Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
2.
Small ; 20(9): e2306819, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38152985

RESUMEN

In surface-enhanced Raman spectroscopy (SERS), 2D materials are explored as substrates owing to their chemical stability and reproducibility. However, they exhibit lower enhancement factors (EFs) compared to noble metal-based SERS substrates. This study demonstrates the application of ultrathin covellite copper sulfide (CuS) as a cost-effective SERS substrate with a high EF value of 7.2 × 104 . The CuS substrate is readily synthesized by sulfurizing a Cu thin film at room temperature, exhibiting a Raman signal enhancement comparable to that of an Au noble metal substrate of similar thickness. Furthermore, computational simulations using the density functional theory are employed and time-resolved photoluminescence measurements are performed to investigate the enhancement mechanisms. The results indicate that polar covalent bonds (Cu─S) and strong interlayer interactions in the ultrathin CuS substrate increase the probability of charge transfer between the analyte molecules and the CuS surface, thereby producing enhanced SERS signals. The CuS SERS substrate demonstrates the selective detection of various dye molecules, including rhodamine 6G, methylene blue, and safranine O. Furthermore, the simplicity of CuS synthesis facilitates large-scale production of SERS substrates with high spatial uniformity, exhibiting a signal variation of less than 5% on a 4-inch wafer.

3.
ACS Appl Mater Interfaces ; 15(27): 32814-32823, 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37368509

RESUMEN

This study demonstrates a novel approach to creating a thin-film electronic device that offers selective or complete disposability only in on-demand conditions while maintaining stable operation reliability during everyday use. The approach involves a transient paper substrate, combined with phase change encapsulation and highly bendable planarization materials, achieved through a simple solution process. The substrate used in this study offers a smooth surface morphology that enables the creation of stable multilayers for thin-film electronic devices. It also exhibits superior waterproof properties, which allows the proof-of-concept organic light-emitting device to function even when submerged in water. Additionally, the substrate provides controlled surface roughness under repeated bending, demonstrating reliable folding stability for 1000 cycles at 10 mm of curvature. Furthermore, a specific component of the electronic device can be selectively made to malfunction through predetermined voltage input, and the entire device can be fully disposed of via Joule-heating-induced combustion.

4.
Sci Adv ; 9(16): eadf4049, 2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37083532

RESUMEN

An integrated textile electronic system is reported here, enabling a truly free form factor system via textile manufacturing integration of fiber-based electronic components. Intelligent and smart systems require freedom of form factor, unrestricted design, and unlimited scale. Initial attempts to develop conductive fibers and textile electronics failed to achieve reliable integration and performance required for industrial-scale manufacturing of technical textiles by standard weaving technologies. Here, we present a textile electronic system with functional one-dimensional devices, including fiber photodetectors (as an input device), fiber supercapacitors (as an energy storage device), fiber field-effect transistors (as an electronic driving device), and fiber quantum dot light-emitting diodes (as an output device). As a proof of concept applicable to smart homes, a textile electronic system composed of multiple functional fiber components is demonstrated, enabling luminance modulation and letter indication depending on sunlight intensity.

5.
Nano Lett ; 23(6): 2277-2286, 2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36913627

RESUMEN

Colloidal nanocrystals (NCs) have shown remarkable promise for optoelectronics, energy harvesting, photonics, and biomedical imaging. In addition to optimizing quantum confinement, the current challenge is to obtain a better understanding of the critical processing steps and their influence on the evolution of structural motifs. Computational simulations and electron microscopy presented in this work show that nanofaceting can occur during nanocrystal synthesis from a Pb-poor environment in a polar solvent. This could explain the curved interfaces and the olivelike-shaped NCs observed experimentally when these conditions are employed. Furthermore, the wettability of the PbS NCs solid film can be further modified via stoichiometry control, which impacts the interface band bending and, therefore, processes such as multiple junction deposition and interparticle epitaxial growth. Our results suggest that nanofaceting in NCs can become an inherent advantage when used to modulate band structures beyond what is traditionally possible in bulk crystals.

