermatogénesis/fisiología , Testículo/metabolismo , Animales , Transporte Biológico/fisiología , Dineínas/genética , Masculino , Quinazolinonas/farmacología , Interferencia de ARN , Ratas , Células de Sertoli/efectos de los fármacos , Células de Sertoli/metabolismo , Espermátides/efectos de los fármacos , Espermatogénesis/efectos de los fármacos , Testículo/efectos de los fármacos
3.
Cell Death Dis ; 9(3): 340, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29497043

RESUMEN

During spermatogenesis, developing elongating/elongated spermatids are highly polarized cells, displaying unique apico-basal polarity. For instance, the heads of spermatids align perpendicular to the basement membrane with their tails pointing to the tubule lumen. Thus, the maximal number of spermatids are packed within the limited space of the seminiferous epithelium to support spermatogenesis.  Herein, we reported findings that  elongating/elongated spermatids displayed planar cell polarity (PCP) in adult rat testes in which the proximal end of polarized spermatid heads were aligned uniformly across the plane of the seminiferous epithelium based on studies  using confocal microscopy and 3-dimensional (D) reconstruction of the seminiferous tubules.  We also discovered  that spermatid PCP was regulated by PCP protein Vangl2 (Van Gogh-like protein 2) since Vangl2 knockdown by RNAi was found to perturb spermatid PCP. More important, Vangl2 exerted its regulatory effects through changes in the organization of the microtubule (MT)-based cytoskeleton in the seminiferous epithelium. These changes were mediated via the downstream signaling proteins atypical protein kinase C ξ (PKCζ) and MT-associated protein (MAP)/microtubule affinity-regulating kinase 2 (MARK2). These findings thus provide new insights regarding the biology of spermatid PCP during spermiogenesis.


Asunto(s)
Polaridad Celular , Citoesqueleto/metabolismo , Microtúbulos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Espermátides/citología , Espermátides/metabolismo , Testículo/metabolismo , Animales , Citoesqueleto/genética , Masculino , Microtúbulos/genética , Proteínas del Tejido Nervioso/genética , Ratas , Ratas Sprague-Dawley , Transducción de Señal , Testículo/citología
4.
Cell Death Dis ; 9(2): 208, 2018 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-29434191

RESUMEN

Germ cell differentiation during the epithelial cycle of spermatogenesis is accompanied by extensive remodeling at the Sertoli cell-cell and Sertoli cell-spermatid interface to accommodate the transport of preleptotene spermatocytes and developing spermatids across the blood-testis barrier (BTB) and the adluminal compartment of the seminiferous epithelium, respectively. The unique cell junction in the testis is the actin-rich ectoplasmic specialization (ES) designated basal ES at the Sertoli cell-cell interface, and the apical ES at the Sertoli-spermatid interface. Since ES dynamics (i.e., disassembly, reassembly and stabilization) are supported by actin microfilaments, which rapidly converts between their bundled and unbundled/branched configuration to confer plasticity to the ES, it is logical to speculate that actin nucleation proteins play a crucial role to ES dynamics. Herein, we reported findings that Spire 1, an actin nucleator known to polymerize actins into long stretches of linear microfilaments in cells, is an important regulator of ES dynamics. Its knockdown by RNAi in Sertoli cells cultured in vitro was found to impede the Sertoli cell tight junction (TJ)-permeability barrier through changes in the organization of F-actin across Sertoli cell cytosol. Unexpectedly, Spire 1 knockdown also perturbed microtubule (MT) organization in Sertoli cells cultured in vitro. Biochemical studies using cultured Sertoli cells and specific F-actin vs. MT polymerization assays supported the notion that a transient loss of Spire 1 by RNAi disrupted Sertoli cell actin and MT polymerization and bundling activities. These findings in vitro were reproduced in studies in vivo by RNAi using Spire 1-specific siRNA duplexes to transfect testes with Polyplus in vivo-jetPEI as a transfection medium with high transfection efficiency. Spire 1 knockdown in the testis led to gross disruption of F-actin and MT organization across the seminiferous epithelium, thereby impeding the transport of spermatids and phagosomes across the epithelium and perturbing spermatogenesis. In summary, Spire 1 is an ES regulator to support germ cell development during spermatogenesis.


