Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 904: 166844, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37689207

RESUMEN

The Chernobyl Nuclear Power Plant (ChNPP) accident in 1986 resulted in extremely high levels of acute ionising radiation, that killed or damaged Scots pine (Pinus sylvestris) trees in the surrounding areas. Dead trees were cleared and buried, and new plantations established a few years later. Today, more than three decades later, gamma and beta-radiation near the ChNPP is still elevated compared with ambient levels but have decreased by a factor of 300 and 100, respectively. In the present work, Scots pine-trees growing at High (220 µGy h-1), Medium (11 µGy h-1), and Low (0.2 µGy h-1) total (internal + external) dose rates of chronically elevated ionising radiation in the Chernobyl Exclusion zone were investigated with respect to possible damage to DNA, cells and organelles, as well as potentially increased levels of phenolic and terpenoid antioxidants. Scots pine from the High and Medium radiation sites had elevated levels of DNA damage in shoot tips and needles as shown by the COMET assay, as well as increased numbers of resin ducts and subcellular abnormalities in needles. Needles from the High radiation site showed elevated levels of monoterpenes and condensed tannins compared with those from the other sites. In conclusion, more than three decades after the ChNPP accident substantial DNA damage and (sub)cellular effects, but also mobilisation of stress-protective substances possessing antioxidant activity were observed in Scots pine trees growing at elevated levels of ionising radiation. This demonstrates that the radiation levels in the Red Forest still significantly impact the plant community.


Asunto(s)
Accidente Nuclear de Chernóbil , Pinus sylvestris , Pinus , Monitoreo de Radiación , Radiación Ionizante , Árboles , Bosques
2.
J Clin Med ; 12(10)2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37240541

RESUMEN

Headaches, particularly migraine, are associated with gastrointestinal (GI) disorders. In addition to the gut-brain axis, the lung-brain axis is suspected to be involved in the relationship between pulmonary microbes and brain disorders. Therefore, we investigated possible associations of migraine and non-migraine headaches (nMH) with respiratory and GI disorders using the clinical data warehouse over 11 years. We compared data regarding GI and respiratory disorders, including asthma, bronchitis, and COPD, among patients with migraine, patients with nMH, and controls. In total, 22,444 patients with migraine, 117,956 patients with nMH, and 289,785 controls were identified. After adjustment for covariates and propensity score matching, the odds ratios (ORs) for asthma (1.35), gastroesophageal reflux disorder (1.55), gastritis (1.90), functional GI disorder (1.35), and irritable bowel syndrome (1.76) were significantly higher in patients with migraine than in controls (p = 0.000). The ORs for asthma (1.16) and bronchitis (1.33) were also significantly higher in patients with nMH than in controls (p = 0.0002). When the migraine group was compared with the nMH group, only the OR for GI disorders was statistically significant. Our findings suggest that migraine and nMH are associated with increased risks of GI and respiratory disorders.

3.
Int J Mol Sci ; 24(2)2023 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-36674449

RESUMEN

We hypothesized that auditory stimulation could reduce the progression of Alzheimer's disease (AD), and that audiovisual stimulation could have additional effects through multisensory integration. We exposed 12 month old Apoetm1.1(APOE*4)Adiuj mice (a mouse model of sporadic AD) to auditory (A) or audiovisual stimulation (AV) at 40 Hz for 14 days in a soundproof chamber system (no stimulation, N). Behavioral tests were performed before and after each session, and their brain tissues were assessed for amyloid-beta expression and apoptotic cell death, after 14 days. Furthermore, brain levels of acetylcholine and apoptosis-related proteins were analyzed. In the Y-maze test, the percentage relative alternation was significantly higher in group A than in group N mice. Amyloid-beta and TUNEL positivity in the hippocampal CA3 region was significantly lower in group A and group AV mice than in group N mice (p < 0.05). Acetylcholine levels were significantly higher in group A and group AV mice than in group N mice (p < 0.05). Compared to group N mice, expression of the proapoptotic proteins Bax and caspase-3 was lower in group A, and expression of the antiapoptotic protein Bcl-2 was higher in group AV. In a mouse model of early-stage sporadic AD, auditory or audiovisual stimulation improved cognitive performance and neuropathology.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Ratones , Animales , Apolipoproteína E4 , Acetilcolina , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/terapia , Enfermedad de Alzheimer/patología , Apolipoproteínas E , Péptidos beta-Amiloides/metabolismo , Ratones Transgénicos
4.
Osong Public Health Res Perspect ; 12(4): 264-268, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34465075