6.
Artículo en Inglés | MEDLINE | ID: mdl-35816438

RESUMEN

A novel Gram-stain-positive, thin rod-shaped, non-motile, aerobic and creamy-white pigmented bacterium (designated strain WJ7-1T) was isolated from activated sludge sampled in Suwon, Republic of Korea. 16S rRNA gene sequence analysis indicated that the isolate belongs to the genus Humibacter, family Microbacteriaceae, with a sequence similarity of 97.9 % to its nearest neighbour Humibacter albus KACC 20986T. Strain WJ7-1T contained menaquinone (MK)-10 (16.0 %), 11 (48.5 %) and 12 (35.5 %) as major respiratory quinones. The predominant cellular fatty acids (>15 %) were anteiso-C17 : 0, iso-C16 : 0 and anteiso-C15 : 0. The peptidoglycan of strain WJ7-1T contained the diagnostic diamino acid ornithine and 2,4-diaminobutyric acid alanine. Alanine, glutamic acid and glycine were also present in the cell wall. The characteristic whole-cell sugars present were glucose, galactose, xylose and rhamnose. The polar lipids consisted of phosphatidylglycerol, diphosphatidylglycerol, an unidentified glycolipid and two unidentified phospholipids. Strain WJ7-1T possessed ginsenoside-converting (ß-glucosidase) activity, which enabled it to transform ginsenoside protopanaxadiol-type Rb1 (one of the dominant active components of ginseng) to compound K. The genome size of strain WJ7-1T has 4.2 Mbp and the G+C content is 68.3 mol%. Average nucleotide identity, amino acid identity and digital DNA-DNA hybridization values between strain WJ7-1T and the closely related strain were 79.8, 36.1 and 23.5 %, respectively, indicating that strain WJ7-1T represents a novel species of the genus Humibacter. Strain WJ7-1T could be distinguished from the other members of the genus Humibacter by a number of chemotaxonomic and phenotypic characteristics. Based on polyphasic taxonomic analysis, strain WJ7-1T (=KACC 19729T=LMG 30802T) represents a novel species within the genus Humibacter, for which the name Humibacter ginsenosidimutans sp. nov. is proposed.


Asunto(s)
Actinomycetales , Ginsenósidos , Alanina/genética , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Fosfolípidos/química , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Aguas del Alcantarillado , Microbiología del Suelo , Vitamina K 2/química
7.
Nanomaterials (Basel) ; 12(6)2022 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-35335733

RESUMEN

Recently, lead halide perovskite nanocrystals have been considered as potential light-emitting materials because of their narrow full width at half-maximum (FWHM) and high photoluminescence quantum yield (PLQY). In addition, they have various emission spectra because the bandgap can be easily tuned by changing the size of the nanocrystals and their chemical composition. However, these perovskite materials have poor long-term stability due to their sensitivity to moisture. Thus far, various approaches have been attempted to enhance the stability of the perovskite nanocrystals. However, the required level of stability in the mass production process of perovskite nanocrystals under ambient conditions has not been secured. In this work, we developed a facile two-step ball-milling and ethanol/water-induced phase transition method to synthesize stable CsPbBr3 perovskite materials. We obtained pure CsPbBr3 perovskite solutions with stability retention of 86% for 30 days under ambient conditions. Our materials show a high PLQY of 35% in solid films, and excellent thermal stability up to 80 °C. We believe that our new synthetic method could be applicable for the mass production of light-emitting perovskite materials.

8.
Nat Commun ; 13(1): 814, 2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-35145096

RESUMEN

Smart textiles consist of discrete devices fabricated from-or incorporated onto-fibres. Despite the tremendous progress in smart textiles for lighting/display applications, a large scale approach for a smart display system with integrated multifunctional devices in traditional textile platforms has yet to be demonstrated. Here we report the realisation of a fully operational 46-inch smart textile lighting/display system consisting of RGB fibrous LEDs coupled with multifunctional fibre devices that are capable of wireless power transmission, touch sensing, photodetection, environmental/biosignal monitoring, and energy storage. The smart textile display system exhibits full freedom of form factors, including flexibility, bendability, and rollability as a vivid RGB lighting/grey-level-controlled full colour display apparatus with embedded fibre devices that are configured to provide external stimuli detection. Our systematic design and integration strategies are transformational and provide the foundation for realising highly functional smart lighting/display textiles over large area for revolutionary applications on smart homes and internet of things (IoT).

9.
J Cell Sci ; 135(7)2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35194638

RESUMEN

Multicellular organisms use dedicator of cytokinesis (DOCK) family guanine nucleotide exchange factors (GEFs) to activate Rac/Rho-of-plants small GTPases and coordinate cell shape change. In developing tissues, DOCK signals integrate cell-cell interactions with cytoskeleton remodeling, and the GEFs cluster reversibly at specific organelle surfaces to orchestrate cytoskeletal reorganization. The domain organizations among DOCK orthologs are diverse, and the mechanisms of localization control are poorly understood. Here, we use combinations of transgene complementation and live-cell imaging assays to uncover an evolutionarily conserved and essential localization determinant in the DOCK-GEF named SPIKE1. The SPIKE1-DHR3 domain is sufficient for organelle association in vivo, and displays a complicated lipid-binding selectivity for both phospholipid head groups and fatty acid chain saturation. SPIKE1-DHR3 is predicted to adopt a C2-domain structure and functions as part of a tandem C2 array that enables reversible clustering at the cell apex. This work provides mechanistic insight into how DOCK GEFs sense compositional and biophysical membrane properties at the interface of two organelle systems.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido , Proteínas de Unión al GTP Monoméricas , Dominios C2 , Citocinesis , Factores de Intercambio de Guanina Nucleótido/metabolismo , Proteínas de Unión al GTP Monoméricas/metabolismo , Orgánulos/metabolismo
10.
Nanomaterials (Basel) ; 12(3)2022 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-35159747

RESUMEN

In this work, we designed and prepared a hierarchically assembled 3D plasmonic metal-dielectric-metal (PMDM) hybrid nano-architecture for high-performance surface-enhanced Raman scattering (SERS) sensing. The fabrication of the PMDM hybrid nanostructure was achieved by the thermal evaporation of Au film followed by thermal dewetting and the atomic layer deposition (ALD) of the Al2O3 dielectric layer, which is crucial for creating numerous nanogaps between the core Au and the out-layered Au nanoparticles (NPs). The PMDM hybrid nanostructures exhibited strong SERS signals originating from highly enhanced electromagnetic (EM) hot spots at the 3 nm Al2O3 layer serving as the nanogap spacer, as confirmed by the finite-difference time-domain (FDTD) simulation. The PMDM SERS substrate achieved an outstanding SERS performance, including a high sensitivity (enhancement factor, EF of 1.3 × 108 and low detection limit 10-11 M) and excellent reproducibility (relative standard deviation (RSD) < 7.5%) for rhodamine 6G (R6G). This study opens a promising route for constructing multilayered plasmonic structures with abundant EM hotspots for the highly sensitive, rapid, and reproducible detection of biomolecules.

11.
J Plast Reconstr Aesthet Surg ; 75(4): 1447-1454, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34955393

RESUMEN

BACKGROUND: Among the materials used for dorsal augmentation rhinoplasty (DAR), cross-linked human acellular dermal matrix (ADM) has been claimed for its low risk of infection and extrusion. The aim of this study was to compare the effectiveness of ADM in subjects undergoing primary versus revision dorsal augmentation rhinoplasties. METHODS: Using a retrospective cohort study design, the investigators enrolled a cohort set of DAR patients operated by a single surgeon during a 65-month interval. The predictor variable was the treatment group (primary or revision DAR). The main outcome variables were postoperative changes with regard to the degree of augmentation (ratio of the dorsal height [DH] and radix height [RH] to the nasal length) and patients' and surgeons' satisfaction with the aesthetic and functional results. Other study variables were grouped into the following categories: demographic, surgical, and pathological. Descriptive, uni-, and bivariate statistics were computed using P ≤ 0.05 as a cutoff value. RESULTS: The study cohort comprised 145 subjects (75.2% with primary DAR; 39.3% females) with a mean age of 30.7 ±â€¯9.4 years (range, 19-58). DAR was linked to the significant changes in DH and RH in both the treatment groups. Comparison of the two groups revealed that there was no significant difference in DH and RH between both the groups. Surgeons' and patients' satisfaction rates were comparable between the two surgery groups, neither of which experienced serious complications. Microscopic findings of the removed ADM showed abundant collagen tissue with newly formed vessels without signs of foreign body reaction. CONCLUSION: Despite significant differences in patient characteristics (age; number of osteotomy, tip plasty, and hump reduction surgeries), the results of this study suggest that ADM can be used in both primary and revision DAR, with minimal complications.


Asunto(s)
Dermis Acelular , Rinoplastia , Adulto , Femenino , Humanos , Masculino , Nariz/cirugía , Reoperación/métodos , Estudios Retrospectivos , Rinoplastia/métodos , Resultado del Tratamiento , Adulto Joven
12.
Cancer Res Treat ; 54(1): 30-39, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34015890

RESUMEN

PURPOSE: K-MASTER project is a Korean national precision medicine platform that screened actionable mutations by analyzing next-generation sequencing (NGS) of solid tumor patients. We compared gene analyses between NGS panel from the K-MASTER project and orthogonal methods. MATERIALS AND METHODS: Colorectal, breast, non-small cell lung, and gastric cancer patients were included. We compared NGS results from K-MASTER projects with those of non-NGS orthogonal methods (KRAS, NRAS, and BRAF mutations in colorectal cancer [CRC]; epidermal growth factor receptor [EGFR], anaplastic lymphoma kinase [ALK] fusion, and reactive oxygen species 1 [ROS1] fusion in non-small cell lung cancer [NSCLC], and Erb-B2 receptor tyrosine kinase 2 (ERBB2) positivity in breast and gastric cancers). RESULTS: In the CRC cohort (n=225), the sensitivity and specificity of NGS were 87.4% and 79.3% (KRAS); 88.9% and 98.9% (NRAS); and 77.8% and 100.0% (BRAF), respectively. In the NSCLC cohort (n=109), the sensitivity and specificity of NGS for EGFR were 86.2% and 97.5%, respectively. The concordance rate for ALK fusion was 100%, but ROS1 fusion was positive in only one of three cases that were positive in orthogonal tests. In the breast cancer cohort (n=260), ERBB2 amplification was detected in 45 by NGS. Compared with orthogonal methods that integrated immunohistochemistry and in situ hybridization, sensitivity and specificity were 53.7% and 99.4%, respectively. In the gastric cancer cohort (n=64), ERBB2 amplification was detected in six by NGS. Compared with orthogonal methods, sensitivity and specificity were 62.5% and 98.2%, respectively. CONCLUSION: The results of the K-MASTER NGS panel and orthogonal methods showed a different degree of agreement for each genetic alteration, but generally showed a high agreement rate.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Medicina de Precisión/normas , Reparación del Gen Blanco/normas , Neoplasias de la Mama/genética , Neoplasias Colorrectales/genética , Femenino , Humanos , Neoplasias Pulmonares/genética , Masculino , República de Corea , Sensibilidad y Especificidad , Carcinoma Pulmonar de Células Pequeñas/genética , Neoplasias Gástricas/genética
14.
Nanomaterials (Basel) ; 11(11)2021 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-34835791

RESUMEN

To effectively improve the energy density and reduce the self-discharging rate of micro-supercapacitors, an advanced strategy is required. In this study, we developed a hydroquinone (HQ)-based polymer-gel electrolyte (HQ-gel) for micro-supercapacitors. The introduced HQ redox mediators (HQ-RMs) in the gel electrolyte composites underwent additional Faradaic redox reactions and synergistically increased the overall energy density of the micro-supercapacitors. Moreover, the HQ-RMs in the gel electrolyte weakened the self-discharging behavior by providing a strong binding attachment of charged ions on the porous graphitized carbon electrodes after the redox reactions. The micro-supercapacitors with HQ gel (HQ-MSCs) showed excellent energy storage performance, including a high energy volumetric capacitance of 255 mF cm-3 at a current of 1 µA, which is 2.7 times higher than the micro-supercapacitors based on bare-gel electrolyte composites without HQ-RMs (b-MSCs). The HQ-MSCs showed comparatively low self-discharging behavior with an open circuit potential drop of 37% compared to the b-MSCs with an open circuit potential drop of 60% after 2000 s. The assembled HQ-MSCs exhibited high mechanical flexibility over the applied external tensile and compressive strains. Additionally, the HQ-MSCs show the adequate circuit compatibility within series and parallel connections and the good cycling performance of capacitance retention of 95% after 3000 cycles.