Asunto(s)
Citoplasma/metabolismo , Proteínas de Microfilamentos/metabolismo , Epitelio Seminífero/metabolismo , Células de Sertoli/metabolismo , Espermátides/metabolismo , Espermatogénesis/fisiología , Animales , Masculino , Ratas , Ratas Sprague-Dawley , Epitelio Seminífero/citología , Células de Sertoli/citología , Espermátides/citología , Uniones Estrechas/metabolismo
5.
Methods Mol Biol ; 1748: 245-252, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29453576

RESUMEN

The blood-testis barrier is a unique ultrastructure in the mammalian testis, located near the basement membrane of the seminiferous tubule that segregates the seminiferous epithelium into the basal and the adluminal (apical) compartment. Besides restricting paracellular and transcellular passage of biomolecules (e.g., paracrine factors, hormones), water, electrolytes, and other substances including toxicants and/or drugs to enter the adluminal compartment of the epithelium, the BTB is an important ultrastructure that supports spermatogenesis. As such, a sensitive and reliable assay to monitor its integrity in vivo is helpful for studying testis biology. This assay is based on the ability of an intact BTB to exclude the diffusion of a small molecule such as sulfo-NHS-LC-biotin (C20H29N4NaO9S2, Mr. 556.59, a water-soluble and membrane-impermeable biotinylation reagent) from the basal to the apical compartment of the seminiferous epithelium. Herein, we summarize the detailed procedures on performing the assay and to obtain semiquantitative data to assess the extent of BTB damage when compared to positive controls, such as treatment of rats with cadmium chloride (CdCl2) which is known to compromise the BTB integrity.


Asunto(s)
Biotina/metabolismo , Barrera Hematotesticular/fisiología , Epitelio Seminífero/metabolismo , Células de Sertoli/metabolismo , Uniones Estrechas/metabolismo , Animales , Barrera Hematotesticular/efectos de los fármacos , Células Cultivadas , Masculino , Ratas , Ratas Sprague-Dawley , Epitelio Seminífero/citología , Células de Sertoli/citología
6.
Methods Mol Biol ; 1748: 229-243, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29453575

RESUMEN

The blood-testis barrier (BTB) is an important ultrastructure in the testis that supports meiosis and postmeiotic spermatid development since a delay in the establishment of a functional Sertoli cell barrier during postnatal development in rats or mice by 17-20 day postpartum (dpp) would lead to a delay of the first wave of meiosis. Furthermore, irreversible disruption of the BTB by toxicants also induces infertility in rodents. Herein, we summarize recent findings that BTB dynamics (i.e., disassembly, reassembly, and stabilization) are supported by the concerted efforts of the actin- and microtubule (MT)-based cytoskeletons. We focus on the role of two actin nucleation protein complexes, namely, the Arp2/3 (actin-related protein 2/3) complex and formin 1 (or the formin 1/spire 1 complex) known to induce actin nucleation, respectively, by conferring plasticity to actin cytoskeleton. We also focus on the MT plus (+)-end tracking protein (+TIP) EB1 (end-binding protein 1) which is known to confer MT stabilization. Furthermore, we discuss in particular how the interactions of these proteins modulate BTB dynamics during spermatogenesis. These findings also yield a novel hypothetical concept regarding the molecular mechanism that modulates BTB function.


Asunto(s)
Actinas/metabolismo , Barrera Hematotesticular/fisiología , Citoesqueleto/metabolismo , Microtúbulos/metabolismo , Células de Sertoli/metabolismo , Espermatogénesis , Animales , Células Cultivadas , Humanos , Masculino , Ratones , Ratas , Células de Sertoli/citología
7.
Biochim Biophys Acta Biomembr ; 1860(1): 141-153, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28450047

RESUMEN

Signaling pathways that regulate blood-tissue barriers are important for studying the biology of various blood-tissue barriers. This information, if deciphered and better understood, will provide better therapeutic management of diseases particularly in organs that are sealed by the corresponding blood-tissue barriers from systemic circulation, such as the brain and the testis. These barriers block the access of antibiotics and/or chemotherapeutical agents across the corresponding barriers. Studies in the last decade using the blood-testis barrier (BTB) in rats have demonstrated the presence of several signaling pathways that are crucial to modulate BTB function. Herein, we critically evaluate these findings and provide hypothetical models regarding the underlying mechanisms by which these signaling molecules/pathways modulate BTB dynamics. This information should be carefully evaluated to examine their applicability in other tissue barriers which shall benefit future functional studies in the field. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve.