RESUMEN

OBJECTIVE: On February 26, 2021, coronavirus disease 2019 (COVID-19) vaccination was started for high-priority groups based on the recommendation of the Advisory Committee on Immunization Practices with 2 available COVID-19 vaccines (AstraZeneca and Pfizer-BioNTech) in Korea. This report provides a summary of adverse events following COVID-19 vaccination as of April 30, 2021. METHODS: Adverse events following immunization are notifiable by medical doctors to the Korea Immunization Management System (KIMS) under the national surveillance system. We analyzed all adverse events reports following COVID-19 vaccination to the KIMS from February 26 to April 30, 2021. RESULTS: In total, 16,196 adverse events following 3,586,814 administered doses of COVID-19 vaccines were reported in approximately 2 months (February 26 to April 30, 2021). Of these, 15,658 (96.7%) were non-serious adverse events, and 538 (3.3%) were serious adverse events, including 73 (0.5%) deaths. The majority of adverse events (n=13,063, 80.7%) were observed in women, and the most frequently reported adverse events were myalgia (52.2%), fever (44.9%), and headache (34.9%). Of the 73 deaths following the COVID-19 vaccination, none were related to the vaccines. CONCLUSION: By April 30, 3.6 million doses of the COVID 19 vaccine had been given in Korea, and the overwhelming majority of reports were for non-serious events. The Korea Disease Control and Prevention Agency continues to monitor the safety of COVID-19 vaccination.

5.
Euro Surveill ; 26(33)2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34414880

RESUMEN

The South Korea mass vaccination programme administered 3.8 million doses of COVID-19 vaccinations between 26 February and 30 April 2021. After 173 suspected anaphylaxis reports to the nationwide monitoring system for adverse events following immunisation, 44 anaphylaxis cases were confirmed using Brighton Collaboration case definitions. The rates per million doses were 18.2 cases and 6.2 cases for Vaxzevria and Comirnaty, respectively. Median time of onset was 14 min after vaccination and most cases had recovered at the time of review.


Asunto(s)
Anafilaxia , COVID-19 , Anafilaxia/inducido químicamente , Anafilaxia/diagnóstico , Anafilaxia/epidemiología , Humanos , Vacunación Masiva , República de Corea/epidemiología , SARS-CoV-2 , Vacunación/efectos adversos
6.
J Clin Med ; 10(13)2021 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-34202829

RESUMEN

Neuroimaging and neuropsychological investigations have indicated that migraineurs exhibit frontal lobe-related cognitive impairment. We investigated whether orbitofrontal and dorsolateral functioning differed between individuals with episodic migraine (EM) and chronic migraine (CM), focusing on orbitofrontal dysfunction because it is implicated in migraine chronification and medication overuse headache (MOH) in migraineurs. This cross-sectional study recruited women with CM with/without MOH (CM + MOH, CM - MOH), EM, and control participants who were matched in terms of age and education. We conducted neuropsychological assessments of frontal lobe function via the Trail Making Test (TMT) A and B, the Wisconsin Card Sorting Test (WCST), and the Iowa Gambling Task (IGT). We enrolled 36 CM (19 CM + MOH, 17 CM - MOH), 30 EM, and 30 control participants. The CM patients performed significantly (p < 0.01) worse on the TMT A and B than the EM patients and the control participants. The WCST also revealed significant differences, with poorer performance in the CM patients versus the EM patients and the control participants. However, the net scores on the IGT did not significantly differ among the three groups. Our findings suggest that the CM patients exhibited frontal lobe dysfunction, and, particularly, dorsolateral dysfunction. However, we found no differences in frontal lobe function according to the presence or absence of MOH.

