Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(8)2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38673995

RESUMEN

In recent decades, neglected tropical diseases and poverty-related diseases have become a serious health problem worldwide. Among these pathologies, human African trypanosomiasis, and malaria present therapeutic problems due to the onset of resistance, toxicity problems and the limited spectrum of action. In this drug discovery process, rhodesain and falcipain-2, of Trypanosoma brucei rhodesiense and Plasmodium falciparum, are currently considered the most promising targets for the development of novel antitrypanosomal and antiplasmodial agents, respectively. Therefore, in our study we identified a novel lead-like compound, i.e., inhibitor 2b, which we proved to be active against both targets, with a Ki = 5.06 µM towards rhodesain and an IC50 = 40.43 µM against falcipain-2.


Asunto(s)
Inhibidores de Cisteína Proteinasa , Nitrilos , Plasmodium falciparum , Trypanosoma brucei rhodesiense , Tripanosomiasis Africana , Humanos , Antimaláricos/uso terapéutico , Antimaláricos/farmacología , Cisteína Endopeptidasas/metabolismo , Inhibidores de Cisteína Proteinasa/farmacología , Inhibidores de Cisteína Proteinasa/uso terapéutico , Inhibidores de Cisteína Proteinasa/química , Malaria/tratamiento farmacológico , Nitrilos/uso terapéutico , Plasmodium falciparum/efectos de los fármacos , Proteínas Protozoarias/antagonistas & inhibidores , Proteínas Protozoarias/metabolismo , Tripanocidas/farmacología , Tripanocidas/uso terapéutico , Trypanosoma brucei rhodesiense/efectos de los fármacos , Tripanosomiasis Africana/tratamiento farmacológico
2.
Artículo en Inglés | MEDLINE | ID: mdl-38309043

RESUMEN

To support the pharmacokinetic study of sulfadoxine (SD) and pyrimethamine (PM) in pregnant women and children, sensitive methods with small sample volume are desirable. Here we report a method to determine SD and PM with microvolume plasma samples: 5 µL plasma samples were cleaned up by protein precipitation with acetonitrile. The deuterated analytes were used as the internal standards. The samples after cleanup were injected onto an ACE Excel SuperC18 column (50 × 2.1 mm, 1.7 µm, Hichrom Limited) connected to a Waters I class UPLC coupled with a Sciex Triple Quad 6500+ Mass Spectrometer and eluted with water and acetonitrile both containing 0.1% formic acid in a gradient mode at 0.8mL/min. Detection utilized ESI+ as the ion source and MRM as the quantification mode. The precursor-to-product ion transitions m/z 311→245 for SD and 249→233 for PM were selected for quantification. The ion transitions for the corresponding internal standards were 315→249 for SD-d4 and 254→235 for PM-d3. The simplest linear regression weighted by 1/x was used for the calibration curves. The calibration ranges were 1-200 µg/mL SD and 2 - 1000ng/mL PM. The mean (± standard deviation) recoveries were 94.3±3.2% (SD) and 97.0±1.5% (PM). The validated method was applied to analysis of 1719 clinical samples, demonstrating the method is suitable for the pharmacokinetic study with samples collected up to day 28 post-dose.


Asunto(s)
Pirimetamina , Espectrometría de Masas en Tándem , Embarazo , Niño , Humanos , Femenino , Cromatografía Líquida de Alta Presión/métodos , Espectrometría de Masas en Tándem/métodos , Sulfadoxina , Acetonitrilos
3.
Antimicrob Agents Chemother ; 68(4): e0153423, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38411062

RESUMEN

Malaria remains a leading cause of morbidity and mortality in Burkina Faso, which utilizes artemether-lumefantrine as the principal therapy to treat uncomplicated malaria and seasonal malaria chemoprevention with monthly sulfadoxine-pyrimethamine plus amodiaquine in children during the transmission season. Monitoring the activities of available antimalarial drugs is a high priority. We assessed the ex vivo susceptibility of Plasmodium falciparum to 11 drugs in isolates from patients presenting with uncomplicated malaria in Bobo-Dioulasso in 2021 and 2022. IC50 values were derived using a standard 72 h growth inhibition assay. Parasite DNA was sequenced to characterize known drug resistance-mediating polymorphisms. Isolates were generally susceptible, with IC50 values in the low-nM range, to chloroquine (median IC5010 nM, IQR 7.9-24), monodesethylamodiaquine (22, 14-46) piperaquine (6.1, 3.6-9.2), pyronaridine (3.0, 1.3-5.5), quinine (50, 30-75), mefloquine (7.1, 3.7-10), lumefantrine (7.1, 4.5-12), dihydroartemisinin (3.7, 2.2-5.5), and atovaquone (0.2, 0.1-0.3) and mostly resistant to cycloguanil (850, 543-1,290) and pyrimethamine (33,200, 18,400-54,200), although a small number of outliers were seen. Considering genetic markers of resistance to aminoquinolines, most samples had wild-type PfCRT K76T (87%) and PfMDR1 N86Y (95%) sequences. For markers of resistance to antifolates, established PfDHFR and PfDHPS mutations were highly prevalent, the PfDHPS A613S mutation was seen in 19% of samples, and key markers of high-level resistance (PfDHFR I164L; PfDHPS K540E) were absent or rare (A581G). Mutations in the PfK13 propeller domain known to mediate artemisinin partial resistance were not detected. Overall, our results suggest excellent susceptibilities to drugs now used to treat malaria and moderate, but stable, resistance to antifolates used to prevent malaria.


Asunto(s)
Antimaláricos , Antagonistas del Ácido Fólico , Malaria Falciparum , Malaria , Niño , Humanos , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Plasmodium falciparum , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/parasitología , Combinación Arteméter y Lumefantrina/uso terapéutico , Antagonistas del Ácido Fólico/farmacología , Burkina Faso , Arteméter/uso terapéutico , Pirimetamina/farmacología , Pirimetamina/uso terapéutico , Malaria/tratamiento farmacológico , Lumefantrina/farmacología , Lumefantrina/uso terapéutico , Combinación de Medicamentos , Polimorfismo Genético/genética , Resistencia a Medicamentos/genética , Proteínas Protozoarias/genética , Proteínas Protozoarias/uso terapéutico
4.
RSC Med Chem ; 14(12): 2768-2781, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38107179

RESUMEN

Malaria is still a complex and lethal parasitic infectious disease, despite the availability of effective antimalarial drugs. Resistance of malaria parasites to current treatments necessitates new antimalarials targeting P. falciparum proteins. The present study reported the design and synthesis of a series of a 2-(4-substituted piperazin-1-yl)-N-(5-((naphthalen-2-yloxy)methyl)-1,3,4-thiadiazol-2-yl)acetamide hybrids for the inhibition of Plasmodium falciparum dihydrofolate reductase (PfDHFR) using computational biology tools followed by chemical synthesis, structural characterization, and functional analysis. The synthesized compounds were evaluated for their in vitro antimalarial activity against CQ-sensitive PfNF54 and CQ-resistant PfW2 strain. Compounds T5 and T6 are the most active compounds having anti-plasmodial activity against PfNF54 with IC50 values of 0.94 and 3.46 µM respectively. Compound T8 is the most active against the PfW2 strain having an IC50 of 3.91 µM. Further, these active hybrids (T5, T6, and T8) were also evaluated for enzyme inhibition assay against PfDHFR. All the tested compounds were non-toxic against the Hek293 cell line with good selectivity indices. Hemolysis assay also showed non-toxicity of these compounds on normal uninfected human RBCs. In silico molecular docking studies were carried out in the binding pocket of both the wild-type and quadruple mutant Pf-DHFR-TS to gain further insights into probable modes of action of active compounds. ADME prediction and physiochemical properties support their drug-likeness. Additionally, they were screened for antileishmanial activity against L. donovani promastigotes to explore broader applications. Thus, this study provides molecular frameworks for developing potent antimalarials and antileishmanial agents.

5.
Bioorg Chem ; 137: 106587, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37163812

RESUMEN

In recent decades, several structure-activity relationship (SAR) studies provided potent inhibitors of the cysteine proteases falcipain-2 (FP-2) and rhodesain (RD) from Plasmodium falciparum and Trypanosoma brucei rhodesiense, respectively. Whilst the roles of the warhead and residues targeting the P1 and P2 pockets of the proteases were extensively investigated, the roles of the amino acids occupying the S3 pocket were not widely assessed. Herein we report the synthesis and biological evaluation of a set of novel Michael acceptors bearing amino acids of increasing size at the P3 site (1a-g/2a-g, SPR20-SPR33) against FP-2, RD, P. falciparum, and T. brucei. Overall, the Michael acceptors bearing small amino acids at the P3 site exhibited the most potent inhibitory properties towards FP-2. In contrast, analogues with bulky residues at the P3 position were very potent rhodesain inhibitors. In cell based assays, single-digit micromolar EC50 values against the two protozoa were observed. These findings can be a starting point for the development of peptide-based FP-2 and RD inhibitors.


Asunto(s)
Malaria Falciparum , Malaria , Tripanosomiasis Africana , Animales , Humanos , Tripanosomiasis Africana/tratamiento farmacológico , Aminoácidos , Malaria Falciparum/tratamiento farmacológico , Plasmodium falciparum , Relación Estructura-Actividad
6.
Eur J Med Chem ; 248: 115055, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36621136

RESUMEN

Malaria is the most lethal parasitic infections in the world. To address the emergence of drug resistance to current antimalarials, here we report the design and synthesis of new series of tetrahydrobenzothieno[2,3-d]pyrimidine-acetamide hybrids by using multicomponent Petasis reaction as the key step and evaluated in vitro for their antimalarial effectiveness. The structure of all the compounds were confirmed by NMR Spectroscopy and mass spectrometry. Most of the compounds showed potent antimalarial activity against both CQ-sensitive (3D7) and CQ-resistant (W2) strains. A8, A5, and A4 are the most potent compounds that showed excellent anti-plasmodial activity against CQ-resistant strain in the nanomolar range with IC50 values 55.7 nM, 60.8 nM, and 68.0 nM respectively. To assess the parasite selectivity, the in vitro cytotoxicity of selected compounds (A3-A6, A8) was tested against HPL1D cells, demonstrating low cytotoxicity with high selectivity indices. Furthermore, these compounds were also evaluated on two additional human cancerous cell lines (A549 and MDA-MB-231), confirming their anticancer effectiveness. The in vitro hemolysis assay also showed the non-toxicity of these compounds on normal uninfected human RBCs. The interaction of these hybrids was also investigated by the molecular docking studies in the binding site of wild type Pf-DHFR-TS and quadruple mutant Pf-DHFR-TS. The in silico ADMET profiling also revealed promising physicochemical and pharmacokinetic parameters for the most active hybrids, which provide strong vision for further development of potential antimalarials.


Asunto(s)
Antimaláricos , Plasmodium , Humanos , Antimaláricos/química , Simulación del Acoplamiento Molecular , Plasmodium falciparum/metabolismo , Pirimidinas/química
7.
Chem Biol Drug Des ; 101(4): 829-836, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36418231

RESUMEN

A library of quinoline-based hydrazones bearing 1H-1,2,3-triazole core was designed, synthesized, and evaluated for their antiplasmodial activity against the drug-resistant Plasmodium falciparum W2 strain. The inclusion of pyrazine-2-carboxylic acid with a flexible propyl spacer afforded the most active scaffold with an IC50 value of 0.26 µM. Mechanistically, the compound inhibited heme to hemozoin formation, as demonstrated by UV-vis and mass spectral studies.