Asunto(s)
Barrera Hematotesticular/metabolismo , Conexinas/metabolismo , Uniones Comunicantes/metabolismo , Modelos Cardiovasculares , Transducción de Señal/fisiología , Animales , Humanos , Masculino
8.
Semin Cell Dev Biol ; 81: 71-77, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-28923514

RESUMEN

In adult mammalian testes, spermatids, most notably step 17-19 spermatids in stage IV-VIII tubules, are aligned with their heads pointing toward the basement membrane and their tails toward the tubule lumen. On the other hand, these polarized spermatids also align across the plane of seminiferous epithelium, mimicking planar cell polarity (PCP) found in other hair cells in cochlea (inner ear). This orderly alignment of developing spermatids during spermiogenesis is important to support spermatogenesis, such that the maximal number of developing spermatids can be packed and supported by a fixed population of differentiated Sertoli cells in the limited space of the seminiferous epithelium in adult testes. In this review, we provide emerging evidence to demonstrate spermatid PCP in the seminiferous epithelium to support spermatogenesis. We also review findings in the field regarding the biology of spermatid cellular polarity (e.g., head-tail polarity and apico-basal polarity) and its inter-relationship to spermatid PCP. Furthermore, we also provide a hypothetical concept on the importance of PCP proteins in endocytic vesicle-mediated protein trafficking events to support spermatogenesis through protein endocytosis and recycling.


Asunto(s)
Polaridad Celular/fisiología , Transducción de Señal/fisiología , Espermátides/fisiología , Espermatogénesis/fisiología , Animales , Humanos , Masculino , Células de Sertoli/citología , Células de Sertoli/metabolismo , Espermátides/citología , Testículo/citología , Testículo/metabolismo
9.
Semin Cell Dev Biol ; 81: 21-32, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-28965865

RESUMEN

Cell polarity in the adult mammalian testis refers to the polarized alignment of developing spermatids during spermiogenesis and the polarized organization of organelles (e.g., phagosomes, endocytic vesicles, Sertoli cell nuclei, Golgi apparatus) in Sertoli cells and germ cells to support spermatogenesis. Without these distinctive features of cell polarity in the seminiferous epithelium, it is not possible to support the daily production of millions of sperm in the limited space provided by the seminiferous tubules in either rodent or human males through the adulthood. In short, cell polarity provides a novel mean to align spermatids and the supporting organelles (e.g., phagosomes, Golgi apparatus, endocytic vesicles) in a highly organized fashion spatially in the seminiferous epithelium during the epithelial cycle of spermatogenesis. This is analogous to different assembling units in a manufacturing plant such that as developing spermatids move along the "assembly line" conferred by Sertoli cells, different structural/functional components can be added to (or removed from) the developing spermatids during spermiogenesis, so that functional spermatozoa are produced at the end of the assembly line. Herein, we briefly review findings regarding the regulation of cell polarity in the testis with specific emphasis on developing spermatids, supported by an intriguing network of regulatory proteins along a local functional axis. Emerging evidence has suggested that cell cytoskeletons provide the tracks which in turn confer the unique assembly lines in the seminiferous epithelium. We also provide some thought-provoking concepts based on which functional experiments can be designed in future studies.


Asunto(s)
Polaridad Celular , Citoesqueleto/metabolismo , Células de Sertoli/metabolismo , Testículo/metabolismo , Animales , Humanos , Masculino , Microtúbulos/metabolismo , Células de Sertoli/citología , Espermátides/citología , Espermatogénesis , Testículo/citología
10.
Am J Physiol Endocrinol Metab ; 314(2): E174-E190, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29089336