7.
Front Aging Neurosci ; 13: 658860, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33981208

RESUMEN

Background: Postoperative cognitive dysfunction (POCD) following anesthesia and surgery is a common and severe complication, especially in elderly patients. A pre-existing cognitive impairment may impart susceptibility to further cognitive dysfunction; the mechanism remains unclear. We hypothesized that the specific impacts of anesthesia and surgery on individuals with preclinical Alzheimer's disease (AD) may render them more susceptible to an increase in the risk of cognitive impairment. The aim of this study was to compare the cognitive impairment between normal adult mice and those with preclinical AD after propofol anesthesia and surgery. Methods: We performed abdominal surgery in cognitively pre-symptomatic, 5-month-old male mice with sporadic AD (apolipoprotein E4 allele, ApoE4-KI) and age-matched (C57BL/6J) controls. Propofol anesthesia (170 mg/kg) was induced via retro-orbital injection over 2 h. Morris water maze (MWM) and Y-maze tests were conducted 2 days before and 2, 4, and 7 days after surgery. The mean escape latencies and spontaneous alternation percentages were the major outcomes. Neuronal apoptosis in hippocampal sections was evaluated using the terminal dUTP nick-end labeling (TUNEL) assay. Hippocampal amyloid beta (Aß) levels were assessed via quantitative immunohistochemistry (IHC). Results: The control mice exhibited increased mean escape latencies of MWM at postoperative 2 and 4, but not at day 7; ApoE4-KI mice exhibited such increases at postoperative days 2, 4 and 7. Significant differences between ApoE4-KI and control mice in terms of the mean escape latencies were evident at days 2 and 7 (both P < 0.05). However, performance on a non-hippocampal memory tasks (Y-maze test) did not differ. More TUNEL-positive neurons were evident in the hippocampal CA3 region of ApoE4-KI mice at postoperative days 2 and 4, but not at day 7 compared to the control group (both P < 0.05). IHC revealed significantly elevated Aß deposition in the hippocampal CA3 region of ApoE4-KI mice at postoperative days 4 and 7 compared to control mice (both P < 0.05). Conclusions: Propofol anesthesia followed by surgery induced persistent changes in cognition, and pathological hippocampal changes in pre-symptomatic, but vulnerable AD mice. It would be appropriate to explore whether preclinical AD patients are more vulnerable to POCD development.

8.
Environ Sci Technol ; 54(20): 13147-13156, 2020 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-32924456

RESUMEN

Ultraviolet B (UVB) radiation is a natural nonchemical stressor posing potential hazards to organisms such as planktonic crustaceans. The present study was conducted to revisit the lethal effects of UVB on crustaceans, generate new experimental evidence to fill in knowledge gaps, and develop novel quantitative adverse outcome pathways (qAOPs) for UVB. A combination of laboratory and computational approaches was deployed to achieve the goals. For targeted laboratory tests, Daphnia magna was used as a prototype and exposed to a gradient of artificial UVB. Targeted bioassays were used to quantify the effects of UVB at multiple levels of biological organization. A toxicity pathway network was assembled based on the new experimental evidence and previously published data extracted using a novel computational tool, the NIVA Risk Assessment Database (NIVA RAdb). A network of AOPs was developed, and weight of evidence was assessed based on a combination of the current and existing data. In addition, quantitative key event relationships in the AOPs were developed by fitting the D. magna data to predefined models. A complete workflow for assembly and evaluation of qAOPs has been presented, which may serve as a good example for future de novo qAOP development for chemical and nonchemical stressors.


Asunto(s)
Rutas de Resultados Adversos , Minería de Datos , Rayos Ultravioleta , Animales , Daphnia , Rayos Ultravioleta/efectos adversos
9.
Environ Res ; 190: 109930, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32738623