15.
Plant Cell ; 33(9): 2965-2980, 2021 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-34270775

RESUMEN

Multiprotein complexes execute and coordinate diverse cellular processes such as organelle biogenesis, vesicle trafficking, cell signaling, and metabolism. Knowledge about their composition and localization provides useful clues about the mechanisms of cellular homeostasis and system-level control. This is of great biological importance and practical significance in heterotrophic rice (Oryza sativa) endosperm and aleurone-subaleurone tissues, which are a primary source of seed vitamins and stored energy. Dozens of protein complexes have been implicated in the synthesis, transport, and storage of seed proteins, lipids, vitamins, and minerals. Mutations in protein complexes that control RNA transport result in aberrant endosperm with shrunken and floury phenotypes, significantly reducing seed yield and quality. The purpose of this study was to broadly predict protein complex composition in the aleurone-subaleurone layers of developing rice seeds using co-fractionation mass spectrometry. Following orthogonal chromatographic separations of biological replicates, thousands of protein elution profiles were subjected to distance-based clustering to enable large-scale multimerization state measurements and protein complex predictions. The predicted complexes had predicted functions across diverse functional categories, including novel heteromeric RNA binding protein complexes that may influence seed quality. This effective and open-ended proteomics pipeline provides useful clues about system-level posttranslational control during the early stages of rice seed development.


Asunto(s)
Fraccionamiento Químico , Endospermo/genética , Espectrometría de Masas , Familia de Multigenes , Oryza/genética , Proteínas de Plantas/análisis , Endospermo/crecimiento & desarrollo , Oryza/crecimiento & desarrollo
16.
ACS Appl Mater Interfaces ; 13(24): 28036-28048, 2021 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-34114452

RESUMEN

Sulfur is a prospective material for next-generation batteries with high theoretical capacity, but its drawbacks hinder its commercialization. To overcome the low conductivity of natural sulfur and the shuttle effect of lithium polysulfide, the study proposes a novel sulfur film coated with three-dimensional nitrogen and cobalt-codoped polyhedral carbon wrapped on a multiwalled carbon nanotube sponge (3D-S@NCoCPC sponge) composite as a high-performance cathode material for rechargeable lithium-sulfur batteries. The interconnected conductive carbon network with abundant pores provides more room for the homogeneous distribution of sulfur within the composite and creates a favorable pathway for electrolyte permeability and lithium-ion diffusion. Moreover, the strong interaction between cobalt and lithium polysulfides leads to efficient suppression of the shuttle effect. In addition, the homogeneous distribution of sulfur and cobalt within the composite enhances electronic transfer for the conversion reaction of sulfur. As expected, the cathode with a high sulfur content of 77.5 wt % in the composite achieved a high initial discharge capacity of 1192 mA h g-1 and high Coulombic efficiency of 99.98% after 100 cycles at 100 mA g-1 current density. Stable performance was achieved with 92.9% capacity retention after 200 cycles at 1000 mA/g current density.

17.
Sci Adv ; 7(13)2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33771868

RESUMEN

Whole-genome duplications are common during evolution, creating genetic redundancy that can enable cellular innovations. Novel protein-protein interactions provide a route to diversified gene functions, but, at present, there is limited proteome-scale knowledge on the extent to which variability in protein complex formation drives neofunctionalization. Here, we used protein correlation profiling to test for variability in apparent mass among thousands of orthologous proteins isolated from diverse species and cell types. Variants in protein complex size were unexpectedly common, in some cases appearing after relatively recent whole-genome duplications or an allopolyploidy event. In other instances, variants such as those in the carbonic anhydrase orthologous group reflected the neofunctionalization of ancient paralogs that have been preserved in extant species. Our results demonstrate that homo- and heteromer formation have the potential to drive neofunctionalization in diverse classes of enzymes, signaling, and structural proteins.

18.
J Colloid Interface Sci ; 588: 62-69, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33388587

RESUMEN

Electrochemically active redox mediators have been widely investigated in energy conversion/storage system to improve overall catalytic activities and energy storing ability by inducing favorable surface redox reactions. However, the enhancement of electrochemical activity from the utilization of redox mediators (RMs) is only confirmed through theoretical computation and laboratory-scale experiment. The use of RMs for practical, wearable, and flexible applications has been scarcely researched. Herein, for the first time, a wearable fiber-based flexible energy storage system (f-FESS) with hydroquinone (HQ) composites as a catalytically active RM is introduced to demonstrate its energy-storing roles. The as-prepared f-FESS-HQ shows the superior electrochemical performance, such as the improved energy storage ability (211.16 F L-1 and 29.3 mWh L-1) and long-term cyclability with a capacitance retention of 95.1% over 5000 cycles. Furthermore, the f-FESS-HQ can well maintain its original electrochemical properties under harsh mechanical stress (bending, knotting, and weaving conditions) as well as humid conditions in water and detergent solutions. Thus, the strategical use of electrochemically active RMs can provide the advanced solution for future wearable energy storage system.

19.
Cancer Res Treat ; 53(1): 123-130, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32810930

RESUMEN

PURPOSE: Next-generation sequencing (NGS) can facilitate precision medicine approaches in metastatic colorectal cancer (mCRC) patients. We investigated the molecular profiling of Korean mCRC patients under the K-MASTER project which was initiated in June 2017 as a nationwide precision medicine oncology clinical trial platform which used NGS assay to screen actionable mutations. MATERIALS AND METHODS: As of 22 January 2020, total of 994 mCRC patients were registered in K-MASTER project. Targeted sequencing was performed using three platforms which were composed of the K-MASTER cancer panel v1.1 and the SNUH FIRST Cancer Panel v3.01. If tumor tissue was not available, cell-free DNA was extracted and the targeted sequencing was performed by Axen Cancer Panel as a liquid biopsy. RESULTS: In 994 mCRC patients, we found 1,564 clinically meaningful pathogenic variants which mutated in 71 genes. Anti-EGFR therapy candidates were 467 patients (47.0%) and BRAF V600E mutation (n=47, 4.7%), deficient mismatch repair/microsatellite instability-high (n=15, 1.5%), HER2 amplifications (n=10, 1.0%) could be incorporated with recently approved drugs. The patients with high tumor mutation burden (n=101, 12.7%) and DNA damaging response and repair defect pathway alteration (n=42, 4.2%) could be enrolled clinical trials with immune checkpoint inhibitors. There were more colorectal cancer molecular alterations such as PIK3CA, KRAS G12C, atypical BRAF, and HER2 mutations and even rarer but actionable genes that approved or ongoing clinical trials in other solid tumors. CONCLUSION: K-MASTER project provides an intriguing background to investigate new clinical trials with biomarkers and give therapeutic opportunity for mCRC patients.


Asunto(s)
Neoplasias Colorrectales/genética , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Anciano , Femenino , Humanos , Masculino , Metástasis de la Neoplasia
20.
Nanomaterials (Basel) ; 10(11)2020 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-33105663

RESUMEN

Capacitive deionization (CDI) based on ion electrosorption has recently emerged as a promising desalination technology due to its low energy consumption and environmental friendliness compared to conventional purification technologies. Carbon-based materials, including activated carbon (AC), carbon aerogel, carbon cloth, and carbon fiber, have been mostly used in CDI electrodes due their high surface area, electrochemical stability, and abundance. However, the low electrical conductivity and non-regular pore shape and size distribution of carbon-based electrodes limits the maximization of the salt removal performance of a CDI desalination system using such electrodes. Metal-organic frameworks (MOFs) are novel porous materials with periodic three-dimensional structures consisting of metal center and organic ligands. MOFs have received substantial attention due to their high surface area, adjustable pore size, periodical unsaturated pores of metal center, and high thermal and chemical stabilities. In this study, we have synthesized ZIF-67 using CNTs as a substrate to fully utilize the unique advantages of both MOF and nanocarbon materials. Such synthesis of ZIF-67 carbon nanostructures was confirmed by TEM, SEM, and XRD. The results showed that the 3D-connected ZIF-67 nanostructures bridging by CNTs were successfully prepared. We applied this nanostructured ZIF-67@CNT to CDI electrodes for desalination. We found that the salt removal performance was significantly enhanced by 88% for 30% ZIF-67@CNTs-included electrodes as compared with pristine AC electrodes. This increase in salt removal behavior was analyzed by electrochemical analysis such as cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) measurements, and the results indicate reduced electrical impedance and enhanced electrode capacitance in the presence of ZIF-67@CNTs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA