Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Photochem Photobiol B ; 257: 112949, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38865816

RESUMEN

Large scale outbreaks of infectious respiratory disease have repeatedly plagued the globe over the last 100 years. The scope and strength of the outbreaks are getting worse as pathogenic RNA viruses are rapidly evolving and highly evasive to vaccines and anti-viral drugs. Germicidal UV-C is considered as a robust agent to disinfect RNA viruses regardless of their evolution. While genomic damage by UV-C has been known to be associated with viral inactivation, the precise relationship between the damage and inactivation remains unsettled as genomic damage has been analyzed in small areas, typically under 0.5 kb. In this study, we assessed genomic damage by the reduced efficiency of reverse transcription of regions of up to 7.2 kb. Our data seem to indicate that genomic damage was directly proportional to the size of the genome, and a single hit of damage was sufficient for inactivation of RNA viruses. The high efficacy of UV-C is already effectively adopted to inactivate airborne RNA viruses.


Asunto(s)
Virus ARN , Rayos Ultravioleta , Inactivación de Virus , Virus ARN/efectos de la radiación , Virus ARN/genética , Virus ARN/fisiología , Inactivación de Virus/efectos de la radiación , Genoma Viral , Humanos , Transcripción Reversa , ARN Viral/genética
2.
Kidney Int ; 104(1): 163-180, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37088425

RESUMEN

Systemic lupus erythematosus (SLE) is an autoimmune disorder characterized by autoreactive B cells and dysregulation of many other types of immune cells including myeloid cells. Lupus nephritis (LN) is a common target organ manifestations of SLE. Tonicity-responsive enhancer-binding protein (TonEBP, also known as nuclear factor of activated T-cells 5 (NFAT5)), was initially identified as a central regulator of cellular responses to hypertonic stress and is a pleiotropic stress protein involved in a variety of immunometabolic diseases. To explore the role of TonEBP, we examined kidney biopsy samples from patients with LN. Kidney TonEBP expression was found to be elevated in these patients compared to control patients - in both kidney cells and infiltrating immune cells. Kidney TonEBP mRNA was elevated in LN and correlated with mRNAs encoding inflammatory cytokines and the degree of proteinuria. In a pristane-induced SLE model in mice, myeloid TonEBP deficiency blocked the development of SLE and LN. In macrophages, engagement of various toll-like receptors (TLRs) that respond to damage-associated molecular patterns induced TonEBP expression via stimulation of its promoter. Intracellular signaling downstream of the TLRs was dependent on TonEBP. Therefore, TonEBP can act as a transcriptional cofactor for NF-κB, and activated mTOR-IRF3/7 via protein-protein interactions. Additionally, TonEBP-deficient macrophages displayed elevated efferocytosis and animals with myeloid deficiency of TonEBP showed reduced Th1 and Th17 differentiation, consistent with macrophages defective in TLR signaling. Thus, our data show that myeloid TonEBP may be an attractive therapeutic target for SLE and LN.


Asunto(s)
Lupus Eritematoso Sistémico , Nefritis Lúpica , Animales , Ratones , Riñón , Transducción de Señal , Macrófagos , Factores de Transcripción NFATC
3.
Diabetes ; 71(12): 2557-2571, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36170666

RESUMEN

The phenotypic and functional plasticity of adipose tissue macrophages (ATMs) during obesity plays a crucial role in orchestration of adipose and systemic inflammation. Tonicity-responsive enhancer binding protein (TonEBP) (also called NFAT5) is a stress protein that mediates cellular responses to a range of metabolic insults. Here, we show that myeloid cell-specific TonEBP depletion reduced inflammation and insulin resistance in mice with high-fat diet-induced obesity but did not affect adiposity. This phenotype was associated with a reduced accumulation and a reduced proinflammatory phenotype of metabolically activated macrophages, decreased expression of inflammatory factors related to insulin resistance, and enhanced insulin sensitivity. TonEBP expression was elevated in the ATMs of obese mice, and Sp1 was identified as a central regulator of TonEBP induction. TonEBP depletion in macrophages decreased induction of insulin resistance-related genes and promoted induction of insulin sensitivity-related genes under obesity-mimicking conditions and thereby improved insulin signaling and glucose uptake in adipocytes. mRNA expression of TonEBP in peripheral blood mononuclear cells was positively correlated with blood glucose levels in mice and humans. These findings suggest that TonEBP in macrophages promotes obesity-associated systemic insulin resistance and inflammation, and downregulation of TonEBP may induce a healthy metabolic state during obesity.


Asunto(s)
Resistencia a la Insulina , Humanos , Ratones , Animales , Resistencia a la Insulina/genética , Factores de Transcripción NFATC/metabolismo , Leucocitos Mononucleares/metabolismo , Tejido Adiposo/metabolismo , Obesidad/metabolismo , Inflamación/metabolismo , Ratones Obesos , Células Mieloides/metabolismo , Insulina/metabolismo , Ratones Endogámicos C57BL
4.
DNA Repair (Amst) ; 104: 103132, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34049076

RESUMEN

Lack of coordination between the DNA replication and transcription machineries can increase the frequency of transcription-replication conflicts, leading ultimately to DNA damage and genomic instability. A major source of these conflicts is the formation of R-loops, which consist of a transcriptionally generated RNA-DNA hybrid and the displaced single-stranded DNA. R-loops play important physiological roles and have been implicated in human diseases. Although these structures have been extensively studied, many aspects of R-loop biology and R-loop-mediated genome instability remain unclear. We found that in cancer cells, tonicity-responsive enhancer-binding protein (TonEBP, also called NFAT5) interacted with PARP1 and localized to R-loops in response to DNA-damaging agent camptothecin (CPT), which is associated with R-loop formation. PARP1-mediated PARylation was required for recruitment of TonEBP to the sites of R-loop-associated DNA damage. Loss of TonEBP increased levels of R-loop accumulation and DNA damage, and promoted cell death in response to CPT. These findings suggest that TonEBP mediates resistance to CPT-induced cell death by preventing R-loop accumulation in cancer cells.


Asunto(s)
Daño del ADN , Replicación del ADN , Inestabilidad Genómica , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Estructuras R-Loop , Factores de Transcripción/metabolismo , Transcripción Genética , Camptotecina/toxicidad , Línea Celular , ADN/metabolismo , ADN de Cadena Simple/metabolismo , Células HEK293 , Células Hep G2 , Humanos , Poli ADP Ribosilación
5.
Nucleic Acids Res ; 49(1): 269-284, 2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33313823

RESUMEN

R-loops are three-stranded, RNA-DNA hybrid, nucleic acid structures produced due to inappropriate processing of newly transcribed RNA or transcription-replication collision (TRC). Although R-loops are important for many cellular processes, their accumulation causes genomic instability and malignant diseases, so these structures are tightly regulated. It was recently reported that R-loop accumulation is resolved by methyltransferase-like 3 (METTL3)-mediated m6A RNA methylation under physiological conditions. However, it remains unclear how R-loops in the genome are recognized and induce resolution signals. Here, we demonstrate that tonicity-responsive enhancer binding protein (TonEBP) recognizes R-loops generated by DNA damaging agents such as ultraviolet (UV) or camptothecin (CPT). Single-molecule imaging and biochemical assays reveal that TonEBP preferentially binds a R-loop via both 3D collision and 1D diffusion along DNA in vitro. In addition, we find that TonEBP recruits METTL3 to R-loops through the Rel homology domain (RHD) for m6A RNA methylation. We also show that TonEBP recruits RNaseH1 to R-loops through a METTL3 interaction. Consistent with this, TonEBP or METTL3 depletion increases R-loops and reduces cell survival in the presence of UV or CPT. Collectively, our results reveal an R-loop resolution pathway by TonEBP and m6A RNA methylation by METTL3 and provide new insights into R-loop resolution processes.


Asunto(s)
Adenosina/análogos & derivados , Replicación del ADN/genética , Metiltransferasas/fisiología , Estructuras R-Loop/genética , Factores de Transcripción/fisiología , Adenosina/metabolismo , Línea Celular Tumoral , ADN/genética , ADN/metabolismo , Aductos de ADN/metabolismo , Daño del ADN , Difusión , Células HEK293 , Humanos , Metilación , Unión Proteica , Mapeo de Interacción de Proteínas , Estructuras R-Loop/efectos de la radiación , Ribonucleasa H/fisiología , Rayos Ultravioleta
6.
J Neuroinflammation ; 17(1): 372, 2020 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-33292328

RESUMEN

BACKGROUND: Microglia are brain-resident myeloid cells involved in the innate immune response and a variety of neurodegenerative diseases. In macrophages, TonEBP is a transcriptional cofactor of NF-κB which stimulates the transcription of pro-inflammatory genes in response to LPS. Here, we examined the role of microglial TonEBP. METHODS: We used microglial cell line, BV2 cells. TonEBP was knocked down using lentiviral transduction of shRNA. In animals, TonEBP was deleted from myeloid cells using a line of mouse with floxed TonEBP. Cerulenin was used to block the NF-κB cofactor function of TonEBP. RESULTS: TonEBP deficiency blocked the LPS-induced expression of pro-inflammatory cytokines and enzymes in association with decreased activity of NF-κB in BV2 cells. We found that there was also a decreased activity of AP-1 and that TonEBP was a transcriptional cofactor of AP-1 as well as NF-κB. Interestingly, we found that myeloid-specific TonEBP deletion blocked the LPS-induced microglia activation and subsequent neuronal cell death and memory loss. Cerulenin disrupted the assembly of the TonEBP/NF-κB/AP-1/p300 complex and suppressed the LPS-induced microglial activation and the neuronal damages in animals. CONCLUSIONS: TonEBP is a key mediator of microglial activation and neuroinflammation relevant to neuronal damage. Cerulenin is an effective blocker of the TonEBP actions.


Asunto(s)
Mediadores de Inflamación/metabolismo , Lipopolisacáridos/toxicidad , Trastornos de la Memoria/metabolismo , Microglía/metabolismo , FN-kappa B/metabolismo , Factores de Transcripción/metabolismo , Animales , Reacción de Prevención/efectos de los fármacos , Reacción de Prevención/fisiología , Línea Celular , Cerulenina/farmacología , Redes Reguladoras de Genes/efectos de los fármacos , Redes Reguladoras de Genes/fisiología , Masculino , Trastornos de la Memoria/inducido químicamente , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Factores de Transcripción/antagonistas & inhibidores
7.
Cells ; 9(9)2020 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-32825390

RESUMEN

The endoplasmic reticulum (ER) stress response and autophagy are important cellular responses that determine cell fate and whose dysregulation is implicated in the perturbation of homeostasis and diseases. Tonicity-responsive enhancer-binding protein (TonEBP, also called NFAT5) is a pleiotropic stress protein that mediates both protective and pathological cellular responses. Here, we examined the role of TonEBP in ß-cell survival under ER stress. We found that TonEBP increases ß-cell survival under ER stress by enhancing autophagy. The level of TonEBP protein increased under ER stress due to a reduction in its degradation via the ubiquitin-proteasome pathway. In response to ER stress, TonEBP increased autophagosome formations and suppressed the accumulation of protein aggregates and ß-cell death. The Rel-homology domain of TonEBP interacted with FIP200, which is essential for the initiation of autophagy, and was required for autophagy and cell survival upon exposure to ER stress. Mice in which TonEBP was specifically deleted in pancreatic endocrine progenitor cells exhibited defective glucose homeostasis and a loss of islet mass. Taken together, these findings demonstrate that TonEBP protects against ER stress-induced ß-cell death by enhancing autophagy.


Asunto(s)
Estrés del Retículo Endoplásmico/fisiología , Factores de Transcripción NFATC/metabolismo , Autofagia , Supervivencia Celular , Humanos
8.
EBioMedicine ; 58: 102926, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32739873

RESUMEN

BACKGROUND: High recurrence and chemoresistance drive the high mortality in hepatocellular carcinoma (HCC). Although cancer stem cells are considered to be the source of recurrent and chemoresistant tumors, they remain poorly defined in HCC. Tonicity-responsive enhancer binding protein (TonEBP) is elevated in almost all HCC tumors and associated with recurrence and death. We aimed to identify function of TonEBP in stemness and chemoresistance of liver cancer. METHODS: Tumors obtained from 280 HCC patients were analyzed by immunohistochemical analyses. Stemness and chemoresistance of liver CSCs (LCSCs) were investigated using cell culture. Tumor-initiating activity was measured by implanting LCSCs into BALB/c nude mice. FINDINGS: Expression of TonEBP is higher in LCSCs in HCC cell lines and correlated with markers of LCSCs whose expression is significantly associated with poor prognosis of HCC patients. TonEBP mediates ATM-mediated activation of NF-κB, which stimulates the promoter of a key stem cell transcription factor SOX2. As expected, TonEBP is required for the tumorigenesis and self-renewal of LSCSs. Cisplatin induces the recruitment of the ERCC1/XPF dimer to the chromatin in a TonEBP-dependent manner leading to DNA repair and cisplatin resistance. The cisplatin-induced inflammation in LSCSs is also dependent on the TonEBP-ERCC1/XPF complex, and leads to enhanced stemness via the ATM-NF-κB-SOX2 pathway. In HCC patients, tumor expression of ERCC1/XPF predicts recurrence and death in a TonEBP-dependent manner. INTERPRETATION: TonEBP promotes stemness and cisplatin resistance of HCC via ATM-NF-κB. TonEBP is a key regulator of LCSCs and a promising therapeutic target for HCC and its recurrence.


Asunto(s)
Carcinoma Hepatocelular/patología , Proteínas de Unión al ADN/metabolismo , Resistencia a Antineoplásicos , Endonucleasas/metabolismo , Neoplasias Hepáticas/patología , Células Madre Neoplásicas/patología , Factores de Transcripción/genética , Animales , Biomarcadores de Tumor/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Línea Celular Tumoral , Cisplatino/farmacología , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Persona de Mediana Edad , Células Madre Neoplásicas/metabolismo , Pronóstico , Regulación hacia Arriba , Ensayos Antitumor por Modelo de Xenoinjerto
9.
Cell Death Dis ; 11(6): 421, 2020 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-32499518

RESUMEN

Dendritic cells (DCs) are potent antigen-presenting cells that link the innate and adaptive immune responses; as such they play pivotal roles in initiation and progression of rheumatoid arthritis (RA). Here, we report that the tonicity-responsive enhancer-binding protein (TonEBP or NFAT5), a Rel family protein involved in the pathogenesis of autoimmune disease and inflammation, is required for maturation and function of DCs. Myeloid cell-specific TonEBP deletion reduces disease severity in a murine model of collagen-induced arthritis; it also inhibits maturation of DCs and differentiation of pathogenic Th1 and Th17 cells in vivo. Upon stimulation by TLR4, TonEBP promotes surface expression of major histocompatibility complex class II and co-stimulatory molecules via p38 mitogen-activated protein kinase. This is followed by DC-mediated differentiation of pro-inflammatory Th1 and Th17 cells. Taken together, these findings provide mechanistic basis for the pathogenic role of TonEBP in RA and possibly other autoimmune diseases.


Asunto(s)
Células Dendríticas/metabolismo , Inflamación/inmunología , Factores de Transcripción NFATC/metabolismo , Células TH1/inmunología , Células Th17/inmunología , Animales , Artritis Experimental/inmunología , Artritis Experimental/patología , Diferenciación Celular/inmunología , Proliferación Celular , Modelos Animales de Enfermedad , Lipopolisacáridos , Activación de Linfocitos/inmunología , Masculino , Ratones Endogámicos C57BL , Modelos Biológicos , Células Mieloides/metabolismo , Factores de Transcripción NFATC/deficiencia , Índice de Severidad de la Enfermedad , Linfocitos T/inmunología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
10.
Sci Rep ; 10(1): 6711, 2020 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-32317719

RESUMEN

The observation of histopathology using optical microscope is an essential procedure for examination of tissue biopsies or surgically excised specimens in biological and clinical laboratories. However, slide-based microscopic pathology is not suitable for visualizing the large-scale tissue and native 3D organ structure due to its sampling limitation and shallow imaging depth. Here, we demonstrate serial optical coherence microscopy (SOCM) technique that offers label-free, high-throughput, and large-volume imaging of ex vivo mouse organs. A 3D histopathology of whole mouse brain and kidney including blood vessel structure is reconstructed by deep tissue optical imaging in serial sectioning techniques. Our results demonstrate that SOCM has unique advantages as it can visualize both native 3D structures and quantitative regional volume without introduction of any contrast agents.


Asunto(s)
Encéfalo/diagnóstico por imagen , Encéfalo/patología , Riñón/diagnóstico por imagen , Riñón/patología , Microscopía , Tomografía de Coherencia Óptica , Animales , Imagen por Resonancia Magnética , Masculino , Ratones Endogámicos C57BL , Coloración y Etiquetado
11.
Nat Rev Nephrol ; 16(6): 352-364, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32157251

RESUMEN

Tonicity-responsive enhancer-binding protein (TonEBP), which is also known as nuclear factor of activated T cells 5 (NFAT5), was discovered 20 years ago as a transcriptional regulator of the cellular response to hypertonic (hyperosmotic salinity) stress in the renal medulla. Numerous studies since then have revealed that TonEBP is a pleiotropic stress protein that is involved in a range of immunometabolic diseases. Some of the single-nucleotide polymorphisms (SNPs) in TONEBP introns are cis-expression quantitative trait loci that affect TONEBP transcription. These SNPs are associated with increased risk of type 2 diabetes mellitus, diabetic nephropathy, inflammation, high blood pressure and abnormal plasma osmolality, indicating that variation in TONEBP expression might contribute to these phenotypes. In addition, functional studies have shown that TonEBP is involved in the pathogenesis of rheumatoid arthritis, atherosclerosis, diabetic nephropathy, acute kidney injury, hyperlipidaemia and insulin resistance, autoimmune diseases (including type 1 diabetes mellitus and multiple sclerosis), salt-sensitive hypertension and hepatocellular carcinoma. These pathological activities of TonEBP are in contrast to the protective actions of TonEBP in response to hypertonicity, bacterial infection and DNA damage induced by genotoxins. An emerging theme is that TonEBP is a stress protein that mediates the cellular response to a range of pathological insults, including excess caloric intake, inflammation and oxidative stress.


Asunto(s)
Enfermedades Autoinmunes/metabolismo , Daño del ADN/fisiología , Factores de Transcripción NFATC/metabolismo , Estrés Fisiológico/fisiología , Artritis Reumatoide/metabolismo , Aterosclerosis/metabolismo , Infecciones Bacterianas/metabolismo , Carcinoma Hepatocelular/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Nefropatías Diabéticas/genética , Nefropatías Diabéticas/metabolismo , Proteínas de Choque Térmico , Humanos , Hiperlipidemias/metabolismo , Hipertensión/genética , Hipertensión/metabolismo , Resistencia a la Insulina , Neoplasias Hepáticas/metabolismo , Factores de Transcripción NFATC/genética , Factores de Transcripción NFATC/fisiología , Obesidad/metabolismo , Estrés Oxidativo/fisiología , Polimorfismo de Nucleótido Simple , Estrés Salino/fisiología , Virosis/metabolismo
12.
Cells ; 8(10)2019 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-31635160

RESUMEN

TonEBP (tonicity-responsive enhancer binding protein) is a transcriptional regulator whose expression is elevated in response to various forms of stress including hyperglycemia, inflammation, and hypoxia. Here we investigated the role of TonEBP in acute kidney injury (AKI) using a line of TonEBP haplo-deficient mice subjected to bilateral renal ischemia followed by reperfusion (I/R). In the TonEBP haplo-deficient animals, induction of TonEBP, oxidative stress, inflammation, cell death, and functional injury in the kidney in response to I/R were all reduced. Analyses of renal transcriptome revealed that genes in several cellular pathways including peroxisome and mitochondrial inner membrane were suppressed in response to I/R, and the suppression was relieved in the TonEBP deficiency. Production of reactive oxygen species (ROS) and the cellular injury was reproduced in a renal epithelial cell line in response to hypoxia, ATP depletion, or hydrogen peroxide. The knockdown of TonEBP reduced ROS production and cellular injury in correlation with increased expression of the suppressed genes. The cellular injury was also blocked by inhibitors of necrosis. These results demonstrate that ischemic insult suppresses many genes involved in cellular metabolism leading to local oxidative stress by way of TonEBP induction. Thus, TonEBP is a promising target to prevent AKI.


Asunto(s)
Lesión Renal Aguda/metabolismo , Factores de Transcripción NFATC/metabolismo , Lesión Renal Aguda/genética , Adenosina Trifosfato/metabolismo , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Western Blotting , Hipoxia de la Célula/genética , Hipoxia de la Célula/fisiología , Línea Celular , Supervivencia Celular/genética , Supervivencia Celular/fisiología , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Peróxido de Hidrógeno/farmacología , Inmunohistoquímica , Masculino , Ratones , Ratones Endogámicos C57BL , Factores de Transcripción NFATC/genética , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/genética , Peroxisomas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa
13.
iScience ; 19: 177-190, 2019 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-31376680

RESUMEN

Polyubiquitination of proliferating cell nuclear antigen (PCNA) regulates the error-free template-switching mechanism for the bypass of DNA lesions during DNA replication. PCNA polyubiquitination is critical for the maintenance of genomic integrity; however, the underlying mechanism is poorly understood. Here, we demonstrate that tonicity-responsive enhancer-binding protein (TonEBP) regulates PCNA polyubiquitination in response to DNA damage. TonEBP was recruited to DNA damage sites with bulky adducts and sequentially recruited E3 ubiquitin ligase SHPRH, followed by deubiquitinase USP1, to DNA damage sites, in correlation with the dynamics of PCNA polyubiquitination. Similarly, TonEBP was found to be required for replication fork protection in response to DNA damage. The Rel-homology domain of TonEBP, which encircles DNA, was essential for the interaction with SHPRH and USP1, PCNA polyubiquitination, and cell survival after DNA damage. The present findings suggest that TonEBP is an upstream regulator of PCNA polyubiquitination and of the DNA damage bypass pathway.