RESUMEN

Ionizing radiation is known to induce oxidative stress and DNA damage as well as epigenetic effects in aquatic organisms. Epigenetic changes can be part of the adaptive responses to protect organisms from radiation-induced damage, or act as drivers of toxicity pathways leading to adverse effects. To investigate the potential roles of epigenetic mechanisms in low-dose ionizing radiation-induced stress responses, an ecologically relevant crustacean, adult Daphnia magna were chronically exposed to low and medium level external 60Co gamma radiation ranging from 0.4, 1, 4, 10, and 40 mGy/h for seven days. Biological effects at the molecular (global DNA methylation, histone modification, gene expression), cellular (reactive oxygen species formation), tissue/organ (ovary, gut and epidermal histology) and organismal (fecundity) levels were investigated using a suite of effect assessment tools. The results showed an increase in global DNA methylation associated with loci-specific alterations of histone H3K9 methylation and acetylation, and downregulation of genes involved in DNA methylation, one-carbon metabolism, antioxidant defense, DNA repair, apoptosis, calcium signaling and endocrine regulation of development and reproduction. Temporal changes of reactive oxygen species (ROS) formation were also observed with an apparent transition from ROS suppression to induction from 2 to 7 days after gamma exposure. The cumulative fecundity, however, was not significantly changed by the gamma exposure. On the basis of the new experimental evidence and existing knowledge, a hypothetical model was proposed to provide in-depth mechanistic understanding of the roles of epigenetic mechanisms in low dose ionizing radiation induced stress responses in D. magna.


Asunto(s)
Daño del ADN , Daphnia , Animales , Daphnia/genética , Epigénesis Genética , Femenino , Rayos gamma , Estrés Oxidativo
10.
Sci Total Environ ; 705: 135912, 2020 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-31846819

RESUMEN

High energy gamma radiation is potentially hazardous to organisms, including aquatic invertebrates. Although extensively studied in a number of invertebrate species, knowledge on effects induced by gamma radiation is to a large extent limited to the induction of oxidative stress and DNA damage at the molecular/cellular level, or survival, growth and reproduction at the organismal level. As the knowledge of causal relationships between effects occurring at different levels of biological organization is scarce, the ability to provide mechanistic explanation for observed adverse effects is limited, and thus development of Adverse Outcome Pathways (AOPs) and larger scale implementation into next generation hazard and risk predictions is restricted. The present study was therefore conducted to assess the effects of high-energy gamma radiation from cobalt-60 across multiple levels of biological organization (i.e., molecular, cellular, tissue, organ and individual) and characterize the major toxicity pathways leading to impaired reproduction in the model freshwater crustacean Daphnia magna (water flea). Following gamma exposure, a number of bioassays were integrated to measure relevant toxicological endpoints such as gene expression, reactive oxygen species (ROS), lipid peroxidation (LPO), neutral lipid storage, adenosine triphosphate (ATP) content, apoptosis, ovary histology and reproduction. A non-monotonic pattern was consistently observed across the levels of biological organization, albeit with some variation at the lower end of the dose-rate scale, indicating a complex response to radiation doses. By integrating results from different bioassays, a novel pathway network describing the key toxicity pathways involved in the reproductive effects of gamma radiation were proposed, such as DNA damage-oocyte apoptosis pathway, LPO-ATP depletion pathway, calcium influx-endocrine disruption pathway and DNA hypermethylation pathway. Three novel AOPs were proposed for oxidative stressor-mediated excessive ROS formation leading to reproductive effect, and thus introducing the world's first AOPs for non-chemical stressors in aquatic invertebrates.


Asunto(s)
Daphnia , Animales , Femenino , Rayos gamma , Peroxidación de Lípido , Estrés Oxidativo , Reproducción , Contaminantes Químicos del Agua
11.
Planta ; 250(5): 1567-1590, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31372744

