Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 277
Filtrar
1.
PLoS One ; 19(8): e0308246, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39110709

RESUMEN

Plastics pose a considerable challenge to aquatic ecosystems because of their increasing global usage and non-biodegradable properties. Coastal plastic debris can persist in ecosystems; however, its effects on resident organisms remain unclear. A metagenomic analysis of the isopoda Ligia, collected from clean (Nae-do, ND) and plastic-contaminated sites (Maemul-do, MD) in South Korea, was conducted to clarify the effects of microplastic contamination on the gut microbiota. Ligia gut microbiota's total operational taxonomic units were higher in ND than in MD. Alpha diversity did not differ significantly between the two Ligia gut microbial communities collected from ND and MD, although richness (Observed species) was lower in MD than in ND. Proteobacteria (67.47%, ND; 57.30%, MD) and Bacteroidetes (13.63%, ND; 20.76%, MD) were the most abundant phyla found at both sites. Significant different genera in Ligia from EPS-polluted sites were observed. Functional gene analysis revealed that 19 plastic degradation-related genes, including those encoding hydrogenase, esterase, and carboxylesterase, were present in the gut microbes of Ligia from MD, indicating the potential role of the Ligia gut microbiota in plastic degradation. This study provides the first comparative field evidence of the gut microbiota dynamics of plastic detritus consumers in marine ecosystems.


Asunto(s)
Microbioma Gastrointestinal , Isópodos , Microbioma Gastrointestinal/efectos de los fármacos , Microbioma Gastrointestinal/genética , República de Corea , Animales , Isópodos/microbiología , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/efectos adversos , Metagenómica/métodos
2.
Mar Pollut Bull ; 206: 116768, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39067234

RESUMEN

As microplastics (MPs) are particulate pollutants, their size and shape, and the presence of prey in the media can affect their toxicity. However, the size- and shape-dependent toxicities of MPs and their prey-dependent ingestion patterns in marine zooplankton are not well understood. Thus, we investigated the ingestion and egestion patterns, and toxicity of different shapes and sizes of MPs on two marine zooplankton, Brachionus koreanus and Diaphanosoma celebensis, under different prey conditions. The ingestion assay showed that smaller MPs were ingested more frequently, regardless of their shape. However, fragmented MPs showed higher toxicity than spherical MPs of comparable size. Prey in the media reduced the uptake and toxicity of MPs in both species depending on the taxa's feeding strategy. Our findings demonstrate that the size and shape of MPs are important factors in determining toxicity and that the presence of prey should also be considered when assessing MP toxicity.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Zooplancton , Animales , Microplásticos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Rotíferos , Cadena Alimentaria , Tamaño de la Partícula
3.
Plants (Basel) ; 13(12)2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38931136

RESUMEN

Cannabis contains numerous natural components and has several effects such as anticancer, anti-inflammatory and antioxidant. Cheungsam is a variety of non-drug-type hemp, developed in Korea and is used for fiber (stem) and oil (seed). The efficacy of Cheungsam on skin is not yet known, and although there are previous studies on Cheungsam seed oil, there are no studies on Cheungsam seed husk. In this study, we investigated the potential of Cheungsam seed husk ethanol extract (CSSH) to alleviate skin inflammation through evaluating the gene and protein expression levels of inflammatory mediators. The results showed that CSSH reduced pro-inflammatory cytokines (IL-1ß, IL-6, IL-8, MCP-1 and CXCL10) and atopic dermatitis-related cytokines (IL-4, CCL17, MDC and RANTES) in TNF-α/IFN-γ-induced HaCaT cells. Furthermore, ERK, JNK and p38 phosphorylation were decreased and p-p65, p-IκBα, NLRP3, caspase-1, p-JAK1 and p-STAT6 were suppressed after CSSH treatment. CSSH significantly increased the level of the skin barrier factors filaggrin and involucrin. These results suggest that Cheungsam seed husk ethanol extract regulates the mechanism of skin inflammation and can be used as a new treatment for skin inflammatory diseases.

4.
J Hazard Mater ; 472: 134448, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38728862

RESUMEN

Microplastics (MPs) are a major concern in marine ecosystem because MPs are persistent and ubiquitous in oceans and are easily consumed by marine biota. Although many studies have reported the toxicity of MPs to marine biota, the toxicity of environmentally relevant types of MPs is little understood. We investigated the toxic effects of fragmented polyethylene terephthalate (PET) MP, one of the most abundant MPs in the ocean, on the marine rotifer Brachionus koreanus at the individual and molecular level. No significant rotifer mortality was observed after exposure to PET MPs for 24 and 48 h. The ingestion and egestion assays showed that rotifers readily ingested PET MPs in the absence of food but not when food was supplied; thus, there were also no chronic effects of PET MPs. In contrast, intracellular reactive oxygen species levels and glutathione S-transferase activity in rotifers were significantly increased by PET MPs. Transcriptomic and metabolomic analyses revealed that genes and metabolites related to energy metabolism and immune processes were significantly affected by PET MPs in a concentration-dependent manner. Although acute toxicity of PET MPs was not observed, PET MPs are potentially toxic to the antioxidant system, immune system, and energy metabolism in rotifers.


Asunto(s)
Microplásticos , Tereftalatos Polietilenos , Especies Reactivas de Oxígeno , Rotíferos , Contaminantes Químicos del Agua , Animales , Rotíferos/efectos de los fármacos , Tereftalatos Polietilenos/toxicidad , Microplásticos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Especies Reactivas de Oxígeno/metabolismo , Glutatión Transferasa/metabolismo , Glutatión Transferasa/genética , Pruebas de Toxicidad , Transcriptoma/efectos de los fármacos , Metabolómica , Ingestión de Alimentos , Multiómica
5.
Clin Obstet Gynecol ; 66(4): 884-890, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37910137

RESUMEN

The optimal gestational age for delivery of twin gestations balances the risk to the mother with the risks to the fetus and newborn. Primary considerations should include chorionicity and the presence or absence of other obstetrical complications such as fetal growth restriction or hypertensive disorders of pregnancy. More than half of twin gestations will deliver preterm, and a significant portion will be due to spontaneous labor or medical indications, such that the timing of delivery for twins is typically less determined by the provider discretion. Future studies are needed to assist in clarifying the optimal timing for delivery of twin pregnancies.


Asunto(s)
Embarazo Gemelar , Gemelos , Femenino , Humanos , Recién Nacido , Embarazo , Feto , Edad Gestacional , Madres , Resultado del Embarazo , Estudios Retrospectivos
6.
Int J Mol Sci ; 24(15)2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37569351

RESUMEN

Mast cells are an important component of immune responses. Immunoglobulin (Ig) E-sensitized mast cells release substances within minutes of allergen exposure, triggering allergic responses. Until now, numerous pharmacological effects of wheatgrass and aronia have been verified, but the effects of wheatgrass and aronia (TAAR)-mixed extract on allergic reactions have not been identified. Therefore, the aim of this study was to demonstrate the anti-allergic effect of TAAR extract on mast cell activation and cutaneous anaphylaxis. In this study, we investigated the anti-allergic effects and related mechanisms of TAAR extract in IgE-activated mast cells in vitro. We also assessed the ameliorating effect of TAAR extract on IgE-mediated passive cutaneous anaphylaxis mice in vivo. The TAAR extract significantly reduced the expression of ß-hexosaminidase, histamine, and pro-inflammatory cytokines, which are mediators related to mast cell degranulation, via the regulation of various signaling pathways. The TAAR extract also regulated oxidative-stress-related factors through the Nrf2 signaling pathway. Additionally, treatment of TAAR extract to the passive cutaneous anaphylaxis mouse model improved ear thickness and local ear pigmentation. Taken together, our results suggest that TAAR extract is a potential candidate natural product to treat overall IgE-mediated allergic inflammation and oxidative-stress-related diseases by suppressing mast cell activity.


Asunto(s)
Anafilaxia , Antialérgicos , Hipersensibilidad , Photinia , Ratones , Animales , Inmunoglobulina E , Antialérgicos/farmacología , Antialérgicos/uso terapéutico , Antialérgicos/metabolismo , Citocinas/metabolismo , Mastocitos/metabolismo , Degranulación de la Célula
7.
J Hazard Mater ; 459: 132055, 2023 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-37480609

RESUMEN

Given their worldwide distribution and toxicity to aquatic organisms, methylmercury (MeHg) and microplastics (MP) are major pollutants in marine ecosystems. Although they commonly co-exist in the ocean, information on their toxicological interactions is limited. Therefore, to understand the toxicological interactions between MeHg and MP (6-µm polystyrene), we investigated the bioaccumulation of MeHg, its cytotoxicity, and transcriptomic modulation in the brackish water flea Diaphanosoma celebensis following single and combined exposure to MeHg and MP. After single exposure to MeHg for 48-h, D. celebensis showed high Hg accumulation (34.83 ± 0.40 µg/g dw biota) and cytotoxicity, which was reduced upon co-exposure to MP. After transcriptomic analysis, 2, 253, and 159 differentially expressed genes were detected in the groups exposed to MP, MeHg, and MeHg+MP, respectively. Genes related to metabolic pathways and the immune system were significantly affected after MeHg exposure, but the effect of MeHg on these pathways was alleviated by MP co-exposure. However, MeHg and MP exhibited synergistic effects on the expression of gene related to DNA replication. These findings suggest that MP can reduce the toxicity of MeHg but that their toxicological interactions differ depending on the molecular pathway.


Asunto(s)
Cladóceros , Mercurio , Compuestos de Metilmercurio , Siphonaptera , Animales , Compuestos de Metilmercurio/toxicidad , Bioacumulación , Poliestirenos/toxicidad , Microesferas , Transcriptoma , Ecosistema , Plásticos , Microplásticos
8.
Ecotoxicol Environ Saf ; 262: 115189, 2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37385021

RESUMEN

Heavy metals such as lead (Pb), cadmium (Cd), and arsenic (As) are of great concern in aquatic ecosystems because of their global distribution, persistence, and biomagnification via the food web. They can induce the expression of cellular protective systems (e.g., detoxification enzymes and antioxidant enzymes) to protect organisms from oxidative stress, which is a high-energy-consuming process. Thus, energy reserves (e.g., glycogen, lipids, and proteins) are utilized to maintain metabolic homeostasis. Although a few studies have suggested that heavy metal stress can modulate the metabolic cycle in crustaceans, information on changes in energy metabolism under metal pollution remains lacking in planktonic crustaceans. In the present study, the activity of digestive enzymes (amylase, trypsin, and lipase) and the contents of energy storage molecules (glycogen, lipid, and protein) were examined in the brackish water flea Diaphanosoma celebensis exposed to Cd, Pb, and As for 48 h. Transcriptional modulation of the three AMP-activated protein kinase (AMPK) and metabolic pathway-related genes was further investigated. Amylase activity was highly increased in all heavy metal-exposed groups, whereas trypsin activity was reduced in Cd- and As-exposed groups. While glycogen content was increased in all exposed groups in a concentration-dependent manner, lipid content was reduced at higher concentrations of heavy metals. The expression of AMPKs and metabolic pathway-related genes was distinct among heavy metals. In particular, Cd activated the transcription of AMPK-, glucose/lipid metabolism-, and protein synthesis-related genes. Our findings indicate that Cd can disrupt energy metabolism, and may be a potent metabolic toxicant in D. celebensis. This study provides insights into the molecular mode of action of heavy metal pollution on the energy metabolism in planktonic crustaceans.

9.
Artículo en Inglés | MEDLINE | ID: mdl-37301416

RESUMEN

Energy metabolism is crucial for normal biological processes, such as growth, development, and reproduction. Microplastics disrupt energy homeostasis by modulating the digestive capacity and contents of energy reserves to overcome stress. This study investigated the modulation of digestive enzyme activity and energy reserves in the brackish water flea Diaphanosoma celebensis exposed to polystyrene (PS) beads (0.05-, 0.5-, 6-µm) for 48 h, and examined transcriptional changes in digestive enzyme-coding genes and AMP-activated protein kinase (AMPK) signaling pathway genes. PS particle size differentially modulated digestive enzyme activity, energy molecule content (glycogen, protein, and lipids), and metabolism-related gene expression. In particular, the 0.5-µm PS had the most significant effect on digestive enzyme activity. In contrast, the 0.05-µm PS caused significant metabolic disorder following a decrease in total energy budget (Ea). These findings suggest that PS beads can modulate energy metabolism through different modes depending on the bead size.


Asunto(s)
Cladóceros , Siphonaptera , Contaminantes Químicos del Agua , Animales , Microplásticos , Plásticos , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis , Poliestirenos , Aguas Salinas , Metabolismo Energético
10.
Biomed Pharmacother ; 162: 114637, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37027986

RESUMEN

Respiratory exposure to Particulate matter (PM), including Diesel exhaust particulate (DEP), causes oxidative stress-induced lung inflammation. Especially, fine particulate matter with an aerodynamic diameter less than 2.5 µm (PM2.5) is a serious air pollutant associated with various health problems including cardiovascular diseases. The present study aimed to examine the inhibitory effect of Securiniga suffruticosa (S. suffruiticosa) on DEP and PM-induced lung and cardiovascular diseases. Mice inhaled DEP by using nebulizer chamber for two weeks. Treatment with S. suffruiticosa reduced the expression of C-X-C motif ligand 1/2 in bronchoalveolar lavage fluid and Muc5ac, ICAM-1, TNF-⍺, IL-6 mRNA in lung were also attenuated by S. suffruiticosa. In thoracic aorta, DEP increased CAMs, TNF-⍺ and inflammasome markers such as NLRP3, Caspase-1, and ASC. However, S. suffruiticosa suppressed these levels. S. suffruiticosa inhibited PM2.5 induced production of intracellular reactive oxygen species (ROS); and inhibited the translocation of NF-κB p65 to the nucleus in human umbilical vein endothelial cells. Taken together, this study proved that exposure to PM2.5 induced both lung and vascular inflammation, however, S. suffruiticosa attenuated this injury via the downregulation of the NLRP3 signaling pathway. These findings suggest that S. suffruiticosa may have potential therapeutic benefit against air pollution-mediated lung and cardiovascular diseases.


Asunto(s)
Enfermedades Cardiovasculares , FN-kappa B , Humanos , Animales , Ratones , FN-kappa B/metabolismo , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Células Endoteliales/metabolismo , Pulmón , Material Particulado/farmacología
11.
Environ Geochem Health ; 45(9): 6807-6822, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36445536

RESUMEN

Owing to their widespread distribution and high bioaccumulation, microplastics (MPs) and mercury (Hg) are considered major threats to the ocean. MP interacts with Hg because of its high adsorption properties. However, their toxicological interactions with marine organisms, especially combined effects at the molecular level, are poorly understood. This study investigated the single and combined effects of MP and Hg on the metabolic profile of the brackish water flea Diaphanosoma celebensis. A total of 238 metabolites were significantly affected by MP, Hg, or MP + Hg. Metabolite perturbation patterns showed that toxicity of Hg and MP + Hg was similar and that of MP was not significant. Among the 223 metabolites affected by Hg, profiles of 32 unannotated metabolites were significantly different from those of MP + Hg, and combined effects of MP + Hg decreased the effect of Hg on 25 of these metabolites. Only 11 annotated metabolites were significantly affected by Hg or MP + Hg and were related to carbohydrate, lipid, vitamin, and ecdysteroid metabolism. Ten metabolites were decreased by Hg and MP + Hg and were not significantly different between the exposure groups. Enrichment analysis showed that galactose, starch, and sucrose metabolism were the most affected pathways. These findings suggest that MP has negligible toxic effect, and Hg can induce energy depletion, membrane damage, and disruption of growth, development, and reproduction. Although the impact of MP was negligible, the combined effects of MP + Hg could be metabolite specific. This study provides better understanding of the combined effects of MP and Hg on marine organisms.


Asunto(s)
Cladóceros , Mercurio , Compuestos de Metilmercurio , Contaminantes Químicos del Agua , Animales , Organismos Acuáticos , Mercurio/análisis , Mercurio/toxicidad , Compuestos de Metilmercurio/toxicidad , Microplásticos/toxicidad , Plásticos , Aguas Salinas , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis
12.
Aquat Toxicol ; 252: 106325, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36242789

RESUMEN

Plastics are considered as a major threat to marine environments owing their high usage, persistence, and negative effects on aquatic organisms. Although they often exist as mixtures in combination with other pollutants (e.g., mercury (Hg)) in aquatic ecosystems, the combined effects of plastics and ambient pollutants remain unclear. Therefore, in the present study, we investigated the toxicological interactions between Hg and plastics using two Hg species (HgCl2 and MeHgCl) and different-sized polystyrene (PS) beads (diameter: 0.05, 0.5, and 6-µm) in the brackish water flea Diaphanosoma celebensis. The single and combined effects of Hg and PS beads on mortality were investigated, and changes in the antioxidant system and lipid peroxidation were further analyzed. After 48-h exposure to single Hg, HgCl2 induced a higher mortality rate than MeHgCl. The combined exposure test showed that 0.05-µm PS beads can enhance the toxicity of both the Hg species. The expression of GST-mu, glutathione S-transferease (GST) activity and malondialdehyde (MDA) content increased significantly after exposure to Hg alone (HgCl2 or MeHgCl) exposure. Combined exposure with PS beads modulated the effects of Hg on the antioxidant system depending on bead size and the Hg species. In particular, the 0.05-µm beads significantly increased the expression level of GST-mu, GST activity and MDA content, regardless of Hg species. These findings suggest that toxicological interactions between Hg and PS beads depend on the type of Hg species and the size of PS beads; nano-sized 0.05-µm PS beads can induce synergistic toxicity with Hg.


Asunto(s)
Cladóceros , Mercurio , Siphonaptera , Contaminantes Químicos del Agua , Animales , Plásticos/toxicidad , Poliestirenos/toxicidad , Poliestirenos/análisis , Mercurio/toxicidad , Antioxidantes , Ecosistema , Contaminantes Químicos del Agua/toxicidad , Organismos Acuáticos , Glutatión , Malondialdehído
13.
Curr Neurovasc Res ; 19(3): 333-343, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36056832

RESUMEN

BACKGROUND: Detection or monitoring of brain damage is a clinically crucial issue. Nucleic acids in the whole blood can be used as biomarkers for brain injury. Polymerase chain reaction (PCR) which is one of the most commonly used molecular diagnostic assays requires isolated nucleic acids to initiate amplification. Currently used nucleic acid isolation procedures are complicated and require laboratory equipments. OBJECTIVE: In this study, we tried to develop a simple and convenient method to isolate nucleic acids from the whole blood sample using a tiny battery-powered electric device. The quality of the isolated nucleic acids should be suitable for PCR assay without extra preparation. METHODS: A plastic device with separation chamber was designed and printed with a 3D printer. Two platinum electrodes were placed on both sides and a battery was used to supply the electricity. To choose the optimal nucleic acid isolation condition, diverse lysis buffers and separation buffers were evaluated, and the duration and voltage of the electricity were tested. Western blot analysis and PCR assay were used to determine the quality of the separated nucleic acids. RESULTS: 2ul of whole blood was applied to the cathode side of the separation chamber containing 78 ul of normal saline. When the electricity at 5 V was applied for 5 min, nucleic acids were separated from segment 1 to 3 of the separation chamber. The concentration of nucleic acids peaked around 7~8 mm from cathode side. PCR assay using the separation buffer as the template was performed successfully both in conventional and realtime PCR methods. The hemoglobin in the whole blood did not show the inhibitory effect in our separation system and it may be due to structural modification of hemoglobin during electric separation. CONCLUSION: Our simple electric device can separate nucleic acids from the whole blood sample by applying electricity at 5 V for 5 min. The separation buffer solution taken from the device can be used for PCR assay successfully.


Asunto(s)
Lesiones Encefálicas , Ácidos Nucleicos , Humanos , Ácidos Nucleicos/análisis , Técnicas de Amplificación de Ácido Nucleico/métodos , Pruebas en el Punto de Atención , Encéfalo
14.
Artículo en Inglés | MEDLINE | ID: mdl-36087704

RESUMEN

Owing to its high production and world-wide usage, plastic pollution is an increasing concern in marine environments. Plastic is decomposed into nano- and micro-sized debris, which negative affect reproduction and development in aquatic organisms. Bisphenol A (BPA), an additive of plastic, is released into the water column upon plastic degradation, and is known as a representative endocrine-disrupting chemical. However, the reproductive effects of plastics and bisphenols at the molecular level have not yet been explored in small marine crustaceans. In this study, we investigated the effects of polystyrene (PS) beads (0.05, 0.5, and 6 - µm) and bisphenol analogues (BPs; BPA, BPS, and BPF) on reproduction and development of small marine crustaceans. Effects on transcriptional changes in ecdysteroid and juvenile hormone (JH) signaling pathway-related genes were examined in the brackish water flea Diaphanosoma celebensis exposed to PS beads and BPs for 48 h. As results, BPs and PS beads delayed emergence time of first offspring, and increased fecundity in a concentration-dependent manner. BPs differentially modulated the expression of ecdysteroid and JH signaling pathway-related genes, indicating that BP analogs can disrupt endocrine systems via mechanisms different from those of BPA. PS beads was also changed the gene expression of both pathway, depending on their size and concentration. Our findings suggest that BP analogues and PS beads disrupt the endocrine system by modulating the hormonal pathways, affecting reproduction negatively. This study provides a better understanding of the molecular mode of action of BPs and PS beads in the reproduction of small crustaceans.


Asunto(s)
Cladóceros , Siphonaptera , Animales , Compuestos de Bencidrilo/toxicidad , Ecdisteroides/farmacología , Hormonas Juveniles/toxicidad , Fenoles , Poliestirenos/toxicidad , Aguas Salinas , Transducción de Señal
15.
Biochem Biophys Rep ; 30: 101253, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35378739

RESUMEN

Mast cells infiltrate the inflammatory microenvironment and regulate the production of many pro-inflammatory cytokines and mediators of inflammatory cell production to promote tumor development and growth in intestinal lesions. Currently, there are insufficient studies of the mediators and signaling pathways regulated by mast cells that influence the pathogenesis of colon cancer in inflamed colon tissue. This study aimed to confirm the role of mast cells in the incidence and growth of colitis-associated colon cancer (CAC) and to identify inflammation-mediated factors and signaling pathways related to tumor development. CAC was induced by the administration of azoxymethane (AOM) and dextran sodium sulfate (DSS) in mast cell-deficient (WBB6F1/J-W/WV) and mast cell-sufficient control (WBB6F1_+/+) mice. The results confirmed that mast cell-deficient mice exhibited less tumor formation than normal mice under the same conditions, and down-regulated expression of pro-inflammatory cytokines and mediators. Mast cells play an important role in tumor formation by regulating pro-inflammatory cytokines and inflammatory mediators in CAC, indicating that they can act as new targets for the prevention and treatment of CAC.

16.
Antioxidants (Basel) ; 12(1)2022 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-36670888

RESUMEN

Atopic dermatitis is regulated by the production of pro-inflammatory cytokines and chemokines via the nuclear factor kappa B or mitogen-activated protein kinase signaling pathways, as well as, the release of oxidative stress-related factors via the NF-E2 p45-related factor 2 signaling pathway. Both wheatgrass (Triticum aestivum L., TA) and aronia (Aronia melanocarpa, AR) are known for their anti-inflammatory and antioxidant properties, however, the anti-inflammatory and antioxidant effects of TA and AR (TAAR) mixture extract have not been elucidated in an atopic dermatitis model. In this study, we assessed the inhibitory effects and underlying molecular mechanism of TAAR extract against lipopolysaccharide-induced inflammation and tumor necrosis factor-α/interferon-γ-induced inflammation and oxidative stress in vitro. We also investigated the alleviating effect of TAAR extract on DNCB-induced atopic dermatitis-like skin lesions in mice in vivo. We found that TAAR extract treatment inhibited inflammatory mediators in both RAW 264.7 cells and HaCaT cells, and increased the expression of oxidative stress defense enzymes in HaCaT cells. Furthermore, treatment of the DNCB-induced mouse model with TAAR extract ameliorated the overall symptoms of atopic dermatitis. Therefore, TAAR extract as a novel natural therapeutic agent may be used for the treatment of atopic dermatitis.

17.
Sci Rep ; 11(1): 23691, 2021 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-34880360

RESUMEN

Real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR), a primary approach for evaluating gene expression, requires an appropriate normalization strategy to confirm relative gene expression levels by comparison, and rule out variations that might occur in analytical procedures. The best option is to use a reference gene whose expression level is stable across various experimental conditions to compare the mRNA levels of a target gene. However, there is limited information on how the reference gene is differentially expressed at different ages (growth) in small invertebrates with notable changes such as molting. In this study, expression profiles of nine candidate reference genes from the brackish water flea, Diaphanosoma celebensis, were evaluated under diverse exposure to toxicants and according to growth. As a result, four different algorithms showed similar stabilities of genes for chemical exposures in the case of limited conditions using the same developmental stage (H2A was stable, whereas Act was fairly unstable in adults), while the results according to age showed a significantly different pattern in suite of candidate reference genes. This affected the results of genes EcRA and GST, which are involved in development and detoxification mechanisms, respectively. Our finding is the first step towards establishing a standardized real-time qRT-PCR analysis of this environmentally important invertebrate that has potential for aquatic ecotoxicology, particularly in estuarine environments.


Asunto(s)
Exposición a Riesgos Ambientales , Regulación de la Expresión Génica/efectos de los fármacos , Genes de Insecto , Aguas Salinas , Siphonaptera/efectos de los fármacos , Siphonaptera/genética , Contaminantes Químicos del Agua/efectos adversos , Animales , Exposición a Riesgos Ambientales/efectos adversos , Perfilación de la Expresión Génica , Reacción en Cadena en Tiempo Real de la Polimerasa , Aguas Salinas/química
18.
Molecules ; 26(21)2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34770745

RESUMEN

Wheat (Triticum aestivum L.) is the oldest known food crop, and many studies have reported that wheat shoots (i.e., wheatgrass) possess anti-cancer, anti-inflammatory, and antioxidant activities. However, the potentially ameliorative effect of wheat shoots on hepatotoxicity caused by high doses of N-acetyl-para-aminophenol (acetaminophen, APAP) has yet to be reported. C57BL/6 mice received daily oral TAE (100 or 200 mg/kg), positive control (silymarin 100 mg/kg), or negative control (saline vehicle) treatments for 7 days prior to intraperitoneal APAP injection. Histological, serum (ELISA), Western blotting, and quantitative PCR analyses of excised liver tissues were then performed. Pre-treatment with TAE (100 or 200 mg/kg) ameliorated APAP-induced pathological damage (i.e., hepatotoxic lesions), reduced serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels, and also ameliorated APAP-induced increases in oxidative stress, thereby inhibiting oxidative liver damage and reducing the expression of inflammatory cytokines. In addition, TAE pre-treatment inhibited the expression of Cytochrome P4502E1 (CYP2E1), which is a key enzyme in the onset of APAP-induced hepatotoxicity, suppressed the expression of the target proteins regulated by the antioxidant enzyme Nrf2, and suppressed hepatocyte apoptosis. These findings suggest that TAE is an attractive therapeutic candidate that exhibits potential hepatoprotective activity by inhibiting oxidative stress, inflammation, apoptosis, and liver damage.


Asunto(s)
Antioxidantes/farmacología , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/farmacología , Triticum/química , Acetaminofén/efectos adversos , Animales , Antiinflamatorios/química , Antiinflamatorios/farmacología , Antioxidantes/química , Apoptosis/efectos de los fármacos , Biomarcadores , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Citocromo P-450 CYP2E1/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Pruebas de Función Hepática , Masculino , Ratones , Estructura Molecular , Factor 2 Relacionado con NF-E2 , Extractos Vegetales/química , Sustancias Protectoras , Transducción de Señal/efectos de los fármacos
19.
Curr Neurovasc Res ; 18(4): 409-414, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34751116

RESUMEN

BACKGROUND: Stroke is one of the leading causes of death and disability in adulthood worldwide. A simple and convenient diagnostic method is needed for monitoring high-risk patients for stroke. Few POCTs are available for stroke diagnosis. Soluble blood P-selectin is known as a biomarker for platelet aggregation. Increased expression of P-selectin is observed in coronary artery disease, acute myocardial infarction, stroke and peripheral arterial disease. OBJECTIVE: A simple method that can measure the increased expression of P-selectin in stroke patients is intended to be used for diagnosis or early detection and hospital monitoring of ischemic stroke. METHODS: Plasma proteins in blood were separated using a three-layered filter system. Quantum dot and antibody were conjugated to detect biomarkers present in plasma and then measured with a fluorescence spectrophotometer. RESULTS: The detection limit of soluble P-selectin confirmed by immunoassay was 1 ng/ul. In order to increase the sensitivity and simplify the reaction, the detection limit was measured to evaluate the sensitivity of the quantum dot labeled anti P-selectin antibody. As a result, P-selectin of 5 ng/ul or more showed saturation signal intensity, indicating the upper limit of detection, and 10 pg/ul was the lower limit of detection. CONCLUSION: In this study, we proposed a three-layer filter membrane system that can separate biomarker- rich fractions from whole blood, simplifying the analysis process and improving sensitivity by using quantum dot-labeled antibodies to detect biomarkers. We hope that our system complements the advantages of POCT and can be applied to real clinical applications.


Asunto(s)
Accidente Cerebrovascular Isquémico , Infarto del Miocardio , Accidente Cerebrovascular , Adulto , Humanos , Selectina-P , Pruebas en el Punto de Atención , Accidente Cerebrovascular/diagnóstico , Tecnología
20.
Medicina (Kaunas) ; 57(10)2021 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-34684165

RESUMEN

Background and objectives: Blood vessel thrombosis causes blood circulation disorders, leading to various diseases. Currently, various antiplatelet and anticoagulant drugs, such as aspirin, warfarin, heparin, and non-vitamin K antagonist oral anticoagulants (NOACs), are used as the major drugs for the treatment of a wide range of thrombosis. However, these drugs have a side effect of possibly causing internal bleeding due to poor hemostasis when taken for a long period of time. Materials and Methods: Gastrodia elata Blume (GE) and Zanthoxylum schinifolium Siebold & Zucc (ZS) are known to exhibit hemostatic and antiplatelet effects as traditional medicines that have been used for a long time. In this study, we investigated the effect of a mixed extract of GE and ZS (MJGE09) on platelet aggregation and plasma coagulation. Results: We found that MJGE09 inhibited collagen-and ADP-induced platelet aggregation in vitro. In addition, collagen- and ADP-induced platelet aggregation were also inhibited in a dose-dependent manner on the platelets of mice that were orally administered MJGE09 ex vivo. However, compared with aspirin, MJGE09 did not prolong the rat tail vein bleeding time in vivo and did not show a significant effect on the increase in the prothrombin time (PT) and activated partial thromboplastin time (aPTT). Conclusions: These results suggest that MJGE09 can be used as a potential anticoagulant with improved antithrombotic efficacy.


Asunto(s)
Gastrodia , Trombosis , Zanthoxylum , Administración Oral , Animales , Anticoagulantes/farmacología , Anticoagulantes/uso terapéutico , Fibrinolíticos/uso terapéutico , Ratones , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Agregación Plaquetaria , Inhibidores de Agregación Plaquetaria/farmacología , Ratas , Ratas Sprague-Dawley , Trombosis/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...