Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Bioorg Med Chem ; 110: 117826, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39004050

RESUMEN

Design, synthesis, and biological evaluation of two series of O4'-benzyl-hispidol derivatives and the analogous corresponding O3'-benzyl derivatives aiming to develop selective monoamine oxidase-B inhibitors endowed with anti-neuroinflammatory activity is reported herein. The first O4'-benzyl-hispidol derivatives series afforded several more potentially active and MAO-B inhibitors than the O3'-benzyl derivatives series. The most potential compound 2e of O4'-benzyl derivatives elicited sub-micromolar MAO-B IC50 of 0.38 µM with a selectivity index >264 whereas most potential compound 3b of O3'-benzyl derivatives showed only 0.95 MAO-B IC50 and a selectivity index >105. Advancement of the most active compounds showing sub-micromolar activities to further cellular evaluations of viability and induced production of pro-neuroinflammatory mediators confirmed compound 2e as a potential lead compound inhibiting the production of the neuroinflammatory mediator nitric oxide significantly by microglial BV2 cells at 3 µM concentration without significant cytotoxicity up to 30 µM. In silico molecular docking study predicted plausible binding modes with MAO enzymes and provided insights at the molecular level. Overall, this report presents compound 2e as a potential lead compound to develop potential multifunctional compounds.


Asunto(s)
Simulación del Acoplamiento Molecular , Inhibidores de la Monoaminooxidasa , Monoaminooxidasa , Inhibidores de la Monoaminooxidasa/farmacología , Inhibidores de la Monoaminooxidasa/síntesis química , Inhibidores de la Monoaminooxidasa/química , Monoaminooxidasa/metabolismo , Relación Estructura-Actividad , Animales , Ratones , Humanos , Estructura Molecular , Línea Celular , Relación Dosis-Respuesta a Droga , Óxido Nítrico/antagonistas & inhibidores , Óxido Nítrico/biosíntesis , Óxido Nítrico/metabolismo , Supervivencia Celular/efectos de los fármacos , Microglía/efectos de los fármacos , Microglía/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/síntesis química , Antiinflamatorios/química , Antiinflamatorios no Esteroideos/farmacología , Antiinflamatorios no Esteroideos/síntesis química , Antiinflamatorios no Esteroideos/química
2.
CNS Neurosci Ther ; 30(4): e14509, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-37904343

RESUMEN

AIMS: Cognitive impairment is associated with reduced hippocampal neurogenesis; however, the causes of decreased hippocampal neurogenesis remain highly controversial. Here, we investigated the role of survivin in the modulation of hippocampal neurogenesis in AD. METHODS: To investigate the effect of survivin on neurogenesis in neural stem cells (NSCs), we treated mouse embryonic NSCs with a survivin inhibitor (YM155) and adeno-associated viral survivin (AAV-Survivin). To explore the potential role of survivin expression in AD, AAV9-Survivin or AAV9-GFP were injected into the dentate gyrus (DG) of hippocampus of 7-month-old wild-type and 5XFAD mice. Cognitive function was measured by the Y maze and Morris water maze. Neurogenesis was investigated by BrdU staining, immature, and mature neuron markers. RESULTS: Our results indicate that suppression of survivin expression resulted in decreased neurogenesis. Conversely, overexpression of survivin using AAV-Survivin restored neurogenesis in NSCs that had been suppressed by YM155 treatment. Furthermore, the expression level of survivin decreased in the 9-month-old 5XFAD compared with that in wild-type mice. AAV-Survivin-mediated overexpression of survivin in the DG in 5XFAD mice enhanced neurogenesis and cognitive function. CONCLUSION: Hippocampal neurogenesis can be enhanced by survivin overexpression, suggesting that survivin could serve as a promising therapeutic target for the treatment of AD.


Asunto(s)
Enfermedad de Alzheimer , Animales , Ratones , Enfermedad de Alzheimer/tratamiento farmacológico , Survivin/farmacología , Survivin/uso terapéutico , Hipocampo , Neurogénesis/fisiología , Cognición , Modelos Animales de Enfermedad , Ratones Transgénicos
3.
J Neuroinflammation ; 20(1): 282, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38012646

RESUMEN

BACKGROUND: The gut microbiota has recently attracted attention as a pathogenic factor in Alzheimer's disease (AD). Microfold (M) cells, which play a crucial role in the gut immune response against external antigens, are also exploited for the entry of pathogenic bacteria and proteins into the body. However, whether changes in M cells can affect the gut environments and consequently change brain pathologies in AD remains unknown. METHODS: Five familial AD (5xFAD) and 5xFAD-derived fecal microbiota transplanted (5xFAD-FMT) naïve mice were used to investigate the changes of M cells in the AD environment. Next, to establish the effect of M cell depletion on AD environments, 5xFAD mice and Spib knockout mice were bred, and behavioral and histological analyses were performed when M cell-depleted 5xFAD mice were six or nine months of age. RESULTS: In this study, we found that M cell numbers were increased in the colons of 5xFAD and 5xFAD-FMT mice compared to those of wild-type (WT) and WT-FMT mice. Moreover, the level of total bacteria infiltrating the colons increased in the AD-mimicked mice. The levels of M cell-related genes and that of infiltrating bacteria showed a significant correlation. The genetic inhibition of M cells (Spib knockout) in 5xFAD mice changed the composition of the gut microbiota, along with decreasing proinflammatory cytokine levels in the colons. M cell depletion ameliorated AD symptoms including amyloid-ß accumulation, microglial dysfunction, neuroinflammation, and memory impairment. Similarly, 5xFAD-FMT did not induce AD-like pathologies, such as memory impairment and excessive neuroinflammation in Spib-/- mice. CONCLUSION: Therefore, our findings provide evidence that the inhibiting M cells can prevent AD progression, with therapeutic implications.


Asunto(s)
Enfermedad de Alzheimer , Ratones , Animales , Enfermedad de Alzheimer/patología , Microglía/metabolismo , Células M , Enfermedades Neuroinflamatorias , Péptidos beta-Amiloides/metabolismo , Trastornos de la Memoria , Ratones Noqueados , Fenotipo , Modelos Animales de Enfermedad , Ratones Transgénicos
4.
Nutrients ; 14(15)2022 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-35956303

RESUMEN

Alzheimer's disease (AD) is an irreversible neurodegenerative disease characterized by memory and cognitive impairments. Neurogenesis, which is related to memory and cognitive function, is reduced in the brains of patients with AD. Therefore, enhancing neurogenesis is a potential therapeutic strategy for neurodegenerative diseases, including AD. Hesperidin (HSP), a bioflavonoid found primarily in citrus plants, has anti-inflammatory, antioxidant, and neuroprotective effects. The objective of this study was to determine the effects of HSP on neurogenesis in neural stem cells (NSCs) isolated from the brain of mouse embryos and five familial AD (5xFAD) mice. In NSCs, HSP significantly increased the proliferation of NSCs by activating adenosine monophosphate (AMP)-activated protein kinase (AMPK)/cAMP-response element-binding protein (CREB) signaling, but did not affect NSC differentiation into neurons and astrocytes. HSP administration restored neurogenesis in the hippocampus of 5xFAD mice via AMPK/brain-derived neurotrophic factor/tropomyosin receptor kinase B/CREB signaling, thereby decreasing amyloid-beta accumulation and ameliorating memory dysfunction. Collectively, these preclinical findings suggest that HSP is a promising candidate for the prevention and treatment of AD.


Asunto(s)
Enfermedad de Alzheimer , Hesperidina , Enfermedades Neurodegenerativas , Proteínas Quinasas Activadas por AMP/metabolismo , Enfermedad de Alzheimer/metabolismo , Animales , Modelos Animales de Enfermedad , Hesperidina/metabolismo , Hesperidina/farmacología , Hesperidina/uso terapéutico , Hipocampo/metabolismo , Ratones , Ratones Transgénicos , Enfermedades Neurodegenerativas/metabolismo , Neurogénesis
5.
Nutrients ; 14(3)2022 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-35277054

RESUMEN

The hepatic adiponectin and farnesoid X receptor (FXR) signaling pathways play multiple roles in modulating lipid and glucose metabolism, reducing hepatic inflammation and fibrosis, and altering various metabolic targets for the management of non-alcoholic fatty liver disease (NAFLD). Alisma orientale (AO, Ze xie in Chinese and Taeksa in Korean) is an herbal plant whose tubers are enriched with triterpenoids, which have been reported to exhibit various bioactive properties associated with NAFLD. Here, the present study provides a preclinical evaluation of the biological functions and related signaling pathways of AO extract for the treatment of NAFLD in a Western diet (WD)-induced mouse model. The findings showed that AO extract significantly reversed serum markers (liver function, lipid profile, and glucose) and improved histological features in the liver sections of mice fed WD for 52 weeks. In addition, it also reduced hepatic expression of fibrogenic markers in liver tissue and decreased the extent of collagen-positive areas, as well as inhibited F4/80 macrophage aggregation and inflammatory cytokine secretion. The activation of adiponectin and FXR expression in hepatic tissue may be a major mechanistic signaling cascade supporting the promising role of AO in NAFLD pharmacotherapy. Collectively, our results demonstrated that AO extract improves non-alcoholic steatohepatitis (NASH) resolution, particularly with respect to NASH-related fibrosis, along with the regulation of liver enzymes, postprandial hyperglycemia, hyperlipidemia, and weight loss, probably through the modulation of the hepatic adiponectin and FXR pathways.


Asunto(s)
Alisma , Dieta Occidental , Enfermedad del Hígado Graso no Alcohólico , Adiponectina/metabolismo , Alisma/química , Animales , Dieta Occidental/efectos adversos , Fibrosis , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/inducido químicamente , Enfermedad del Hígado Graso no Alcohólico/etiología , Extractos Vegetales/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...