RESUMEN

MAIN CONCLUSION: Persistent DNA damage in gamma-exposed Norway spruce, Scots pine and Arabidopsis thaliana, but persistent adverse effects at the organismal and cellular level in the conifers only. Gamma radiation emitted from natural and anthropogenic sources may have strong negative impact on plants, especially at high dose rates. Although previous studies implied different sensitivity among species, information from comparative studies under standardized conditions is scarce. In this study, sensitivity to gamma radiation was compared in young seedlings of the conifers Scots pine and Norway spruce and the herbaceous Arabidopsis thaliana by exposure to 60Co gamma dose rates of 1-540 mGy h-1 for 144 h, as well as 360 h for A. thaliana. Consistent with slightly less prominent shoot apical meristem, in the conifers growth was significantly inhibited with increasing dose rate ≥ 40 mGy h-1. Post-irradiation, the conifers showed dose-rate-dependent inhibition of needle and root development consistent with increasingly disorganized apical meristems with increasing dose rate, visible damage and mortality after exposure to ≥ 40 mGy h-1. Regardless of gamma duration, A. thaliana showed no visible or histological damage or mortality, only delayed lateral root development after ≥ 100 mGy h-1 and slightly, but transiently delayed post-irradiation reproductive development after ≥ 400 mGy h-1. In all species dose-rate-dependent DNA damage occurred following ≥ 1-10 mGy h-1 and was still at a similar level at day 44 post-irradiation. In conclusion, the persistent DNA damage (possible genomic instability) following gamma exposure in all species may suggest that DNA repair is not necessarily mobilized more extensively in A. thaliana than in Norway spruce and Scots pine, and the far higher sensitivity at the organismal and cellular level in the conifers indicates lower tolerance to DNA damage than in A. thaliana.


Asunto(s)
Arabidopsis/efectos de la radiación , Rayos gamma/efectos adversos , Picea/efectos de la radiación , Pinus sylvestris/efectos de la radiación , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Noruega , Picea/genética , Picea/crecimiento & desarrollo , Pinus sylvestris/genética , Pinus sylvestris/crecimiento & desarrollo , Plantones/genética , Plantones/efectos de la radiación
12.
Photochem Photobiol Sci ; 18(8): 1945-1962, 2019 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-31305802

RESUMEN

Exposure to ambient UV-B radiation may prime protective responses towards various stressors in plants, though information about interactive effects of UV-B and gamma radiation is scarce. Here, we aimed to test whether UV-B exposure could prime acclimatisation mechanisms contributing to tolerance to low-moderate gamma radiation levels in Scots pine seedlings, and concurrently whether simultaneous UV-B and gamma exposure may have an additive adverse effect on seedlings that had previously not encountered either of these stressors. Responses to simultaneous UV-B (0.35 W m-2) and gamma radiation (10.2-125 mGy h-1) for 6 days with or without UV-B pre-exposure (0.35 W m-2, 4 days) were studied across various levels of organisation, as compared to effects of either radiation type. In contrast to UV-B, and regardless of UV-B presence, gamma radiation at ≥42.9 mGy h-1 caused increased formation of reactive oxygen species and reduced shoot length, and reduced root length at 125 mGy h-1. In all experiments there was a gamma dose rate-dependent increase in DNA damage at ≥10.8 mGy h-1, generally with additional UV-B-induced damage. Gamma-induced growth inhibition and gamma- and UV-B-induced DNA damage were still visible 44 days post-irradiation, even at 20.7 mGy h-1, probably due to genomic instability, but this was reversed after 8 months. In conclusion, there was no evidence of a protective effect of UV-B on gamma-induced growth inhibition and DNA damage in Scots pine, and no additive adverse effect of gamma and UV-B radiation on growth in spite of the additional UV-B-induced DNA damage.


Asunto(s)
Rayos gamma , Pinus sylvestris/crecimiento & desarrollo , Pinus sylvestris/efectos de la radiación , Plantones/crecimiento & desarrollo , Plantones/efectos de la radiación , Rayos Ultravioleta
13.
Artículo en Inglés | MEDLINE | ID: mdl-31239863

RESUMEN

Chelidonium majus L. (family Papaveraceae), commonly known as greater celandine or tetterwort, has been reported to have antibacterial and anticancer effects and chelidonine is known as a functional metabolite extracted from C.

14.
BMC Plant Biol ; 18(1): 133, 2018 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-29940865

RESUMEN

BACKGROUND: Quantitative measurement of actual auxin levels in plant tissue is complimentary to molecular methods measuring the expression of auxin related genes. Current analytical methods to quantify auxin have pushed the limit of detection to where auxin can be routinely quantified at the pictogram (pg) level, reducing the amount of tissue needed to perform these kinds of studies to amounts never imagined a few years ago. In parallel, the development of technologies like laser microdissection microscopy (LMD) has allowed specific cells to be harvested from discrete tissues without including adjacent cells. This method has gained popularity in recent years, especially for enabling a higher degree of spatial resolution in transcriptome profiling. As with other quantitative measurements, including hormone quantifications, sampling using traditional LMD is still challenging because sample preparation clearly compromises the preservation of analytes. Thus, we have developed and validated a sample preparation protocol combining cryosectioning, freeze-drying, and capturing with a laser microdissection microscope to provide high-quality and well-preserved plant materials suitable for ultrasensitive, spatially-resolved auxin quantification. RESULTS: We developed a new method to provide discrete plant tissues for indole-3-acetic acid (IAA) quantification while preserving the plant tissue in the best possible condition to prevent auxin degradation. The method combines the use of cryosectioning, freeze-drying and LMD. The protocol may also be used for other applications that require small molecule analysis with high tissue-specificity where degradation of biological compounds may be an issue. It was possible to collect the equivalent to 15 mg of very specific tissue in approximately 4 h using LMD. CONCLUSIONS: We have shown, by proof of concept, that freeze dried cryosections of plant tissue were suitable for LMD harvest and quantification of the phytohormone auxin using GC-MS/MS. We expect that the ability to resolve auxin levels with both spatial- and temporal resolution with high accuracy will enable experiments on complex processes, which will increase our knowledge of the many roles of auxins (and, in time, other phytohormones) in plant development.


Asunto(s)
Ácidos Indolacéticos/análisis , Captura por Microdisección con Láser/métodos , Reguladores del Crecimiento de las Plantas/análisis , Plantas/química , Crioultramicrotomía/métodos , Euphorbia/química , Flores/química , Liofilización/métodos , Cromatografía de Gases y Espectrometría de Masas/métodos , Límite de Detección , Hojas de la Planta/química
15.
Cell Death Dis ; 9(2): 30, 2018 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-29348517

RESUMEN

The downregulation of N-Myc downstream-regulated gene 2 (NDRG2) is known to be associated with the progression and poor prognosis of several cancers. Sensitivity to anti-cancer may be associated with a good prognosis in cancer patients, and NDRG2, which is induced by p53, sensitizes the cells to chemotherapy. However, the unique function of NDRG2 as an inducer of apoptosis under chemotreatment has not been sufficiently studied. In this study, we investigated the role of NDRG2 in chemo-sensitivity, focusing on cisplatin in U937 histiocytic lymphoma, which has the loss-of-functional mutation in p53. NDRG2 promoted the sensitivity to cisplatin through the modulation of the BAK-to-Mcl-1 ratio. The degradation of Mcl-1 and increase in BAK were mediated by JNK activation and the eIF2α/p-eIF2α pathway, respectively, which depended on PKR activation in NDRG2-overexpressed U937 (U937-NDRG2) cells. NOX5 was highly expressed in U937-NDRG2 cells and contributed to ROS production after cisplatin treatment. ROS scavenging or NOX5-knockdown successfully inhibited the sensitivity of U937-NDRG2 cells to cisplatin. Taken together, these findings indicate that NDRG2 contributed to the increased sensitivity to ciplatin through the modulation of Bak-to-Mcl-1 ratio regulated by NOX5-ROS-PKR pathway; therefore, we suggest that NDRG2 may be a molecular target for improving the efficacy of drug treatment in cancer patients.


Asunto(s)
Antineoplásicos/uso terapéutico , Cisplatino/uso terapéutico , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteína Destructora del Antagonista Homólogo bcl-2/metabolismo , Antineoplásicos/farmacología , Apoptosis , Cisplatino/farmacología , Humanos
16.
Plant Cell Physiol ; 58(3): 466-477, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28028164

RESUMEN

Thermoperiodism is defined as the ability to discriminate between day temperature (DT) and night temperature (NT). Our aim was to shed light on the mechanistic basis of thermoperiodic floral induction with acceleration under lower DT than NT compared with other DT-NT combinations at the same average daily temperature (ADT), a response exploited in temperate area greenhouses. Arabidopsis thaliana floral pathway mutants and a lhy circadian clock mutant as well as the expression of floral integrators and LHY (LATE ELONGATED HYPOCOTYL) were studied under different DT-NT combinations, all at the same ADT. We show that acceleration of floral induction under lower DT than NT is linked to increased FT expression early during the day and generally increased LFY expression preceding visible flower buds, compared with higher DT than NT or equal DT and NT. Consistent with FLOWERING LOCUS T (FT) action through LEAFY (LFY), time to floral transition in ft-1 and lfy-1 was similar under all treatments, in contrast to the situation for soc1-1, which behaved like the wild type (WT). The lhy-21 mutants did not discriminate between opposite DT-NT combinations, whereas LHY expression in the WT differed in these temperature regimes. This might suggest that LHY plays a role in thermoperiodic control of floral induction. We conclude that thermoperiodic control of floral transition is associated with modulation of the diurnal expression patterns of FT, with timing of temperature alteration being important rather than ADT.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/fisiología , Flores/fisiología , Temperatura , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Factores de Tiempo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
17.
Front Plant Sci ; 8: 2109, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29321789

RESUMEN

Whereas long days (LDs) sustain shoot elongation, short days (SDs) induce growth cessation and formation of dormant buds in young individuals of a wide range of temperate and boreal tree species. In specific conifers, including Norway spruce, photoperiodic control of bud development is associated with the formation of a plate of thick-walled cells, denoted as the crown, at the base of the bud. Information about cellular characteristics of this crown region is limited. We aimed to test whether the crown region is an important SD-induced barrier ensuring dehydration of the developing winter bud by preventing water influx. Using microscopy and synchrotron techniques, we show here that under LD, cell walls in growing shoot tips had highly methyl-esterified homogalacturonan pectin. During SD-induced bud development, the homogalacturonan in the crown region was de-methyl-esterified, enabling Ca2+ binding and crosslinking, a process known to decrease cell wall water permeability by reducing pectin pore size. In addition, there was abundant callose deposition at plasmodesmata in the crown region, and xylem connections between the bud and the subtending shoot were blocked. Consistent with reduced water transport across the crown region into the bud, uptake of fluorescein in shoot tips was blocked at the base of the bud under SD. Upon transfer from SD to bud-break-inducing LD, these processes were reversed, and aquaporin transcript levels significantly increased in young stem tissue after 4 weeks under LD. These findings indicate that terminal bud development is associated with reduced water transport through decreased cell wall permeability and blocking of plasmodesmata and xylem connections in the crown structure. This provides further understanding of the regulatory mechanism for growth-dormancy cycling in coniferous tree species such as Norway spruce.

18.
BMC Res Notes ; 9(1): 427, 2016 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-27581466

RESUMEN

BACKGROUND: In pea seeds (Pisum sativum L.), the presence of the Def locus determines abscission event between its funicle and the seed coat. Cell wall remodeling is a necessary condition for abscission of pea seed. The changes in cell wall components in wild type (WT) pea seed with Def loci showing seed abscission and in abscission less def mutant peas were studied to identify the factors determining abscission and non-abscission event. METHODS: Changes in pectic polysaccharides components were investigated in WT and def mutant pea seeds using immunolabeling techniques. Pectic monoclonal antibodies (1 â†’ 4)-ß-D-galactan (LM5), (1 â†’ 5)-α-L-arabinan(LM6), partially de-methyl esterified homogalacturonan (HG) (JIM5) and methyl esterified HG (JIM7) were used for this study. RESULTS: Prior to abscission zone (AZ) development, galactan and arabinan reduced in the predestined AZ of the pea seed and disappeared during the abscission process. The AZ cells had partially de-methyl esterified HG while other areas had highly methyl esterified HG. A strong JIM5 labeling in the def mutant may be related to cell wall rigidity in the mature def mutants. In addition, the appearance of pectic epitopes in two F3 populations resulting from cross between WT and def mutant parents was studied. As a result, we identified that homozygous dominant lines (Def/Def) showing abscission and homozygous recessive lines (def/def) showing non-abscission had similar immunolabeling pattern to their parents. However, the heterogeneous lines (Def/def) showed various immunolabeling pattern and the segregation pattern of the Def locus. CONCLUSIONS: Through the study of the complexity and variability of pectins in plant cell walls as well as understanding the segregation patterns of the Def locus using immunolabeling techniques, we conclude that cell wall remodeling occurs in the abscission process and de-methyl esterification may play a role in the non-abscission event in def mutant. Overall, this study contributes new insights into understanding the structural and architectural organization of the cell walls during abscission.


