Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(38): 50497-50506, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39284017

RESUMEN

Local delivery of messenger ribonucleic acid (mRNA) is increasingly being advocated as a promising new strategy to enhance the performance of biomaterials. While extensive research has been dedicated to the complexation of these oligonucleotides into nanoparticles to facilitate systemic delivery, research on developing suitable biomaterial carriers for the local delivery of mRNA is still scarce. So far, mRNA-nanoparticles (mRNA-NPs) are mainly loaded into traditional polymeric hydrogels. Here, we show that calcium phosphate nanoparticles can be used for both reinforcement of nanoparticle-based hydrogels and the complexation of mRNA. mRNA was incorporated into lipid-coated calcium phosphate nanoparticles (LCPs) formulated with a fusogenic ionizable lipid in the outer layer of the lipid coat. Nanocomposites of gelatin and hydroxyapatite nanoparticles were prepared at various ratios. Higher hydroxyapatite nanoparticle content increased the viscoelastic properties of the nanocomposite but did not affect its self-healing ability. Combination of these nanocomposites with peptide, lipid, and the LCP mRNA formulations achieved local mRNA release as demonstrated by protein expression in cells in contact with the biomaterials. The LCP-based formulation was superior to the other formulations by showing less sensitivity to hydroxyapatite and the highest cytocompatibility.


Asunto(s)
Durapatita , Gelatina , Nanocompuestos , Nanopartículas , ARN Mensajero , Gelatina/química , Durapatita/química , Nanocompuestos/química , ARN Mensajero/genética , ARN Mensajero/metabolismo , Nanopartículas/química , Humanos , Animales , Hidrogeles/química , Ratones , Materiales Biocompatibles/química
2.
Dent Mater ; 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39277488

RESUMEN

BACKGROUND: Dental resin composites' performance is intricately linked to their polymerisation shrinkage characteristics. This study compares polymerisation shrinkage using advanced 3D micro-computed tomography (micro-CT) and traditional 2D linear assessments. It delves into the crucial role of filler content on shrinkage and the degree of conversion in dental resin composites, providing valuable insights for the field. METHODS: Five experimental dental composite materials were prepared with increasing filler contents (55-75 wt%) and analysed using either 3D micro-CT for volumetric shrinkage or a custom-designed linometer for 2D linear shrinkage. The degree of conversion was assessed using Optical Photothermal Infrared (O-PTIR) and Fourier-Transform Infrared (FTIR) spectroscopy. Light transmittance through a 2-mm layer was evaluated using a NIST-calibrated spectrometer. Scanning Electron Microscopy (SEM) and Energy-Dispersive X-ray Spectroscopy (EDX) examined surface morphology and elemental distribution. Correlation between the investigated parameters was determined using Spearman correlation analyses. RESULTS: The study found significant differences in polymerisation-related properties among different filler content categories, with volumetric shrinkage consistently demonstrating higher mean values than linear shrinkage across most groups. Volumetric shrinkage decreased with increasing curing depth, showing no direct correlation between filler content and shrinkage levels at different curing depths. The results highlighted a strong negative correlation between filler content and degree of conversion, volumetric and linear shrinkage, as well as maximum shrinkage rate. Light transmittance showed a moderate correlation with the filler content and a weak correlation with other tested parameters. CONCLUSIONS: This study underscores the importance of considering both volumetric and linear shrinkage in the design and analysis of dental composite materials. The findings advocate optimising filler content to minimise shrinkage and enhance material performance. Integrating micro-CT and O-PTIR techniques offers novel insights into dental composites' polymerisation behaviour, providing a foundation for future research to develop materials with improved clinical outcomes.

3.
Dent Mater ; 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39277487

RESUMEN

BACKGROUND: This study presents a novel multi-technique approach that integrates micro-CT and optical photothermal infrared spectroscopy (O-PTIR) to evaluate polymerisation differences, so-called spatio-temporal polymerisation properties, between flowable and sculptable dental resin-based composites. METHODS: Ten commercially available dental composites were investigated, including flowable and sculptable counterparts from the same manufacturer. Eight parameters were evaluated: short-term polymerisation characteristics (degree of conversion after 5 min, maximum polymerisation rate, time to reach maximum polymerisation rate) was measured using ATR-FTIR with real-time monitoring; changes in the degree of conversion with depth were evaluated with O-PTIR, 3D visualisation of shrinkage patterns, overall volumetric shrinkage, depth-specific shrinkage, and porosity were measured using micro-CT; surface morphology with detailed measurements of elemental composition was characterised using SEM/EDX; light transmittance was analysed with a NIST-referenced spectrometer. RESULTS: The study found that the increase in filler weight and volume ratio reduced the degree of conversion and polymerisation shrinkage, while moderately influencing the maximum polymerisation rates. The time to reach maximum polymerisation rates and light transmittance were not dependent on the filler amount. O-PTIR assessed a depth-dependent decrease in the degree of conversion for both composite types, with flowable composites generally showing a greater decrease in the degree of conversion than sculptable composites, except for bulk-fill composites. Micro-CT scans showed significantly higher flowable shrinkage values than their sculptable counterparts, highlighting the performance differences between the two types of composites. CONCLUSIONS: The findings of this study have practical implications for the selection and use of dental composites. Flowable composites, despite their higher degrees of conversion and polymerisation rates, also exhibit higher volumetric shrinkage, which can be detrimental for clinical applications. The new measurement methods used in this study provide a comprehensive overview of the polymerisation behaviour of commercially available dental composites, offering valuable insights for material optimisation.

4.
Cell Prolif ; : e13693, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38899562

RESUMEN

Most bone metastases are caused by primary breast or prostate cancer cells settling in the bone microenvironment, affecting normal bone physiology and function and reducing 5-year survival rates to 10% and 6%, respectively. To expedite clinical availability of novel and effective bone metastases treatments, reliable and predictive in vitro models are urgently required to screen for novel therapies as current in vitro 2D planar mono-culture models do not accurately predict the clinical efficacy. We herein engineered a novel human in vitro 3D co-culture model based on spheroids to study dynamic cellular quantities of (breast or prostate) cancer cells and human bone marrow stromal cells and screen chemotherapeutic efficacy and specificity of the common anticancer drug cisplatin. Bone metastatic spheroids (BMSs) were formed rapidly within 24 h, while the morphology of breast versus prostate cancer BMS differed in terms of size and circularity upon prolonged culture periods. Prestaining cell types prior to BMS formation enabled confocal imaging and quantitative image analysis of in-spheroid cellular dynamics for up to 7 days of BMS culture. We found that cancer cells in BMS proliferated faster and were less susceptible to cisplatin treatment compared to 2D control cultures. Based on these findings and the versatility of our methodology, BMS represent a feasible 3D in vitro model for screening of new bone cancer metastases therapies.

5.
Mater Today Bio ; 26: 101059, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38693996

RESUMEN

Despite the immense need for effective treatment of spinal cord injury (SCI), no successful repair strategy has yet been clinically implemented. Multifunctional biomaterials, based on porcine adipose tissue-derived extracellular matrix (adECM) and reduced graphene oxide (rGO), were recently shown to stimulate in vitro neural stem cell growth and differentiation. Nevertheless, their functional performance in clinically more relevant in vivo conditions remains largely unknown. Before clinical application of these adECM-rGO nanocomposites can be considered, a rigorous assessment of the cytotoxicity and biocompatibility of these biomaterials is required. For instance, xenogeneic adECM scaffolds could still harbour potential immunogenicity following decellularization. In addition, the toxicity of rGO has been studied before, yet often in experimental settings that do not bear relevance to regenerative medicine. Therefore, the present study aimed to assess both the in vitro as well as in vivo safety of adECM and adECM-rGO scaffolds. First, pulmonary, renal and hepato-cytotoxicity as well as macrophage polarization studies showed that scaffolds were benign invitro. Then, a laminectomy was performed at the 10th thoracic vertebra, and scaffolds were implanted directly contacting the spinal cord. For a total duration of 6 weeks, animal welfare was not negatively affected. Histological analysis demonstrated the degradation of adECM scaffolds and subsequent tissue remodeling. Graphene-based scaffolds showed a very limited fibrous encapsulation, while rGO sheets were engulfed by foreign body giant cells. Furthermore, all scaffolds were infiltrated by macrophages, which were largely polarized towards a pro-regenerative phenotype. Lastly, organ-specific histopathology and biochemical analysis of blood did not reveal any adverse effects. In summary, both adECM and adECM-rGO implants were biocompatible upon laminectomy while establishing a pro-regenerative microenvironment, which justifies further research on their therapeutic potential for treatment of SCI.

6.
J Biomed Mater Res A ; 112(11): 1873-1892, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38725302

RESUMEN

Tightly sealed peri-implant gingival tissue provides a barrier against oral bacterial invasion, protecting the alveolar bone and maintaining long-term implant survival. To investigate if zinc can enhance the integration between peri-implant gingival tissue and abutment surface, we herein present novel zinc/chitosan/gelatin (Zn/CS/Gel) coatings prepared using the electrophoretic deposition (EPD) technique. The effect of these coatings on human gingival fibroblasts (hGFs) was investigated by culturing these cells on top of the EPD coatings. Surface characterization demonstrated that Zn2+ were released in a sustained and pH-responsive manner. The preclinical cell culture evaluation of these coatings indicated that the zinc-containing coatings enhanced cell migration, adhesion and collagen secretion of hGFs. Moreover, the zinc-containing coatings exhibited antibacterial efficacy by inhibiting the growth of Porphyromonas gingivalis and reducing attachment of Staphylococcus aureus. Notably, zinc-free CS/Gel coatings prevented attachment of P. gingivalis as well. The coatings were also shown to be cytocompatible with epithelial cells and osteoblasts, which are other relevant cell types which surround dental implants after clinical placement. Based on our findings, it can be concluded that Zn-containing coatings hold promise to enhance the adhesion of gingival tissue to the implant surface, which may potentially contribute to the formation of a robust peri-implant soft sealing counteracting bacterial invasion.


Asunto(s)
Antibacterianos , Quitosano , Materiales Biocompatibles Revestidos , Fibroblastos , Gelatina , Staphylococcus aureus , Zinc , Quitosano/química , Quitosano/farmacología , Zinc/química , Zinc/farmacología , Humanos , Gelatina/química , Fibroblastos/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología , Staphylococcus aureus/efectos de los fármacos , Pilares Dentales , Encía/citología , Porphyromonas gingivalis/efectos de los fármacos , Adhesión Celular/efectos de los fármacos , Adhesión Bacteriana/efectos de los fármacos , Movimiento Celular/efectos de los fármacos
8.
Biotechnol J ; 19(2): e2300469, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38403405

RESUMEN

Colloidal gels assembled from gelatin nanoparticles (GNPs) as particulate building blocks show strong promise to solve challenges in cell delivery and biofabrication, such as low cell survival and limited spatial retention. These gels offer evident advantages to facilitate cell encapsulation, but research on this topic is still limited, which hampers our understanding of the relationship between the physicochemical and biological properties of cell-laden colloidal gels. Human adipose-derived mesenchymal stem cells were successfully encapsulated in gelatin colloidal gels and evaluated their mechanical and biological performance over 7 days. The cells dispersed well within the gels without compromising gel cohesiveness, remained viable, and spread throughout the gels. Cells partially coated with silica were introduced into these gels, which increased their storage moduli and decreased their self-healing capacity after 7 days. This finding demonstrates the ability to modulate gel stiffness by incorporating cells partially coated with silica, without altering the solid content or introducing additional particles. Our work presents an efficient method for cell encapsulation while preserving gel integrity, expanding the applicability of colloidal hydrogels for tissue engineering and bioprinting. Overall, our study contributes to the design of improved cell delivery systems and biofabrication techniques.


Asunto(s)
Bioimpresión , Células Madre Mesenquimatosas , Humanos , Hidrogeles/química , Ingeniería de Tejidos , Gelatina/química , Dióxido de Silicio , Andamios del Tejido/química
9.
Mater Today Bio ; 23: 100889, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38149015

RESUMEN

Aggressive benign, malignant and metastatic bone tumors can greatly decrease the quality of patients' lives and even lead to substantial mortality. Several clinical therapeutic strategies have been developed to treat bone tumors, including preoperative chemotherapy, surgical resection of the tumor tissue, and subsequent systemic chemo- or radiotherapy. However, those strategies are associated with inevitable drawbacks, such as severe side effects, substantial local tumor recurrence, and difficult-to-treat bone defects after tumor resection. To overcome these shortcomings and achieve satisfactory clinical outcomes, advanced bifunctional biomaterials which simultaneously promote bone regeneration and combat bone tumor growth are increasingly advocated. These bifunctional bone substitute materials fill bone defects following bone tumor resection and subsequently exert local anticancer effects. Here we describe various types of the most prevalent bone tumors and provide an overview of common treatment options. Subsequently, we review current progress regarding the development of bifunctional bone substitute materials combining osteogenic and anticancer efficacy. To this end, we categorize these biomaterials based on their anticancer mechanism deriving from i) intrinsic biomaterial properties, ii) local drug release of anticancer agents, and iii) oxidative stress-inducing and iv) hyperthermia-inducing biomaterials. Consequently, this review offers researchers, surgeons and oncologists an up-to-date overview of our current knowledge on bone tumors, their treatment options, and design of advanced bifunctional biomaterials with strong potential for clinical application in oncological orthopedics.

10.
Nano Lett ; 23(23): 11091-11098, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-37967168

RESUMEN

Gelatin nanoparticles (GNPs) have been widely studied for a plethora of biomedical applications, but their formation mechanism remains poorly understood, which precludes precise control over their physicochemical properties. This leads to time-consuming parameter adjustments without a fundamental grasp of the underlying mechanism. Here, we analyze and visualize in a time-resolved manner the mechanism by which GNPs are formed during desolvation of gelatin as a function of gelatin molecular weight and type of desolvating agent. Through various analytical and imaging techniques, we unveil a multistage process that is initiated by the formation of primary particles that are ∼18 nm in diameter (wet state). These primary particles subsequently assemble into colloidally stable GNPs with a raspberry-like structure and a hydrodynamic diameter of ∼300 nm. Our results create a basic understanding of the formation mechanism of gelatin nanoparticles, which opens new opportunities for precisely tuning their physicochemical and biofunctional properties.

11.
Dent Mater ; 39(10): 913-921, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37643923

RESUMEN

OBJECTIVE: Novel self-healing resin-based composites containing microcapsules have been developed to improve the mechanical performance of dental restorations. However, the long-term fatigue behaviour of these self-healing composites has still been hardly investigated. Therefore, this manuscript studied the fatigue behaviour of self-healing composites containing microcapsules by subjecting the specimens to traditional staircase tests and ageing in a custom-designed chewing simulator (Rub&Roll) to simulate oral ageing physiologically relevant conditions. METHODS: To prepare self-healing composite, poly(urea-formaldehyde) microcapsules containing acrylic self-healing liquids were synthesized. Subsequently, these microcapsules (10 wt%) and initiator (benzoyl peroxide, BPO, 2 wt%) were incorporated into a commercial flowable resin-based composite. Microcapsule-free resin-based composites with and without BPO were also prepared as control specimens. A three-point flexural test was used to measure the initial flexural strength (Sinitial). Subsequently, half of the specimens were used for fatigue testing using a common staircase approach to measure the fatigue strengths (FS). In addition, the other specimens were aged in the Rub&Roll machine for four weeks where after the final flexural strength (Sfinal) was measured. RESULTS: Compared to Sinitial, FS of all tested specimens significantly decreased as measured through staircase testing. After 4 weeks of ageing in the Rub&Roll machine, Sfinal was significantly reduced compared to Sinitial for microcapsule-free resin-based composites, but not for the self-healing composites (p = 0.3658). However, the self-healing composites are still in the experimental phase characterized by a low mechanical strength, which still impedes further clinical translation. SIGNIFICANCE: Self-healing composites containing microcapsules exhibit improved fatigue resistance compared to microcapsule-free non-self-healing composites.


Asunto(s)
Peróxido de Benzoílo , Materiales Dentales , Resistencia Flexional , Formaldehído , Ensayo de Materiales
12.
Biomacromolecules ; 24(6): 2755-2765, 2023 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-37222557

RESUMEN

We establish a versatile hydrogel platform based on modular building blocks that allows the design of hydrogels with tailored physical architecture and mechanical properties. We demonstrate its versatility by assembling (i) a fully monolithic gelatin methacryloyl (Gel-MA) hydrogel, (ii) a hybrid hydrogel composed of 1:1 Gel-MA and gelatin nanoparticles, and (iii) a fully particulate hydrogel based on methacryloyl-modified gelatin nanoparticles. The hydrogels were formulated to exhibit the same solid content and comparable storage modulus but different stiffness and viscoelastic stress relaxation. The incorporation of particles resulted in softer hydrogels with enhanced stress relaxation. Murine osteoblastic cells cultured in two-dimensional (2D) on hydrogels showed proliferation and metabolic activity comparable to established collagen hydrogels. Furthermore, the osteoblastic cells showed a trend of increased cell numbers, cell expansion, and more defined protrusions on stiffer hydrogels. Hence, modular assembly allows the design of hydrogels with tailored mechanical properties and the potential to alter cell behavior.


Asunto(s)
Gelatina , Hidrogeles , Ratones , Animales , Hidrogeles/farmacología , Colágeno , Proliferación Celular , Ingeniería de Tejidos/métodos
13.
Tissue Eng Part C Methods ; 29(5): 216-227, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37071134

RESUMEN

Stromal vascular fraction (SVF) is the primary isolate obtained after enzymatic digestion of adipose tissue that contains various cell types. Its successful application for cell-based construct preparation in an intra-operative setting for clinical bone augmentation and regeneration has been previously reported. However, the performance of SVF-based constructs compared with traditional ex vivo expanded adipose tissue-derived mesenchymal stromal cells (ATMSCs) remains unclear and direct comparative analyses are scarce. Consequently, we here aimed at comparing the in vitro osteogenic differentiation capacity of donor-matched SVF versus ATMSCs as well as their osteoinductive capacity. Human adipose tissue from nine different donors was used to isolate SVF, which was further purified via plastic-adherence to obtain donor-matched ATMSCs. Both cell populations were immunophenotypically characterized for mesenchymal stromal cell, endothelial, and hematopoietic markers after isolation and immunocytochemical staining was used to identify different cell types during prolonged cell culture. Based on normalization using plastic-adherence fraction determination, SVF and ATMSCs were seeded and cultured in osteogenic differentiation medium for 28 days. Further, SVF and ATMSCs were seeded onto devitalized bovine bone granules and subcutaneously implanted into nude mice. After 42 days of implantation, granules were retrieved, histologically processed, and stained with hematoxylin and eosin (HE) to assess ectopic bone formation. The ATMSCs were shown to be a homogenous cell population during cell culture, whereas SVF cultures consisted of multiple cell types. All donor-matched comparisons showed either accelerated or stronger mineralization for SVF cultures in vitro. However, neither SVF nor ATMSCs loaded on devitalized bone granules induced ectopic bone formation on subcutaneous implantation, as opposed to control granules loaded with bone morphogenetic protein-2 (BMP-2), which triggered ectopic bone formation with 100% incidence. Despite the observed lack of osteoinduction, our findings provide important in vitro evidence on the osteogenic superiority of intra-operatively available SVF as compared with donor-matched ATMSCs. Consequently, further studies should focus on optimizing the efficacy of these cell populations for implementation in orthotopic bone fracture or defect treatment.


Asunto(s)
Osteogénesis , Células del Estroma , Ratones , Humanos , Animales , Bovinos , Ratones Desnudos , Tejido Adiposo , Adipocitos , Diferenciación Celular
14.
Mater Today Bio ; 19: 100599, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37063249

RESUMEN

Biodegradable bone adhesives represent a highly sought-after type of biomaterial which would enable replacement of traditional metallic devices for fixation of bone. However, these biomaterials should fulfil an extremely large number of requirements. As a consequence, bone-adhesive biomaterials which meet all of these requirements are not yet commercially available. Therefore, this comprehensive review provides an extensive overview of the development of bone adhesives from a translational perspective. First, the definition, classification, and chemistry of various types of bone adhesives are highlighted to provide a detailed overview of this emerging class of biomaterials. In this review we particularly focused studies which describe the use of materials that are capable of gluing two pieces of bone together within a time frame of minutes to days. Second, this review critically reflects on i) the experimental conditions of commonly employed adhesion tests to assess bone adhesion and ii) the current state-of-the-art regarding their preclinical and clinical applicability.

15.
Int J Nanomedicine ; 18: 1599-1612, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37013026

RESUMEN

Introduction: There has recently been a surge of interest in mesoporous bioactive glass nanoparticles (MBGNs) as multi-functional nanocarriers for application in bone-reconstructive and -regenerative surgery. Their excellent control over their structural and physicochemical properties renders these nanoparticles suitable for the intracellular delivery of therapeutic agents to combat degenerative bone diseases, such as bone infection, or bone cancer. Generally, the therapeutic efficacy of nanocarriers strongly depends on the efficacy of their cellular uptake, which is determined by numerous factors including cellular features and the physicochemical characteristics of nanocarriers, particularly surface charge. In this study, we have systematically investigated the effect of the surface charge of MBGNs doped with copper as a model therapeutic agent on cellular uptake by both macrophages and pre-osteoblast cells involved in bone healing and bone infections to guide the future design of MBGN-based nanocarriers. Methods: Cu-MBGNs with negative, neutral, and positive surface charges were synthesized and their cellular uptake efficiency was assessed. Additionally, the intracellular fate of internalized nanoparticles along with their ability to deliver therapeutic cargo was studied in detail. Results: The results showed that both cell types internalized Cu-MBGNs regardless of their surface charge, indicating that cellular uptake of nanoparticles is a complex process influenced by multiple factors. This similarity in cellular uptake was attributed to the formation of a protein corona surrounding the nanoparticles when exposed to protein-rich biological media, which masks the original nanoparticle surface. Once internalized, the nanoparticles were found to mainly colocalize with lysosomes, exposing them to a more compartmentalized and acidic environment. Furthermore, we verified that Cu-MBGNs released their ionic components (Si, Ca, and Cu ions) in both acidic and neutral environments, leading to the delivery of these therapeutic cargos intracellularly. Conclusion: The effective internalization of Cu-MBGNs and their ability to deliver cargos intracellularly highlight their potential as intracellular delivery nanocarriers for bone-regenerative and -healing applications.


Asunto(s)
Células Madre Mesenquimatosas , Nanopartículas , Nanopartículas/química , Regeneración Ósea , Cicatrización de Heridas , Vidrio/química
16.
Biomater Adv ; 144: 213198, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36424276

RESUMEN

Successful treatment of infected bone defects caused by multi-drug resistant bacteria (MDR) has become a major clinical challenge, stressing the urgent need for effective antibacterial bone graft substitutes. Mesoporous bioactive glass nanoparticles (MBGNs), a rapidly emerging class of nanoscale biomaterials, offer specific advantages for the development of biomaterials to treat bone infection due to endowed antibacterial features. Herein, we propose a facile post-modification sol-gel strategy to synthesize effective antibacterial MBGNs doped with copper ions (Cu-PMMBGNs). In this strategy, amine functional groups as chelating agents were introduced to premade mesoporous silica nanoparticles (MSNs) which further facilitate the incorporation of high content of calcium (∼17 mol%) and copper ions (∼8 mol%) without compromising nanoparticle shape, mesoporosity, and homogeneity. The resulting nanoparticles were degradable and showed rapidly induce abundant deposition of apatite crystals on their surface upon soaking in simulated body fluids (SBF) after 3 days. Cu-PMMBGNs exhibited a dose-dependent inhibitory effect on Methicillin-resistant Staphylococcus aureus (MRSA) bacteria, which are common pathogens causing severe bone infections. Most importantly, the nanoparticles containing 5 mol% copper ions at concentrations of 500 and 1000 µg.mL-1 showed highly effective antibacterial performance as reflected by a 99.9 % reduction of bacterial viability. Nanoparticles at a concentration of 500 µg.mL-1 showed no significant cytotoxicity toward preosteoblast cells (∼85-89 % cell viability) compared to the control group. In addition, the nanoscale properties of synthesized Cu-PMMBGNs (∼100 nm in size) facilitated their internalization into preosteoblast cells, which highlights their potential as intracellular carriers in combating intracellular bacteria. Therefore, these copper-doped nanoparticles hold strong promise for use as an antibacterial component in antibacterial bone substitutes such as hydrogels, nanocomposites, and coatings.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Cobre/farmacología , Materiales Biocompatibles , Antibacterianos/farmacología , Iones
17.
Chem Rev ; 123(2): 834-873, 2023 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35930422

RESUMEN

Biomaterials with the ability to self-heal and recover their structural integrity offer many advantages for applications in biomedicine. The past decade has witnessed the rapid emergence of a new class of self-healing biomaterials commonly termed injectable, or printable in the context of 3D printing. These self-healing injectable biomaterials, mostly hydrogels and other soft condensed matter based on reversible chemistry, are able to temporarily fluidize under shear stress and subsequently recover their original mechanical properties. Self-healing injectable hydrogels offer distinct advantages compared to traditional biomaterials. Most notably, they can be administered in a locally targeted and minimally invasive manner through a narrow syringe without the need for invasive surgery. Their moldability allows for a patient-specific intervention and shows great prospects for personalized medicine. Injected hydrogels can facilitate tissue regeneration in multiple ways owing to their viscoelastic and diffusive nature, ranging from simple mechanical support, spatiotemporally controlled delivery of cells or therapeutics, to local recruitment and modulation of host cells to promote tissue regeneration. Consequently, self-healing injectable hydrogels have been at the forefront of many cutting-edge tissue regeneration strategies. This study provides a critical review of the current state of self-healing injectable hydrogels for tissue regeneration. As key challenges toward further maturation of this exciting research field, we identify (i) the trade-off between the self-healing and injectability of hydrogels vs their physical stability, (ii) the lack of consensus on rheological characterization and quantitative benchmarks for self-healing injectable hydrogels, particularly regarding the capillary flow in syringes, and (iii) practical limitations regarding translation toward therapeutically effective formulations for regeneration of specific tissues. Hence, here we (i) review chemical and physical design strategies for self-healing injectable hydrogels, (ii) provide a practical guide for their rheological analysis, and (iii) showcase their applicability for regeneration of various tissues and 3D printing of complex tissues and organoids.


Asunto(s)
Materiales Biocompatibles , Hidrogeles , Humanos , Hidrogeles/química , Materiales Biocompatibles/farmacología , Materiales Biocompatibles/química , Ingeniería de Tejidos
18.
J Dent ; 127: 104354, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36351488

RESUMEN

OBJECTIVE: This study aimed to investigate the wear behaviour of direct composite restorations after 5 years and associated patient factors. METHODS: 38 patients (6 females, 32 males; 35.2 ± 7.6y) from the Radboud Tooth Wear Project with generalized moderate to severe tooth wear were treated with direct composite restorations on all teeth. Ethical approval was sought and granted before the study was undertaken. Intraoral 3D scans were recorded at 1 month (baseline) and 5 years (recall) after treatment. The amount of height loss was measured at six index teeth (first molars and upper central incisors). Patient factors (age, vertical dimension of occlusion increase, bite force, aetiology score, jaw position and bearing/ non-bearing cusps) were included in the analysis. Multilevel multiple regression with bootstrapping was used to analyse the influence of these factors on wear behaviour of restorations. Observer reliability was tested by paired t-tests and Band-Altman plots (p<0.05) RESULTS: After 5 years, the mean height loss was 0.23± 0.19 mm for incisors and 0.43± 0.24 mm for molars (p≤0.001). Patient factors did not show any significant influence on height loss of the composite restorations, while bearing cusps showed significant more wear compared to non-bearing cusps (p≤0.001). The observer reliability tests confirmed the repeatability (correlation of 0.809, DME 0.103). CONCLUSIONS: Wear of composite restorations is a significant and relevant factor over time in patients treated with severe tooth wear. Within the limitations of this clinical study, patient factors were found not to have a significant effect on wear behaviour of direct composite restorations.


Asunto(s)
Atrición Dental , Desgaste de los Dientes , Masculino , Femenino , Humanos , Reproducibilidad de los Resultados , Desgaste de los Dientes/terapia , Dimensión Vertical , Diente Molar , Resinas Compuestas , Restauración Dental Permanente
19.
Nanomaterials (Basel) ; 12(19)2022 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-36234551

RESUMEN

Messenger RNA (mRNA) is increasingly gaining interest as a modality in vaccination and protein replacement therapy. In regenerative medicine, the mRNA-mediated expression of growth factors has shown promising results. In contrast to protein delivery, successful mRNA delivery requires a vector to induce cellular uptake and subsequent endosomal escape to reach its end destination, the ribosome. Current non-viral vectors such as lipid- or polymer-based nanoparticles have been successfully used to express mRNA-encoded proteins. However, to advance the use of mRNA in regenerative medicine, it is required to assess the compatibility of mRNA with biomaterials that are typically applied in this field. Herein, we investigated the complexation, cellular uptake and maintenance of the integrity of mRNA complexed with gelatin nanoparticles (GNPs). To this end, GNPs with positive, neutral or negative surface charge were synthesized to assess their ability to bind and transport mRNA into cells. Positively charged GNPs exhibited the highest binding affinity and transported substantial amounts of mRNA into pre-osteoblastic cells, as assessed by confocal microscopy using fluorescently labeled mRNA. Furthermore, the GNP-bound mRNA remained stable. However, no expression of mRNA-encoded protein was detected, which is likely related to insufficient endosomal escape and/or mRNA release from the GNPs. Our results indicate that gelatin-based nanomaterials interact with mRNA in a charge-dependent manner and also mediate cellular uptake. These results create the basis for the incorporation of further functionality to yield endosomal release.

20.
Bioact Mater ; 15: 120-130, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35386344

RESUMEN

Malignant bone tumors are usually treated by resection of tumor tissue followed by filling of the bone defect with bone graft substitutes. Polymethylmethacrylate (PMMA) cement is the most commonly used bone substitute in clinical orthopedics in view of its reliability. However, the dense nature of PMMA renders this biomaterial unsuitable for local delivery of chemotherapeutic drugs to limit the recurrence of bone tumors. Here, we introduce porosity into PMMA cement by adding carboxymethylcellulose (CMC) to facilitate such local delivery of chemotherapeutic drugs, while retaining sufficient mechanical properties for bone reconstruction in load-bearing sites. Our results show that the mechanical strength of PMMA-based cements gradually decreases with increasing CMC content. Upon incorporation of ≥3% CMC, the PMMA-based cements released up to 18% of the loaded cisplatin, in contrast to cements containing lower amounts of CMC which only released less than 2% of the cisplatin over 28 days. This release of cisplatin efficiently killed osteosarcoma cells in vitro and the fraction of dead cells increased to 91.3% at day 7, which confirms the retained chemotherapeutic activity of released cisplatin from these PMMA-based cements. Additionally, tibias filled with PMMA-based cements containing up to 3% of CMC exhibit comparable compressive strengths as compared to intact tibias. In conclusion, we demonstrate that PMMA cements can be rendered therapeutically active by introducing porosity using CMC to allow for release of cisplatin without compromising mechanical properties beyond critical levels. As such, these data suggest that our dual-functional PMMA-based cements represent a viable treatment option for filling bone defects after bone tumor resection in load-bearing sites.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...