14.
Nat Commun ; 10(1): 3536, 2019 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-31387996

RESUMEN

Tonicity-responsive enhancer binding protein (TonEBP or NFAT5) is a regulator of cellular adaptation to hypertonicity, macrophage activation and T-cell development. Here we report that TonEBP is an epigenetic regulator of thermogenesis and obesity. In mouse subcutaneous adipocytes, TonEBP expression increases > 50-fold in response to high-fat diet (HFD) feeding. Mice with TonEBP haplo-deficiency or adipocyte-specific TonEBP deficiency are resistant to HFD-induced obesity and metabolic defects (hyperglycemia, hyperlipidemia, and hyperinsulinemia). They also display increased oxygen consumption, resistance to hypothermia, and beiging of subcutaneous fat tissues. TonEBP suppresses the promoter of ß3-adrenoreceptor gene, a critical regulator of lipolysis and thermogenesis, in ex vivo and cultured adipocytes. This involves recruitment of DNMT1 DNA methylase and methylation of the promoter. In human subcutaneous adipocytes TonEBP expression displays a correlation with body mass index but an inverse correlation with ß3-adrenoreceptor expression. Thus, TonEBP is an attractive therapeutic target for obesity, insulin resistance, and hyperlipidemia.


Asunto(s)
Epigénesis Genética , Resistencia a la Insulina/genética , Obesidad/metabolismo , Factores de Transcripción/metabolismo , Células 3T3 , Adipocitos/metabolismo , Tejido Adiposo Beige/citología , Tejido Adiposo Beige/metabolismo , Animales , Índice de Masa Corporal , ADN (Citosina-5-)-Metiltransferasa 1/metabolismo , Metilación de ADN/genética , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Metabolismo Energético/genética , Células HEK293 , Humanos , Masculino , Ratones , Ratones Transgénicos , MicroARNs/genética , MicroARNs/metabolismo , Obesidad/etiología , Cultivo Primario de Células , Receptores Adrenérgicos beta 3/metabolismo , Grasa Subcutánea/citología , Grasa Subcutánea/metabolismo , Termogénesis/genética , Factores de Transcripción/genética
15.
Front Immunol ; 10: 850, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31057560

RESUMEN

TonEBP is a key transcriptional activator in macrophages with an M1 phenotype. High expression of TonEBP is associated with many inflammatory diseases. Heme oxygenase-1 (HO-1), a stress-inducible protein, is induced by various oxidative and inflammatory signals, and its expression is regarded as an adaptive cellular response to inflammation and oxidative injury. Here, we show that TonEBP suppresses expression of HO-1 by blocking Nrf2 binding to the HO-1 promoter, thereby inducing polarization of macrophages to the M1 phenotype. Inhibition of HO-1 expression or activity significantly reduced the inhibitory responses on M1 phenotype and stimulatory effects on M2 phenotype by TonEBP knockdown. Additional experiments showed that HO-1 plays a role in the paracrine anti-inflammatory effects of TonEBP knockdown in macrophages. Identification of HO-1 as a downstream effector of TonEBP provides new possibilities for improved therapeutic approaches to inflammatory diseases.


Asunto(s)
Hemo-Oxigenasa 1/genética , Proteínas de la Membrana/genética , Factor 2 Relacionado con NF-E2/genética , Regiones Promotoras Genéticas/genética , Factores de Transcripción/genética , Animales , Humanos , Inflamación/genética , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Fenotipo
16.
Gut ; 68(2): 347-358, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-29420225

RESUMEN

OBJECTIVES: Hepatocellular carcinoma (HCC) is a common cancer with high rate of recurrence and mortality. Diverse aetiological agents and wide heterogeneity in individual tumours impede effective and personalised treatment. Tonicity-responsive enhancer-binding protein (TonEBP) is a transcriptional cofactor for the expression of proinflammatory genes. Although inflammation is intimately associated with the pathogenesis of HCC, the role of TonEBP is unknown. We aimed to identify function of TonEBP in HCC. DESIGN: Tumours with surrounding hepatic tissues were obtained from 296 patients with HCC who received completion resection. TonEBP expression was analysed by quantitative reverse transcription-quantitative real-time PCR (RT-PCR) and immunohfistochemical analyses of tissue microarrays. Mice with TonEBP haplodeficiency, and hepatocyte-specific and myeloid-specific TonEBP deletion were used along with HCC and hepatocyte cell lines. RESULTS: TonEBP expression is higher in tumours than in adjacent non-tumour tissues in 92.6% of patients with HCC regardless of aetiology associated. The TonEBP expression in tumours and adjacent non-tumour tissues predicts recurrence, metastasis and death in multivariate analyses. TonEBP drives the expression of cyclo-oxygenase-2 (COX-2) by stimulating the promoter. In mouse models of HCC, three common sites of TonEBP action in response to diverse aetiological agents leading to tumourigenesis and tumour growth were found: cell injury and inflammation, induction by oxidative stress and stimulation of the COX-2 promoter. CONCLUSIONS: TonEBP is a key component of the common pathway in tumourigenesis and tumour progression of HCC in response to diverse aetiological insults. TonEBP is involved in multiple steps along the pathway, rendering it an attractive therapeutic target as well as a prognostic biomarker.


Asunto(s)
Carcinogénesis/metabolismo , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Recurrencia Local de Neoplasia/metabolismo , Factores de Transcripción/metabolismo , Animales , Ciclooxigenasa 2/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Metástasis de la Neoplasia , Estrés Oxidativo , Valor Predictivo de las Pruebas , República de Corea , Tasa de Supervivencia
17.
Acta Biomater ; 77: 311-321, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-30006316

RESUMEN

The unique structure of kidney tubules is representative of their specialized function. Because maintaining tubular structure and controlled diameter is critical for kidney function, it is critical to understand how topographical cues, such as curvature, might alter cell morphology and biological characteristics. Here, we examined the effect of substrate curvature on the shape and phenotype of two kinds of renal epithelial cells (MDCK and HK-2) cultured on a microchannel with a broad range of principal curvature. We found that cellular architecture on curved substrates was closely related to the cell type-specific characteristics (stiffness, cell-cell adherence) of the cells and their density, as well as the sign and degree of curvature. As the curvature increased on convex channels, HK-2 cells, having lower cell stiffness and monolayer integrity than those of MDCK cells, aligned their in-plane axis perpendicular to the channel but did not significantly change in morphology. By contrast, MDCK cells showed minimal change in both morphology and alignment. However, on concave channels, both cell types were elongated and showed longitudinal directionality, although the changes in MDCK cells were more conservative. Moreover, substrate curvature contributed to cell polarization by enhancing the expression of apical and basolateral cell markers with height increase of the cells. Our study suggests curvature to be an important guiding principle for advanced tissue model developments, and that curved and geometrically ambiguous substrates can modulate the cellular morphology and phenotype. STATEMENT OF SIGNIFICANCE: In many tissues, such as renal tubules or intestinal villi, epithelial layers exist in naturally curved forms, a geometry that is not reproduced by flat cultures. Because maintaining tubular structure is critical for kidney function, it is important to understand how topographical cues, such as curvature, might alter cell morphology and biological characteristics. We found that cellular architecture on curved substrates was closely related to cell type and density, as well as the sign and degree of the curvature. Moreover, substrate curvature contributed to cell polarization by enhancing the expression of apical and basolateral cell markers with height increase. Our results suggested that substrate curvature might contribute to cellular architecture and enhance the polarization of kidney tubule cells.


Asunto(s)
Forma de la Célula , Células Epiteliales/citología , Riñón/citología , Actinas/metabolismo , Animales , Adhesión Celular , Línea Celular , Perros , Colorantes Fluorescentes/química , Humanos , Túbulos Renales/citología , Células de Riñón Canino Madin Darby , Fenotipo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Proteína de la Zonula Occludens-1/metabolismo
18.
J Am Soc Nephrol ; 29(2): 492-504, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29158465

RESUMEN

Diabetic nephropathy (DN) has become the single leading cause of ESRD in developed nations. Bearing in mind the paucity of effective treatment for DN and progressive CKD, novel targets for treatment are sorely needed. We previously reported that increased activity of tonicity-responsive enhancer-binding protein (TonEBP) in monocytes was associated with early DN in humans. We now extend these findings by testing the hypotheses that TonEBP in macrophages promotes hyperglycemia-mediated proinflammatory activation and chronic renal inflammation leading to DN and CKD, and TonEBP genetic variability in humans is associated with inflammatory, renal, and vascular function-related phenotypes. In a mouse model of DN, compared with the wild-type phenotype, TonEBP haplodeficiency associated with reduced activation of macrophages by hyperglycemia, fewer macrophages in the kidney, lower renal expression of proinflammatory genes, and attenuated DN. Furthermore, in a cohort of healthy humans, genetic variants within TonEBP associated with renal function, BP, and systemic inflammation. One of the genetic variants associated with renal function was replicated in a large population-based cohort. These findings suggest that TonEBP is a promising target for minimizing diabetes- and stress-induced inflammation and renovascular injury.


Asunto(s)
Nefropatías Diabéticas/genética , Hiperglucemia/complicaciones , Inflamación/genética , Macrófagos/fisiología , Insuficiencia Renal Crónica/genética , Factores de Transcripción/genética , Animales , Presión Sanguínea/genética , Movimiento Celular , Diabetes Mellitus/inducido químicamente , Nefropatías Diabéticas/etiología , Nefropatías Diabéticas/patología , Expresión Génica , Tasa de Filtración Glomerular/genética , Haploinsuficiencia , Humanos , Inflamación/etiología , Inflamación/patología , Activación de Macrófagos/genética , Macrófagos/patología , Ratones , Óxido Nítrico Sintasa de Tipo III/genética , Polimorfismo de Nucleótido Simple , Insuficiencia Renal Crónica/etiología , Insuficiencia Renal Crónica/patología , Estreptozocina
19.
Sci Rep ; 6: 25726, 2016 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-27160066

RESUMEN

TonEBP is a key transcriptional activator of M1 phenotype in macrophage, and its high expression is associated with many inflammatory diseases. During the progression of the inflammatory responses, the M1 to M2 phenotypic switch enables the dual role of macrophages in controlling the initiation and resolution of inflammation. Here we report that in human and mouse M1 macrophages TonEBP suppresses IL-10 expression and M2 phenotype. TonEBP knockdown promoted the transcription of the IL-10 gene by enhancing chromatin accessibility and Sp1 recruitment to its promoter. The enhanced expression of M2 genes by TonEBP knockdown was abrogated by antagonism of IL-10 by either neutralizing antibodies or siRNA-mediated silencing. In addition, pharmacological suppression of TonEBP leads to similar upregulation of IL-10 and M2 genes. Thus, TonEBP suppresses M2 phenotype via downregulation of the IL-10 in M1 macrophages.


Asunto(s)
Inmunomodulación , Interleucina-10/metabolismo , Factores de Transcripción NFATC/metabolismo , Animales , Antineoplásicos/farmacología , Cromatina/metabolismo , Humanos , Inmunomodulación/efectos de los fármacos , Interleucina-10/genética , Interleucina-4/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Modelos Biológicos , Factores de Transcripción NFATC/genética , Naftoquinonas/farmacología , Fenotipo , Regiones Promotoras Genéticas/genética , Células RAW 264.7 , Transducción de Señal/efectos de los fármacos , Factor de Transcripción Sp1/metabolismo , Donantes de Tejidos , Transcripción Genética/efectos de los fármacos
20.
Sci Rep ; 6: 24921, 2016 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-27118681

RESUMEN

NFκB is a central mediator of inflammation. Present inhibitors of NFκB are mostly based on inhibition of essential machinery such as proteasome and protein kinases, or activation of nuclear receptors; as such, they are of limited therapeutic use due to severe toxicity. Here we report an LPS-induced NFκB enhanceosome in which TonEBP is required for the recruitment of p300. Increased expression of TonEBP enhances the NFκB activity and reduced TonEBP expression lowers it. Recombinant TonEBP molecules incapable of recruiting p300 do not stimulate NFκB. Myeloid-specific deletion of TonEBP results in milder inflammation and sepsis. We discover that a natural small molecule cerulenin specifically disrupts the enhanceosome without affecting the activation of NFκB itself. Cerulenin suppresses the pro-inflammatory activation of macrophages and sepsis without detectable toxicity. Thus, the NFκB enhanceosome offers a promising target for useful anti-inflammatory agents.


Asunto(s)
ADN/metabolismo , Proteína p300 Asociada a E1A/metabolismo , Lipopolisacáridos/inmunología , FN-kappa B/metabolismo , Factores de Transcripción/metabolismo , Animales , Cerulenina/metabolismo , Chlorocebus aethiops , Humanos , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...