Asunto(s)
Mutación/genética , Pectinas/inmunología , Pisum sativum/metabolismo , Proteínas de Plantas/genética , Polisacáridos/inmunología , Semillas/metabolismo , Alelos , Cruzamientos Genéticos , Técnica del Anticuerpo Fluorescente , Sitios Genéticos , Pisum sativum/citología , Proteínas de Plantas/metabolismo , Semillas/citología
19.
Front Microbiol ; 7: 224, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26973607

RESUMEN

Chrysanthemum stunt viroid (CSVd) can infect Argyranthemum and cause serious economic loss. Low temperature treatment combined with meristem culture has been applied to eradicate viroids from their hosts, but without success in eliminating CSVd from diseased Argyranthemum. The objectives of this work were to investigate (1) the effect of low temperature treatment combined with meristem culture on elimination of CSVd, (2) the effect of low temperature treatment on CSVd distribution pattern in shoot apical meristem (SAM), and (3) CSVd distribution in flowers and stems of two infected Argyranthemum cultivars. After treatment with low temperature combined with meristem tip culture, two CSVd-free plants were found in 'Border Dark Red', but none in 'Yellow Empire'. With the help of in situ hybridization, we found that CSVd distribution patterns in the SAM showed no changes in diseased 'Yellow Empire' following 5°C treatment, compared with non-treated plants. However, the CSVd-free area in SAM was enlarged in diseased 'Border Dark Red' following prolonged 5°C treatment. Localization of CSVd in the flowers and stems of infected 'Border Dark Red' and 'Yellow Empire' indicated that seeds could not transmit CSVd in these two cultivars, and CSVd existed in phloem. Results obtained in the study contributed to better understanding of the distribution of CSVd in systemically infected plants and the combination of low temperature treatment and meristem tip culture for production of viroid-free plants.

20.
Planta ; 243(5): 1237-49, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26895338

RESUMEN

MAIN CONCLUSION: A significant number of epigenetic regulators were differentially expressed during embryogenesis at different epitype-inducing conditions. Our results support that methylation of DNA and histones, as well as sRNAs, are pivotal for the establishment of the epigenetic memory. As a forest tree species with long generation times, Norway spruce is remarkably well adapted to local environmental conditions despite having recently, from an evolutionary perspective, recolonized large areas following the last glaciation. In this species, there is an enigmatic epigenetic memory of the temperature conditions during embryogenesis that allows rapid adaptation to changing environment. We used a transcriptomic approach to investigate the molecular mechanisms underlying the formation of the epigenetic memory during somatic embryogenesis in Norway spruce. Nine mRNA libraries were prepared from three epitypes of the same genotype resulting from exposure to epitype-inducing temperatures of 18, 23 and 28 °C. RNA-Seq analysis revealed more than 10,000 differentially expressed genes (DEGs). The epitype-inducing conditions during SE were accompanied by marked transcriptomic changes for multiple gene models related to the epigenetic machinery. Out of 735 putative orthologs of epigenetic regulators, 329 were affected by the epitype-inducing temperatures and differentially expressed. The majority of DEGs among the epigenetic regulators was related to DNA and histone methylation, along with sRNA pathways and a range of putative thermosensing and signaling genes. These genes could be the main epigenetic regulators involved in formation of the epigenetic memory. We suggest considerable expansion of gene families of epigenetic regulators in Norway spruce compared to orthologous gene families in Populus and Arabidopsis. Obtained results provide a solid basis for further genome annotation and studies focusing on the importance of these candidate genes for the epigenetic memory formation.


Asunto(s)
Epigénesis Genética , Regulación de la Expresión Génica de las Plantas , Picea/genética , Semillas/genética , Cromatina/genética , Perfilación de la Expresión Génica , Biblioteca de Genes , Histonas/genética , Histonas/metabolismo , MicroARNs , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , ARN Mensajero , Reproducibilidad de los Resultados , Análisis de Secuencia de ARN , Transducción de Señal/genética , Temperatura , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA