RESUMEN
Developing artificial autonomous materials is crucial for a deeper understanding of the emergence of life-like behavior. In nature, cells achieve autonomy through chemical processing systems incorporated into soft material-based frameworks. Inspired by natural cells, we herein describe a straightforward methodology for constructing artificial autonomous materials consisting of a polymer-based chemical processing system and a hydrogel-based soft framework. Using a material comprising a hydrogel framework devoid of active components in combination with semi-interpenetrating self-oscillating linear polymers, we discovered that semi-interpenetrating polymer-based chemical processing systems drive the autonomous motion of the hydrogel framework. The material exhibited autonomous volumetric oscillation powered by the Belousov-Zhabotinsky reaction. Furthermore, the autonomous behavior is controllable by changing the content of the chemical processing system incorporated into the hydrogel framework. Our findings shed light on a class of autonomous materials based on polymer-based chemical processing systems with soft frameworks.
RESUMEN
Background/Aims: Despite the proven benefit of the guideline-directed medical therapy (GDMT), it remains underutilized in patients hospitalized with acute heart failure (HF). We aimed to evaluate the impact of the discharge checklist on GDMT installation and the prognosis of HF patients. Methods: This study was a single-center, observational study that included all patients admitted for HF from March 2021 to February 2023. The data were retrieved from electronic medical records and discharge checklists. A comparison was conducted between the checklist group and the non-checklist group. The primary endpoint was a composite of all-cause mortality or readmission for HF within 6 months. Results: The checklist was completed for 537 patients (checklist group) and not for 187 patients (non-checklist group). The proportion of patients to whom two or more components of GDMT were prescribed was significantly higher in the checklist group than in the non-checklist group (59.6% vs 42.2%, p < 0.001). The checklist group exhibited a significantly lower primary outcome compared to the non-checklist group (27.4% vs. 36.4%, HR 0.73, 95% CI 0.55-0.98, p = 0.036). The effect of the checklist was more prominent in HF with reduced ejection fraction (HR 0.51, 95% CI 0.34-0.77, p = 0.001) than in HF with mildly-reduced and preserved ejection fraction (HR 0.91, 95% CI 0.58-1.42, p = 0.676) (p for interaction = 0.06). Conclusions: The implementation of the discharge checklist was associated with an improvement in GDMT prescription and an improved prognosis in patients with HF with reduced ejection fraction.
RESUMEN
Short-chain per and polyfluoroalkyl substances (PFAS) have been found to be relatively high in water treatment systems compared to long-chain PFAS because of the unsatisfactory adsorption efficiency of short-chain PFAS. Knowledge about why short-chain PFAS are less removed by porous carbon is very limited. The study focused on providing causal mechanisms that link the low adsorption of short-chain PFAS and proposing an improved method for removing both short- and long-chain PFAS. The long-chain PFAS with higher hydrophobicity diffused more quickly than the short-chain PFAS due to stronger partitioning driving forces. In the initial adsorption stage, therefore, pores of activated carbon were blocked by long-chain PFAS, which makes it difficult for the short-chain PFAS to enter the internal pores. Although several short-chain PFAS diffuse into the pores, the relatively more hydrophilic short-chain congeners cannot be fully adsorbed on activated carbon due to limited positively charged sites. Moreover, compared to larger particle sizes, smaller activated carbon particles have shorter pore channels near the surface, reducing the risk of pore-blocking and ensuring the pores remain accessible for more efficient adsorption. Additionally, these smaller particles offer a greater external surface area and more functional groups, which enhance the adsorption capacity. It indicates that the smaller particle size of activated carbon would have a positive effect on the short-chain PFAS removal.
Asunto(s)
Carbón Orgánico , Fluorocarburos , Interacciones Hidrofóbicas e Hidrofílicas , Contaminantes Químicos del Agua , Purificación del Agua , Carbón Orgánico/química , Fluorocarburos/química , Adsorción , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos , Porosidad , Carbono/química , Tamaño de la PartículaRESUMEN
BACKGROUND: During the COVID-19 pandemic, in South Korea, several inpatient wards were converted to temporary negative pressure isolation (TNPI) wards by using portable high-efficiency particulate air filter units (PHUs). This study proposes improvements to the TNPI ward to prepare for airborne infections. METHODS: Existing air-conditioning systems were investigated during the pandemic in 4 hospitals through a document review and field investigation with staff interviews. On-site experiments and measurements were conducted under vacant conditions. Differential pressure (∆P) between spaces was measured in all 4 hospitals, while tracer gas tests were carried out in 2 hospitals. RESULTS: The investigation revealed that thermal discomfort caused the existing systems remaining perpetually active. Additionally, the noise generated by the PHU caused an unexpected shutdown of that equipment. Furthermore, the ∆P of over -2.5 Pa was measured as a result of the operating status of equipment. These situations can cause duct backflow and gas diffusion through unsealed diffusers. Moreover, low airtightness of existing facilities can affect indoor environment, pressure difference, and gas diffusion. CONCLUSIONS: When using existing facilities as TNPI wards, the airtightness and existing systems should be considered. We concluded that it is important to increase the airtightness and seal unused diffusers in order to prevent cross-infection by unpredictable airflow.
RESUMEN
Aggregation of misfolded amyloid-ß (Aß) and hyperphosphorylated tau proteins to plaques and tangles, respectively, is the major drug target of Alzheimer's disease (AD), as the former is an onset biomarker and the latter is associated with neurodegeneration. Thus, we report a small molecule drug candidate, DN5355, with a dual-targeting function toward aggregates of both Aß and tau. DN5355 was selected through a series of four screenings assessing 52 chemicals for their functions to inhibit and reverse the aggregation of Aß and tau by utilizing thioflavin T. When orally administered to AD transgenic mouse model 5XFAD, DN5355 significantly reduced cerebral Aß plaques and hyperphosphorylated tau tangles. In Y-maze spontaneous alteration and contextual fear conditioning tests, 5XFAD mice showed amelioration of cognitive deficits upon the oral administration of DN5355.
RESUMEN
This work aimed to explore the food quality attributes of in-flight meals and to examine the antecedents of positive emotion and continuous usage of these meals. As a subdimension, this study uses multiple attributes: menu diversity, familiarity, temperature, nutrition, and presentation. Another purpose of this work is to examine the moderating effect of menu diversity on the relationship between nutrition and continuance usage. A survey via clickworker was used to collect the data for this work. There were 317 valid observations for statistical inference. This study used a structural equation model to test the hypotheses, and the Hayes process model macro 1 was adopted to test the moderating effect. The results showed that all independent variables other than familiarity significantly accounted for positive emotion. Moreover, all of these attributes had a positive impact on continuous usage. This work unveiled a significant moderating effect of menu diversity on the relationship between nutrition and continuance usage. This research elucidates the literature by clarifying the influential attributes of emotion and continuous usage intention in the domain of in-flight meal products and discussing practical implications.
RESUMEN
This work focused on the perception of the food healthiness of in-flight meals. This work adopts presentation as the determinant. This work also employs attitude as the consequence of food healthiness. This research also examines the moderating effect of familiarity on the relationship between food presentation and food healthiness. This research used a survey, and survey participants were recruited via a Clickworker platform service. Survey participants were experienced with in-flight meals. The number of observations was 317. Moreover, this research tested the research hypotheses using the Hayes process macro Model 7. The results revealed that food healthiness is positively influenced by presentation and that food healthiness positively affects attitude. Moreover, the results revealed that the type of presentation has a positive influence on attitude. Familiarity was a significant moderating variable for the relationship between food presentation and food healthiness. This work sheds light on the literature by identifying the associations among four attributes of in-flight meals. Additionally, the results of this study could be used as a reference to develop better in-flight meals.
RESUMEN
Alzheimer's disease (AD) presents a significant challenge due to its multifaceted nature, characterized by cognitive decline, memory loss, and neuroinflammation. Though AD is an extensively researched topic, effective pharmacological interventions remain elusive, prompting explorations into non-pharmacological approaches. Microcurrent (MC) therapy, which utilizes imperceptible currents, has emerged as a potent clinical protocol. While previous studies have focused on its therapeutic effects, this study investigates the impact of MC on neuronal damage and neuroinflammation in an AD mouse model, specifically addressing potential side effects. Utilizing 5xFAD transgenic mice, we examined the effects of MC therapy on neuronal integrity and inflammation. Our findings suggest that MC therapy attenuates memory impairment and reduces neurodegeneration, as evidenced by improved performance in memory tests and the preservation of the neuronal structure. Additionally, MC therapy significantly decreases amyloid-beta (Aß) plaque deposition and inhibits apoptosis, indicating its potential to mitigate AD pathology. This study determined that glial activation is effectively reduced by using MC therapy to suppress the TLR4-MyD88-NFκB pathway, which consequently causes the levels of inflammatory factors TNF-α, IL-1ß, and IL-6 to decrease, thus implicating TLR4 in neurodegenerative disease-related neuroinflammation. Furthermore, while our study did not observe significant adverse effects, a further clinical trial into potential side effects and neuroinflammatory responses associated with MC therapy is warranted.
Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Modelos Animales de Enfermedad , Ratones Transgénicos , Neuronas , Animales , Enfermedad de Alzheimer/terapia , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Ratones , Disfunción Cognitiva/terapia , Disfunción Cognitiva/etiología , Disfunción Cognitiva/metabolismo , Neuronas/metabolismo , Neuronas/patología , Factor 88 de Diferenciación Mieloide/metabolismo , Factor 88 de Diferenciación Mieloide/genética , Receptor Toll-Like 4/metabolismo , Péptidos beta-Amiloides/metabolismo , Enfermedades Neuroinflamatorias/metabolismo , Enfermedades Neuroinflamatorias/etiología , Enfermedades Neuroinflamatorias/patología , Placa Amiloide/patología , Placa Amiloide/metabolismo , FN-kappa B/metabolismo , ApoptosisRESUMEN
BACKGROUND: Community water fluoridation is an effective public health strategy for preventing dental caries, yet. Concerns exist about potential health problems. This study explores associations between tap water fluoride levels and pediatric disease burden, as well as neurodevelopmental outcomes at 6 years of age. METHODS: This nationwide population-based cohort study included children born in Korean cities with and without tap water fluoridation projects, between 2006 and 2012, aiming for a fluoride concentration of 0.8 ± 0.2 mg/L in treated tap water. Data from the National Health Insurance Service were used, spanning from birth to 2018. The relationship between exposure to fluoridated tap water and incidence of 16 childhood diseases that were previously identified as potentially linked to fluoride exposure were examined. Additionally, we evaluated the neurodevelopmental outcomes across various domains, including gross motor, fine motor, cognition, language, social skills, and self-help functions. These assessments were performed using data from a comprehensive national health screening program for children aged six years. RESULTS: A fluoride-unexposed group included 22,881 children, whereas a fluoride-exposed group comprised 29,991 children (52% males). Children in the fluoride-exposed group had a decreased risk of dental caries and bone fractures [hazard ratio (95% confidence interval, CI), 0.76 (0.63-0.93) and 0.89 (0.82-0.93), respectively] and increased risk of hepatic failures [1.85, (1.14-2.98)] compared to those in the unexposed group. Additionally, the risk ratio of abnormal neurodevelopmental screening outcomes increased by 9%, but this was statistically uncertain (95% CI, 0.95-1.26). CONCLUSIONS: Fluoridated tap water was associated with an increased risk of hepatic failure but a decreased risk of bone fractures in children. The association between fluoridated tap water and neurodevelopmental screening outcomes at 6 years remains unclear, highlighting the need for further studies to clarify this association.
Asunto(s)
Fluoruración , Fluoruros , Humanos , República de Corea/epidemiología , Masculino , Femenino , Niño , Fluoruración/efectos adversos , Fluoruros/efectos adversos , Preescolar , Estudios de Cohortes , Caries Dental/epidemiología , Caries Dental/prevención & control , Trastornos del Neurodesarrollo/epidemiología , Trastornos del Neurodesarrollo/inducido químicamente , Lactante , Costo de EnfermedadRESUMEN
Emergent properties accompanying synchronization among oscillators are vital characteristics in biological systems. Belousov-Zhabotinsky (BZ) oscillators are an artificial model to study the emergence and synchronization in life. This research represents a self-oscillating gel system with clusterable properties to experimentally examine synchronous and emergent properties at a fundamental hierarchical level. Incorporating acrylic acid (AAc) moieties within the gel network facilitates cluster formation through hydrogen bonding in an acidic BZ substrate solution. Upon clustering, both homogeneous and heterogeneous gel assembliesâranging from double to quadruple clustersâexhibit increased and synchronized periods and amplitudes during the BZ reaction. Notably, in heterogeneous clusters, gel units with initially short periods and small volumetric amplitudes display a significant increase, aligning with the lonfger periods and larger amplitudes of other elements within the cluster, an emergent property. This research can pave the way for a better understanding of synchronous and emergent properties in biological oscillators such as cardiomyocytes.
RESUMEN
Alternative strategies to design sustainable-element-based electrocatalysts enhancing oxygen evolution reaction (OER) kinetics are demanded to develop affordable yet high-performance water-electrolyzers for green hydrogen production. Here, it is demonstrated that the spontaneous-spin-polarized 2D π-d conjugated framework comprising abundant elements of nickel and iron with a ratio of Ni:Fe = 1:4 with benzenehexathiol linker (BHT) can improve OER kinetics by its unique electronic property. Among the bimetallic NiFex:y-BHTs with various ratios with Ni:Fe = x:y, the NiFe1:4-BHT exhibits the highest OER activity. The NiFe1:4-BHT shows a specific current density of 140 A g-1 at the overpotential of 350 mV. This performance is one of the best activities among state-of-the-art non-precious OER electrocatalysts and even comparable to that of the platinum-group-metals of RuO2 and IrO2. The density functional theory calculations uncover that introducing Ni into the homometallic Fe-BHT (e.g., Ni:Fe = 0:1) can emerge a spontaneous-spin-polarized state. Thus, this material can achieve improved OER kinetics with spin-polarization which previously required external magnetic fields. This work shows that a rational design of 2D π-d conjugated frameworks can be a powerful strategy to synthesize promising electrocatalysts with abundant elements for a wide spectrum of next-generation energy devices.
RESUMEN
Self-oscillating gel systems exhibiting an expanded operating temperature and accompanying functional adaptability are showcased. The developed system contains nonthermoresponsive main-monomers, such as N,N-dimethylacrylamide (DMAAm) or 2-acrylamido-2-methylpropane sulfonic acid (AMPS) or acrylamide (AAm) or 3-(methacryloylamino)propyl trimethylammonium chloride (MAPTAC). The gels volumetrically self-oscillate within the range of the conventional (20.0 °C) and extended (27.0 and 36.5 °C) temperatures. Moreover, the gels successfully adapt to the environmental changes; they beat faster and smaller as the temperature increases. The period and amplitude are also controlled by tuning the amount of main-monomers and N-(3-aminopropyl) acrylamide. Furthermore, the record amplitude in the bulk gel system consisting of polymer strand and cross-linker at 36.5 °C is achieved (≈10.8%). The study shows new self-oscillation systems composed of unprecedented combinations of materials, giving the community a robust material-based insight for developing more life-like autonomous biomimetic soft robots with various operating temperatures and beyond.
Asunto(s)
Geles , Temperatura , Geles/química , Acrilamidas/química , Polímeros/química , Materiales Biomiméticos/química , Biomimética/métodosRESUMEN
Rotavirus is linked to severe childhood gastroenteritis and neurological complications, but its impact on neurodevelopment remains uncertain. We examined data from 1,420,941 Korean children born between 2009 and 2011, using the Korean National Health Insurance System. At age 6, we assessed neurodevelopmental outcomes using the validated Korean Developmental Test, covering six major domains. Utilizing propensity score-based Inverse Probability Weighting to ensure covariates including considering covariates including sex, birth weight, changes in body weight from birth to 4-6 months of age, head circumference at 4-6 months of age, residence at birth, economic status, infant feeding types, and birth year. The main analysis that encompassed 5,451 children with rotavirus hospitalization and 310,874 unexposed individuals reveled heightened odds of suspected delays in fine motor skills and cognition among exposed children. Our results suggest an association between rotavirus-related hospitalization in infancy and suspected delays in fine motor function and cognition in 6-year-olds.
RESUMEN
Introduction: Alzheimer's disease (AD) poses an increasing global health challenge and is marked by gradual cognitive deterioration, memory impairment, and neuroinflammation. Innovative therapeutic approaches as non-pharmacological protocol are urgently needed with side effect risk of drugs. Microcurrent therapy, a non-invasive modality involving low-level electrical currents, has emerged as a potential solution to address AD's complex pathogenesis. This study investigates the optimal application of microcurrent therapy as a clinical protocol for AD, utilizing a comprehensive approach that integrates behavioral assessments and neuroinflammation evaluation in a mouse model of dementia. Methods and results: The results reveal that microcurrent therapy holds promise in ameliorating memory impairment and reducing neuroinflammation in AD. Behavioral assessments, including the Novel Object Recognition Test (NOR) and Radial Arm Maze Test (RAM), demonstrated improved cognitive function following microcurrent therapy. Furthermore, microcurrent therapy inhibited expression of neuroinflammatory proteins, including ionized calcium binding adaptor molecule 1 (Iba1), and glial fibrillary acidic protein (GFAP) in current-treated group. Mechanistic insights suggest that microcurrent therapy may modulate neuroinflammation through the regulation of MAPK signaling pathways. Conclusion: This study emphasizes the prospect of microcurrent therapy as a safe and efficacious non-pharmacological strategy for Alzheimer's disease (AD), providing optimism to the countless individuals impacted by this debilitating ailment. These results contribute to the developments of an innovative clinical protocol for AD and recovery from neurological injury, underscoring the significance of investigating unconventional therapeutic approaches for addressing this complex condition.
RESUMEN
BACKGROUND: Atopic dermatitis and autoimmune diseases are highly heritable conditions that may co-occur from an early age. METHODS: The primary study is a national administrative cohort study involving 499,428 children born in 2002, tracked until 2017. Atopic dermatitis was defined as five or more principal diagnoses of atopic dermatitis and two or more topical steroid prescriptions. We estimated the risks for the occurrence of 41 autoimmune diseases, controlling for risk factors. In addition, we sourced a gene library from the National Library of Medicine to conduct a comprehensive gene ontology. We used Gene Weaver to identify gene set similarity and clustering, and used GeneMania to generate a network for shared genes. RESULTS: Exposed and unexposed groups included 39,832 and 159,328 children, respectively. During a mean follow-up of 12 years, the exposed group had an increased risk of autoimmune disease (hazard ratio, 1.27 [95 % confidence interval, 1.23-1.32]) compared to the unexposed group. The hazard ratios of autoimmune illnesses consistently increased with two- and five years lag times and alternative atopic dermatitis definitions. Shared genes between atopic dermatitis and autoimmune diseases were associated with comorbidities such as asthma, bronchiolitis, and specific infections. Genetic interactions of these shared genes revealed clustering in Th1, Th2, Th17, and non-classifiable pathways. CONCLUSIONS: Atopic dermatitis was significantly associated with an increased risk of subsequent autoimmune disease. we identified the genetically associated disease in atopic dermatitis patients comorbid with autoimmune disease and demonstrated a genetic network between atopic dermatitis and autoimmune diseases.
Asunto(s)
Enfermedades Autoinmunes , Dermatitis Atópica , Niño , Humanos , Adulto Joven , Adulto , Dermatitis Atópica/epidemiología , Dermatitis Atópica/genética , Dermatitis Atópica/diagnóstico , Estudios de Cohortes , Estudios de Seguimiento , Ontología de Genes , Redes Reguladoras de Genes , Enfermedades Autoinmunes/epidemiología , Enfermedades Autoinmunes/genéticaRESUMEN
Here we introduce sub-millimeter self-oscillating gels that undergo the Belousov-Zhabotinsky (BZ) reaction and can anisotropically oscillate like cardiomyocytes. The anisotropically self-oscillating gels in this study were realized by spatially patterning an acrylic acid-based interpenetrating network (AA-IPN). We found that the patterned AA-IPN regions, locally introduced at both ends of the gels through UV photolithography, can constrain the horizontal gel shape deformation during the BZ reaction. In other words, the two AA-IPN regions could act as a physical barrier to prevent isotropic deformation. Furthermore, we controlled the anisotropic deformation behavior during the BZ reaction by varying the concentration of acrylic acid used in the patterning process of the AA-IPN. As a result, a specific directional deformation behavior (66% horizontal/vertical amplitude ratio) was fulfilled, similar to that of cardiomyocytes. Our study can provide a promising insight to fabricating robust gel systems for cardiomyocyte modeling or designing novel autonomous microscale soft actuators.
RESUMEN
Introduction: Astrocytes play crucial role in modulating immune response in the damaged central nervous system. Numerous studies have investigated the relationship between immune responses in astrocytes and brain diseases. However, the potential application of nanomaterials for alleviating neuroinflammation induced by astrocytes remains unexplored. Method: In this study, we utilized electrophoretic deposition (EPD) to coat graphene oxide (GO) onto titanium (Ti) to enhance the bioactivity of Ti. Results: We confirmed that GO-Ti could improve cell adhesion and proliferation of astrocytes with upregulated integrins and glial fibrillary acidic protein (GFAP) expression. Moreover, we observed that astrocytes on GO-Ti exhibited a heightened immune response when exposed to lipopolysaccharide (LPS). Although pro-inflammatory cytokines increased, anti-inflammatory cytokines and brain-derived neurotrophic factors involved in neuroprotective effects were also augmented through nuclear localization of the yes-associated protein (YAP) and nuclear factor kappa B (NF-κB). Discussion: Taken together, GO-Ti could enhance the neuroprotective function of astrocytes by upregulating the expression of anti-inflammatory cytokines and neuroprotective factors with improved cell adhesion and viability. Consequently, our findings suggest that GO-Ti has the potential to induce neuroprotective effects by regulating cell activity.