RESUMEN

The blood-testis barrier (BTB), conferred by Sertoli cells in the mammalian testis, is an important ultrastructure that supports spermatogenesis. Studies using animal models have shown that a disruption of the BTB leads to meiotic arrest, causing defects in spermatogenesis and male infertility. To better understand the regulation of BTB dynamics, we report findings herein to understand the role of ribosomal protein S6 (rpS6), a downstream signaling protein of mammalian target of rapamycin complex 1 (mTORC1), in promoting BTB disruption in the testis in vivo, making the barrier "leaky." Overexpression of wild-type rpS6 (rpS6-WT, the full-length cDNA cloned into the mammalian expression vector pCI-neo) and a constitutively active quadruple phosphomimetic mutant cloned into pCI-neo (p-rpS6-MT) vs. control (empty pCI-neo vector) was achieved by transfecting adult rat testes with the corresponding plasmid DNA using a Polyplus in vivo-jetPEI transfection reagent. On the basis of an in vivo functional BTB integrity assay, p-rpS6-MT was found to induce BTB disruption better than rpS6-WT did (and no effects in empty vector control), leading to defects in spermatogenesis, including loss of spermatid polarity and failure in the transport of cells (e.g., spermatids) and organelles (e.g., phagosomes), to be followed by germ exfoliation. More important, rpS6-WT and p-rpS6-MT exert their disruptive effects through changes in the organization of actin- and microtubule (MT)-based cytoskeletons, which are mediated by changes in the spatiotemporal expression of actin- and MT-based binding and regulatory proteins. In short, mTORC1/rpS6 signaling complex is a regulator of spermatogenesis and BTB by modulating the organization of the actin- and MT-based cytoskeletons.


Asunto(s)
Barrera Hematotesticular/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/fisiología , Proteína S6 Ribosómica/fisiología , Espermatogénesis/fisiología , Testículo/metabolismo , Animales , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Permeabilidad , Ratas , Ratas Sprague-Dawley , Ratas Transgénicas , Proteína S6 Ribosómica/genética , Transducción de Señal/genética , Espermatogénesis/genética , Testículo/fisiología , Regulación hacia Arriba/genética
11.
Sci Rep ; 7(1): 15810, 2017 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-29150642

RESUMEN

PFOS induces Sertoli cell injury using testicular cells isolated from rodent testes, but it remains unknown if PFOS has similar effects in humans. Herein, we maintained human Sertoli cells in a mitotically active state in vitro, thus enabling transfection experiments that altered gene expression to explore the molecular mechanism(s) underlying toxicant-induced cell injury. Human Sertoli cells obtained from men at ages 15, 23, 36 and 40 were cultured in vitro. These differentiated Sertoli cells remained mitotically active when cultured in the presence of 10% FBS (fetal bovine serum), with a replication time of ~1-3 weeks. At ~80% confluency, they were used for studies including toxicant exposure, immunoblotting, immunofluorescence analysis, tight junction (TJ)-permeability assessment, and overexpression of BTB (blood-testis barrier) regulatory genes such as FAK and its phosphomimetic mutants. PFOS was found to induce Sertoli cell injury through disruptive effects on actin microfilaments and microtubule (MT) organization across the cell cytosol. As a consequence, these cytoskeletal networks failed to support cell adhesion at the BTB. Overexpression of a FAK phosphomimetic and constitutively active mutant p-FAK-Y407E in these cells was capable of rescuing the PFOS-induced injury through corrective cellular organization of cytoskeletal elements. SUMMARY: PFOS induces human Sertoli cell injury which can be rescued by overexpressing p-FAK-Y407E mutant.


Asunto(s)
Ácidos Alcanesulfónicos/toxicidad , Fluorocarburos/toxicidad , Proteína-Tirosina Quinasas de Adhesión Focal/genética , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Mutación/genética , Células de Sertoli/patología , Actinas/metabolismo , Adolescente , Adulto , Células Cultivadas , Epitelio/efectos de los fármacos , Epitelio/metabolismo , Humanos , Masculino , Microtúbulos/efectos de los fármacos , Microtúbulos/metabolismo , Permeabilidad , Fosforilación/efectos de los fármacos , Fosfoserina/metabolismo , Transporte de Proteínas/efectos de los fármacos , Células de Sertoli/efectos de los fármacos , Células de Sertoli/metabolismo , Uniones Estrechas/efectos de los fármacos , Uniones Estrechas/metabolismo , Adulto Joven
12.
Cell Death Dis ; 8(9): e3038, 2017 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-28880272

RESUMEN

During spermatogenesis, immature spermatocytes traverse the blood-testis barrier (BTB) and enter the apical apartment of seminiferous epithelium for further development. This course involves extensive junction disassembly and reassembly at the BTB. P-glycoprotein is known to be coded by two genes in rodents, namely Abcb1a and Abcb1b. Our previous studies showed that simultaneously silencing Abcb1a and Abcb1b genes in Sertoli cells impeded BTB integrity. However, the individual role of Abcb1a and Abcb1b in regulating BTB dynamics remains uninvestigated. Here, single knockdown of Abcb1a by RNAi impeded the in vitro Sertoli cell permeability barrier via redistributing TJ proteins, accelerating endocytosis, and affecting endocytic vesicle-mediated protein transportation that undermined Sertoli cell barrier. F5-peptide model was used to induce cell junction disruption and subsequent restructuring in primary Sertoli cells. F5-peptide perturbed this barrier, but its removal allowed barrier 'resealing'. Abcb1b knockdown was found to inhibit barrier resealing following F5-peptide removal by suppressing the restore of the expression and distribution of junction proteins at BTB, and reducing the migration of internalized junction proteins back to Sertoli cell interface. In summary, Abcb1a is critical in maintaining BTB integrity, while Abcb1b is crucial for junction reassembly at the BTB.


Asunto(s)
Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Barrera Hematotesticular/metabolismo , Células de Sertoli/metabolismo , Espermatocitos/metabolismo , Espermatogénesis/genética , Uniones Estrechas/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP/antagonistas & inhibidores , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Animales , Barrera Hematotesticular/efectos de los fármacos , Cadherinas/genética , Cadherinas/metabolismo , Movimiento Celular/efectos de los fármacos , Masculino , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Ocludina/genética , Ocludina/metabolismo , Péptidos/farmacología , Cultivo Primario de Células , Isoformas de Proteínas/antagonistas & inhibidores , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transporte de Proteínas/efectos de los fármacos , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Ratas , Ratas Sprague-Dawley , Epitelio Seminífero/citología , Epitelio Seminífero/efectos de los fármacos , Epitelio Seminífero/metabolismo , Células de Sertoli/citología , Células de Sertoli/efectos de los fármacos , Espermatocitos/citología , Espermatocitos/efectos de los fármacos , Espermatogénesis/efectos de los fármacos , Uniones Estrechas/efectos de los fármacos , Proteína de la Zonula Occludens-1/genética , Proteína de la Zonula Occludens-1/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
13.
Sci Rep ; 7(1): 6950, 2017 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-28747671

RESUMEN

A correction to this article has been published and is linked from the HTML version of this paper. The error has been fixed in the paper.

14.
FASEB J ; 31(8): 3587-3607, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28487282

RESUMEN

Spermatogenesis takes place in the epithelium of the seminiferous tubules of the testes, producing millions of spermatozoa per day in an adult male in rodents and humans. Thus, multiple cellular events that are regulated by an array of signaling molecules and pathways are tightly coordinated to support spermatogenesis. Here, we report findings of a local regulatory axis between the basement membrane (BM), the blood-testis barrier (BTB), and the apical ectoplasmic specialization (apical ES; a testis-specific, actin-rich adherens junction at the Sertoli cell-spermatid interface) to coordinate cellular events across the seminiferous epithelium during the epithelial cycle. In short, a biologically active fragment, noncollagenous 1 (NC1) domain that is derived from collagen chains in the BM, was found to modulate cell junction dynamics at the BTB and apical ES. NC1 domain from the collagen α3(IV) chain was cloned into a mammalian expression vector, pCI-neo, with and without a collagen signal peptide. We also prepared a specific Ab against the purified recombinant NC1 domain peptide. These reagents were used to examine whether overexpression of NC1 domain with high transfection efficacy would perturb spermatogenesis, in particular, spermatid adhesion (i.e., inducing apical ES degeneration) and BTB function (i.e., basal ES and tight junction disruption, making the barrier leaky), in the testis in vivo We report our findings that NC1 domain derived from collagen α3(IV) chain-a major structural component of the BM-was capable of inducing BTB remodeling, making the BTB leaky in studies in vivo Furthermore, NC1 domain peptide was transported across the epithelium via a microtubule-dependent mechanism and is capable of inducing apical ES degeneration, which leads to germ cell exfoliation from the seminiferous epithelium. Of more importance, we show that NC1 domain peptide exerted its regulatory effect by disorganizing actin microfilaments and microtubules in Sertoli cells so that they failed to support cell adhesion and transport of germ cells and organelles (e.g., residual bodies, phagosomes) across the seminiferous epithelium. This local regulatory axis between the BM, BTB, and the apical ES thus coordinates cellular events that take place across the seminiferous epithelium during the epithelial cycle of spermatogenesis.-Chen, H., Mruk, D. D., Lee, W. M., Cheng, C. Y. Regulation of spermatogenesis by a local functional axis in the testis: role of the basement membrane-derived noncollagenous 1 domain peptide.


Asunto(s)
Membrana Basal/metabolismo , Colágeno Tipo IV/metabolismo , Fragmentos de Péptidos/metabolismo , Células de Sertoli/efectos de los fármacos , Espermatogénesis/fisiología , Actinas/metabolismo , Animales , Masculino , Paclitaxel , Dominios Proteicos , Ratas , Ratas Sprague-Dawley , Proteínas Recombinantes , Epitelio Seminífero/metabolismo , Uniones Estrechas
15.
Sci Rep ; 7(1): 1110, 2017 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-28439067

RESUMEN

PFOS (perfluorooctanesulfonate, or perfluorooctane sulfonic acid) is an anthropogenic fluorosurfactant widely used in consumer products. While its use in Europe, Canada and the U.S. has been banned due to its human toxicity, it continues to be used in China and other developing countries as a global pollutant. Herein, using an in vitro model of Sertoli cell blood-testis barrier (BTB), PFOS was found to induce Sertoli cell injury by perturbing actin cytoskeleton through changes in the spatial expression of actin regulatory proteins. Specifically, PFOS caused mis-localization of Arp3 (actin-related protein 3, a branched actin polymerization protein) and palladin (an actin bundling protein). These disruptive changes thus led to a dis-organization of F-actin across Sertoli cell cytosol, causing truncation of actin microfilament, thereby failing to support the Sertoli cell morphology and adhesion protein complexes (e.g., occludin-ZO-1, CAR-ZO-1, and N-cadherin-ß-catenin), through a down-regulation of p-Akt1-S473 and p-Akt2-S474. The use of SC79, an Akt1/2 activator [corrected], was found to block the PFOS-induced Sertoli cell injury by rescuing the PFOS-induced F-actin dis-organization. These findings thus illustrate PFOS exerts its disruptive effects on Sertoli cell function downstream through Akt1/2. As such, PFOS-induced male reproductive dysfunction can possibly be managed through an intervention on Akt1/2 expression.


Asunto(s)
Actinas/efectos de los fármacos , Ácidos Alcanesulfónicos/toxicidad , Fluorocarburos/toxicidad , Microtúbulos/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Células de Sertoli/efectos de los fármacos , Células de Sertoli/patología , Proteína 3 Relacionada con la Actina/análisis , Animales , Animales Recién Nacidos , Células Cultivadas , Proteínas del Citoesqueleto/análisis , Masculino , Fosfoproteínas/análisis , Ratas Sprague-Dawley
16.
Endocrinology ; 158(4): 963-978, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28323988

RESUMEN

A local axis connects the apical ectoplasmic specialization (ES) at the Sertoli-spermatid interface, the basal ES at the blood-testis barrier (BTB), and the basement membrane across the seminiferous epithelium functionally in rat testes. As such, cellular events that take place simultaneously across the epithelium such as spermiation and BTB remodeling that occur at the apical ES and the basal ES, respectively, at stage VIII of the cycle are coordinated. Herein, laminin α2, a structural component of the basement membrane, was found to regulate BTB dynamics. Sertoli cells were cultured in vitro to allow the establishment of a tight junction (TJ) barrier that mimicked the BTB in vivo. Knockdown of laminin α2 by transfecting Sertoli cells with laminin α2-specific short hairpin RNA vs the nontargeting negative control was shown to perturb the Sertoli cell TJ barrier, illustrating laminin α2 was involved in regulating BTB dynamics. This regulatory effect was mediated through mammalian target of rapamycin complex 1 (mTORC1) signaling because the two mTORC1 downstream signaling molecules ribosomal protein S6 and Akt1/2 were activated and inactivated, respectively, consistent with earlier findings that mTORC1 is involved in promoting BTB remodeling. Also, laminin α2 knockdown induced F-actin and microtubule (MT) disorganization through changes in the spatial expression of F-actin regulators actin-related protein 3 and epidermal growth factor receptor pathway substrate 8 vs end-binding protein 1 (a MT plus-end tracking protein, +TIP). These laminin α2 knockdown-mediated effects on F-actin and MT organization was blocked by exposing Sertoli cells to rapamycin, an inhibitor of mTORC1 signaling, and also SC79, an activator of Akt. In summary, laminin α2-mediated regulation on Sertoli cell BTB dynamics is through mTORC1 signaling.


Asunto(s)
Actinas/metabolismo , Barrera Hematotesticular/metabolismo , Citoesqueleto/metabolismo , Laminina/metabolismo , Microtúbulos/metabolismo , Complejos Multiproteicos/metabolismo , Transducción de Señal/fisiología , Serina-Treonina Quinasas TOR/metabolismo , Acetatos/farmacología , Animales , Benzopiranos/farmacología , Barrera Hematotesticular/efectos de los fármacos , Permeabilidad de la Membrana Celular , Células Cultivadas , Citoesqueleto/efectos de los fármacos , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina , Microtúbulos/efectos de los fármacos , Complejos Multiproteicos/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Ratas Sprague-Dawley , Células de Sertoli/citología , Células de Sertoli/efectos de los fármacos , Células de Sertoli/metabolismo , Transducción de Señal/efectos de los fármacos , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/antagonistas & inhibidores
17.
FASEB J ; 31(2): 584-597, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27815338

RESUMEN

Laminin α2 is one of the constituent components of the basement membrane (BM) in adult rat testes. Earlier studies that used a mouse genetic model have shown that a deletion of laminin α2 impedes male fertility by disrupting ectoplasmic specialization (ES; a testis-specific, actin-rich anchoring junction) function along the length of Sertoli cell in the testis. This includes ES at the Sertoli cell-elongating/elongated spermatid interface, which is known as apical ES and possibly the Sertoli-Sertoli cell interface, known as basal ES, at the blood-testis barrier (BTB). Studies have also illustrated that there is a local regulatory axis that functionally links cellular events of spermiation that occur near the luminal edge of tubule lumen at the apical ES and the basal ES/BTB remodeling near the BM at opposite ends of the seminiferous epithelium during the epithelial cycle, known as the apical ES-BTB-BM axis. However, the precise role of BM in this axis remains unknown. Here, we show that laminin α2 in the BM serves as the crucial regulator in this axis as laminin α2, likely its 80-kDa fragment from the C terminus, was found to be transported across the seminiferous epithelium at stages VIII-IX of the epithelial cycle, from the BM to the luminal edge of the tubule, possibly being used to modulate apical ES restructuring at these stages. Of more importance, a knockdown of laminin α2 in Sertoli cells was shown to induce the Sertoli cell tight junction permeability barrier disruption via changes in localization of adhesion proteins at the tight junction and basal ES at the Sertoli cell BTB. These changes were found to be mediated by a disruption of F-actin organization that was induced by changes in the spatiotemporal expression of actin binding/regulatory proteins. Furthermore, laminin α2 knockdown also perturbed microtubule (MT) organization by considerable down-regulation of MT polymerization via changes in the spatiotemporal expression of EB1 (end-binding protein 1), a +TIP (MT plus-end tracking protein). In short, laminin α2 in the BM seems to play a crucial role in the BTB-BM axis by modulating BTB dynamics during spermatogenesis.-Gao, Y., Mruk, D., Chen, H., Lui, W.-Y., Lee, W. M., Cheng, C. Y. Regulation of the blood-testis barrier by a local axis in the testis: role of laminin α2 in the basement membrane.


Asunto(s)
Membrana Basal/metabolismo , Barrera Hematotesticular/fisiología , Regulación de la Expresión Génica/fisiología , Laminina/metabolismo , Testículo/fisiología , Animales , Técnicas de Silenciamiento del Gen , Laminina/genética , Masculino , Paclitaxel/farmacología , Ratas , Ratas Sprague-Dawley , Espermatogénesis/fisiología , Testículo/efectos de los fármacos , Moduladores de Tubulina/farmacología
18.
Oncotarget ; 7(39): 64203-64220, 2016 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-27611949

RESUMEN

During the release of sperm at spermiation, a biologically active F5-peptide, which can disrupt the Sertoli cell tight junction (TJ) permeability barrier, is produced at the site of the degenerating apical ES (ectoplasmic specialization). This peptide coordinates the events of spermiation and blood-testis barrier (BTB) remodeling at stage VIII of the epithelial cycle, creating a local apical ES-BTB axis to coordinate cellular events across the epithelium. The mechanism(s) by which F5-peptide perturbs BTB restructuring, and its involvement in apical ES dynamics remain unknown. F5-peptide, besides perturbing BTB integrity, was shown to induce germ cell release from the epithelium following its efficient in vivo overexpression in the testis. Overexpression of F5-peptide caused disorganization of actin- and microtubule (MT)-based cytoskeletons, mediated by altering the spatiotemporal expression of actin binding/regulatory proteins in the seminiferous epithelium. F5-peptide perturbed the ability of actin microfilaments and/or MTs from converting between their bundled and unbundled/defragmented configuration, thereby perturbing adhesion between spermatids and Sertoli cells. Since apical ES and basal ES/BTB are interconnected through the underlying cytoskeletal networks, this thus provides an efficient and novel mechanism to coordinate different cellular events across the epithelium during spermatogenesis through changes in the organization of actin microfilaments and MTs. These findings also illustrate the potential of F5-peptide being a male contraceptive peptide for men.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Laminina/metabolismo , Microtúbulos/metabolismo , Fragmentos de Péptidos/metabolismo , Células de Sertoli/metabolismo , Espermátides/metabolismo , Espermatogénesis , Citoesqueleto de Actina/patología , Factores de Edad , Animales , Animales Recién Nacidos , Barrera Hematotesticular/metabolismo , Barrera Hematotesticular/patología , Adhesión Celular , Células Cultivadas , Laminina/genética , Masculino , Microtúbulos/patología , Fragmentos de Péptidos/genética , Ratas Sprague-Dawley , Células de Sertoli/patología , Transducción de Señal , Espermátides/patología , Uniones Estrechas/metabolismo , Uniones Estrechas/patología , Transfección
19.
Spermatogenesis ; 6(1): e1206353, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27559491

RESUMEN

Throughout the epithelial cycle of spermatogenesis, actin microfilaments arranged as bundles near the Sertoli cell plasma membrane at the Sertoli cell-cell interface that constitute the blood-testis barrier (BTB) undergo extensive re-organization by converting between bundled and unbundled/branched configuration to give plasticity to the F-actin network. This is crucial to accommodate the transport of preleptotene spermatocytes across the BTB. Herein, we sought to examine changes in the actin microfilament organization at the Sertoli cell BTB using an in vitro model since Sertoli cells cultured in vitro is known to establish a functional tight junction (TJ)-permeability barrier that mimics the BTB in vivo. Plastin 3, a known actin microfilament cross-linker and bundling protein, when overexpressed in Sertoli cells using a mammalian expression vector pCI-neo was found to perturb the Sertoli cell TJ-barrier function even though its overexpression increased the overall actin bundling activity in these cells. Furthermore, plastin 3 overexpression also perturbed the localization and distribution of BTB-associated proteins, such as occludin-ZO1 and N-cadherin-ß-catenin, this thus destabilized the barrier function. Collectively, these data illustrate that a delicate balance of actin microfilaments between organized in bundles vs. an unbundled/branched configuration is crucial to confer the homeostasis of the BTB and its integrity.

20.
Sci Rep ; 6: 28589, 2016 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-27358069

RESUMEN

Crumbs homolog 3 (or Crumbs3, CRB3) is a polarity protein expressed by Sertoli and germ cells at the basal compartment in the seminiferous epithelium. CRB3 also expressed at the blood-testis barrier (BTB), co-localized with F-actin, TJ proteins occludin/ZO-1 and basal ES (ectoplasmic specialization) proteins N-cadherin/ß-catenin at stages IV-VII only. The binding partners of CRB3 in the testis were the branched actin polymerization protein Arp3, and the barbed end-capping and bundling protein Eps8, illustrating its possible role in actin organization. CRB3 knockdown (KD) by RNAi in Sertoli cells with an established tight junction (TJ)-permeability barrier perturbed the TJ-barrier via changes in the distribution of TJ- and basal ES-proteins at the cell-cell interface. These changes were the result of CRB3 KD-induced re-organization of actin microfilaments, in which actin microfilaments were truncated, and extensively branched, thereby destabilizing F-actin-based adhesion protein complexes at the BTB. Using Polyplus in vivo-jetPEI as a transfection medium with high efficiency for CRB3 KD in the testis, the CRB3 KD testes displayed defects in spermatid and phagosome transport, and also spermatid polarity due to a disruption of F-actin organization. In summary, CRB3 is an actin microfilament regulator, playing a pivotal role in organizing actin filament bundles at the ES.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Glicoproteínas de Membrana/metabolismo , Células de Sertoli/metabolismo , Uniones Estrechas/metabolismo , Proteína 3 Relacionada con la Actina/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Masculino , Ratas Sprague-Dawley , Células de Sertoli/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...