Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 117(27): 271601, 2016 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-28084774

RESUMEN

We propose a new method to search for hypothetical scalar particles that have feeble interactions with standard-model particles. In the presence of massive bodies, these interactions produce a nonzero Yukawa-type scalar-field magnitude. Using radio-frequency spectroscopy data of atomic dysprosium, as well as atomic clock spectroscopy data, we constrain the Yukawa-type interactions of a scalar field with the photon, electron, and nucleons for a range of scalar-particle masses corresponding to length scales >10 cm. In the limit as the scalar-particle mass m_{ϕ}→0, our derived limits on the Yukawa-type interaction parameters are Λ_{γ}≳8×10^{19} GeV, Λ_{e}≳1.3×10^{19} GeV, and Λ_{N}≳6×10^{20} GeV. Our measurements also constrain combinations of interaction parameters, which cannot otherwise be probed with traditional anomalous-force measurements. We suggest further measurements to improve on the current level of sensitivity.

2.
Phys Rev Lett ; 113(8): 081601, 2014 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-25192086

RESUMEN

We propose methods for extracting limits on the strength of P-odd interactions of pseudoscalar and pseudovector cosmic fields with electrons, protons, and neutrons, by exploiting the static and dynamic parity-nonconserving amplitudes and electric dipole moments they induce in atoms. Candidates for such fields are dark matter (including axions) and dark energy, as well as several more exotic sources described by Lorentz-violating standard model extensions. Atomic calculations are performed for H, Li, Na, K, Rb, Cs, Ba(+), Tl, Dy, Fr, and Ra(+). From these calculations and existing measurements in Dy, Cs, and Tl, we constrain the interaction strengths of the parity-violating static pseudovector cosmic field to be 7 × 10(-15) GeV with an electron, and 3 × 10(-8) GeV with a proton.

3.
Phys Rev Lett ; 112(16): 160802, 2014 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-24815631

RESUMEN

We demonstrate a cavity-enhanced room-temperature magnetic field sensor based on nitrogen-vacancy centers in diamond. Magnetic resonance is detected using absorption of light resonant with the 1042 nm spin-singlet transition. The diamond is placed in an external optical cavity to enhance the absorption, and significant absorption is observed even at room temperature. We demonstrate a magnetic field sensitivity of 2.5 nT/Hz, and project a photon shot-noise-limited sensitivity of 70 pT/Hz for a few mW of infrared light, and a quantum projection-noise-limited sensitivity of 250 fT/Hz for the sensing volume of ∼90 µm×90 µm×200 µm.

4.
Phys Rev Lett ; 111(5): 050401, 2013 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-23952369

RESUMEN

We report a joint test of local Lorentz invariance and the Einstein equivalence principle for electrons, using long-term measurements of the transition frequency between two nearly degenerate states of atomic dysprosium. We present many-body calculations which demonstrate that the energy splitting of these states is particularly sensitive to violations of both special and general relativity. We limit Lorentz violation for electrons at the level of 10(-17), matching or improving the best laboratory and astrophysical limits by up to a factor of 10, and improve bounds on gravitational redshift anomalies for electrons by 2 orders of magnitude, to 10(-8). With some enhancements, our experiment may be sensitive to Lorentz violation at the level of 9 × 10(-20).

5.
Phys Rev Lett ; 111(6): 060801, 2013 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-23971546

RESUMEN

We report on the spectroscopy of radio-frequency transitions between nearly degenerate, opposite-parity excited states in atomic dysprosium (Dy). Theoretical calculations predict that these states are very sensitive to variation of the fine-structure constant α owing to large relativistic corrections of opposite sign for the opposite-parity levels. The near degeneracy reduces the relative precision necessary to place constraints on variation of α, competitive with results obtained from the best atomic clocks in the world. Additionally, the existence of several abundant isotopes of Dy allows isotopic comparisons that suppress common-mode systematic errors. The frequencies of the 754-MHz transition in 164Dy and 235-MHz transition in 162Dy are measured over the span of two years. The linear variation of α is α·/α=(-5.8±6.9([1σ]))×10(-17) yr(-1), consistent with zero. The same data are used to constrain the dimensionless parameter kα characterizing a possible coupling of α to a changing gravitational potential. We find that kα=(-5.5±5.2([1σ]))×10(-7), essentially consistent with zero and the best constraint to date.

6.
Phys Rev Lett ; 98(4): 040801, 2007 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-17358752

RESUMEN

Over 8 months, we monitored transition frequencies between nearly degenerate, opposite-parity levels in two isotopes of atomic dysprosium (Dy). These frequencies are sensitive to variation of the fine-structure constant (alpha) due to relativistic corrections of opposite sign for the opposite-parity levels. In this unique system, in contrast to atomic-clock comparisons, the difference of the electronic energies of the opposite-parity levels can be monitored directly utilizing a rf electric-dipole transition between them. Our measurements show that the frequency variation of the 3.1-MHz transition in (163)Dy and the 235-MHz transition in (162)Dy are 9.0+/-6.7 Hz/yr and -0.6+/-6.5 Hz/yr, respectively. These results provide a rate of fractional variation of alpha of (-2.7+/-2.6) x 10(-15) yr(-1) (1 sigma) without assumptions on constancy of other fundamental constants, indicating absence of significant variation at the present level of sensitivity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...