RESUMEN
Safe drinking water sources are crucial for human health. Consequently, water quality management, including continuous monitoring of water quality and algae at sources, is critical to ensure the availability of safe water for local residents. This study aimed to construct statistical prediction models considering probability distributions relevant to cyanophyte cell counts and compare their prediction performance. In this study, water quality parameters at Juam Lake and Tamjin Lake, representative water sources in the Yeongsan and Seomjin rivers, South Korea, were investigated. We used a water quality monitoring network, algae alert system, and hydraulic and hydrological data measured every 7 days from January 2017 to December 2022 from the Water Environment Information System of the National Institute of Environmental Research. Using data for 2017-2021 as a training set and data for 2022 as a test set, the performances of seven models were compared for predicting cyanophyte cell counts. Environmental factors associated with algae in water sources were observed based on the monitoring data, and a prediction model appropriate for the cyanophyte distribution was generated, which also included the risk of toxicity. The extreme gradient boosting with the random forest model had the best predictive performance for cyanophyte cell counts. The study results are expected to facilitate water quality management in various water systems, including water sources.
Asunto(s)
Ríos , Calidad del Agua , Humanos , República de Corea , Modelos Estadísticos , Lagos , Monitoreo del Ambiente/métodosRESUMEN
In the effort to treat Mendelian disorders, correcting the underlying molecular imbalance may be more effective than symptomatic treatment. Identifying treatments that might accomplish this goal requires extensive and up-to-date knowledge of molecular pathways-including drug-gene and gene-gene relationships. To address this challenge, we present "parsing modifiers via article annotations" (PARMESAN), a computational tool that searches PubMed and PubMed Central for information to assemble these relationships into a central knowledge base. PARMESAN then predicts putatively novel drug-gene relationships, assigning an evidence-based score to each prediction. We compare PARMESAN's drug-gene predictions to all of the drug-gene relationships displayed by the Drug-Gene Interaction Database (DGIdb) and show that higher-scoring relationship predictions are more likely to match the directionality (up- versus down-regulation) indicated by this database. PARMESAN had more than 200,000 drug predictions scoring above 8 (as one example cutoff), for more than 3,700 genes. Among these predicted relationships, 210 were registered in DGIdb and 201 (96%) had matching directionality. This publicly available tool provides an automated way to prioritize drug screens to target the most-promising drugs to test, thereby saving time and resources in the development of therapeutics for genetic disorders.
Asunto(s)
PubMed , Humanos , Bases de Datos FactualesRESUMEN
Liposarcoma (LPS) is a rare type of soft tissue sarcoma that constitutes 20% of all sarcoma cases in adults. Effective therapeutic protocols for human LPS are not well-defined. Tumor-treating fields (TTFields) are a novel and upcoming field for antitumor therapy. TTFields combined with chemoradiotherapy have proven to be more effective than TTFields combined with radiotherapy or chemotherapy alone. The present study aimed to assess the effectiveness of TTFields in inhibiting cell proliferation and viability for the anticancer treatment of LPS. The present study used TTFields (frequency, 150 kHz; intensity, 1.0 V/cm) to treat two LPS cell lines (94T778 and SW872) and analyzed the antitumor effects. According to trypan blue and MTT assay results, TTFields markedly reduced the viability and proliferation of LPS cell lines along with the formation of colonies in three-dimensional culture. Based on the Transwell chamber assay, TTFields treatment also markedly reduced the migration of LPS cells. Furthermore, as shown by the higher activation of caspase-3 in the Caspase-3 activity assay and the results of the reactive oxygen species (ROS) assay, TTFields increased the formation of ROS in the cells and enhanced the proportion of apoptotic cells. The present study also investigated the inhibitory effect of TTFields in combination with doxorubicin (DOX) on the migratory capacity of tumor cells. The results demonstrated that TTFields treatment synergistically induced the ROS-induced apoptosis of LPS cancer cell lines and inhibited their migratory behavior. In conclusion, the present study demonstrated the potential of TTFields in improving the sensitivity of LPS cancer cells, which may lay the foundation for future clinical trials of this combination treatment strategy.