Asunto(s)
Antimaláricos , Quinolinas , Antimaláricos/farmacología , Hidrazonas/farmacología , Quinolinas/farmacología , Plasmodium falciparum , Relación Estructura-Actividad
8.
Eur J Med Chem ; 236: 114324, 2022 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-35390711

RESUMEN

Malaria remains a prevalent infectious disease in developing countries. The first-line therapeutic options are based on combinations of fast-acting artemisinin derivatives and longer-acting synthetic drugs. However, the emergence of resistance to these first-line treatments represents a serious risk, and the discovery of new effective drugs is urgently required. For this reason, new antimalarial chemotypes with new mechanisms of action, and ideally with activity against multiple parasite stages, are needed. We report a new scaffold with dual-stage (blood and liver) antiplasmodial activity. Twenty-six spirooxadiazoline oxindoles were synthesized and screened against the erythrocytic stage of the human malaria parasite P. falciparum. The most active compounds were also tested against the liver-stage of the murine parasite P. berghei. Seven compounds emerged as dual-stage antimalarials, with IC50 values in the low micromolar range. Due to structural similarity with cipargamin, which is thought to inhibit blood-stage P. falciparum growth via inhibition of the Na + efflux pump PfATP4, we tested one of the most active compounds for anti-PfATP4 activity. Our results suggest that this target is not the primary target of spirooxadiazoline oxindoles and further studies are ongoing to identify the main mechanism of action of this scaffold.


Asunto(s)
Antimaláricos , Antagonistas del Ácido Fólico , Malaria Falciparum , Malaria , Animales , Antimaláricos/química , Antagonistas del Ácido Fólico/farmacología , Humanos , Malaria/tratamiento farmacológico , Malaria Falciparum/tratamiento farmacológico , Ratones , Oxindoles/farmacología , Plasmodium falciparum
9.
ACS Chem Biol ; 17(3): 576-589, 2022 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-35262340

RESUMEN

Protease inhibitors represent a promising therapeutic option for the treatment of parasitic diseases such as malaria and human African trypanosomiasis. Falcitidin was the first member of a new class of inhibitors of falcipain-2, a cysteine protease of the malaria parasite Plasmodium falciparum. Using a metabolomics dataset of 25 Chitinophaga strains for molecular networking enabled identification of over 30 natural analogues of falcitidin. Based on MS/MS spectra, they vary in their amino acid chain length, sequence, acyl residue, and C-terminal functionalization; therefore, they were grouped into the four falcitidin peptide families A-D. The isolation, characterization, and absolute structure elucidation of two falcitidin-related pentapeptide aldehyde analogues by extensive MS/MS spectrometry and NMR spectroscopy in combination with advanced Marfey's analysis was in agreement with the in silico analysis of the corresponding biosynthetic gene cluster. Total synthesis of chosen pentapeptide analogues followed by in vitro testing against a panel of proteases revealed selective parasitic cysteine protease inhibition and, additionally, low-micromolar inhibition of α-chymotrypsin. The pentapeptides investigated here showed superior inhibitory activity compared to falcitidin.


Asunto(s)
Antimaláricos , Proteasas de Cisteína , Malaria , Parásitos , Animales , Antimaláricos/farmacología , Inhibidores de Cisteína Proteinasa/química , Inhibidores de Cisteína Proteinasa/farmacología , Humanos , Plasmodium falciparum , Espectrometría de Masas en Tándem
10.
Future Med Chem ; 14(24): 1865-1880, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36622669

RESUMEN

Background: Malaria represents the major parasitic disease in tropical regions, and the development of new potent drugs is of pivotal importance. In this study, a series of hybrid molecules were designed by linking the 7-chloroquinoline core of chloroquine to different fluorinated flavonoid-related scaffolds. Materials & methods: Compounds were prepared by exploiting the click chemistry approach, allowing the introduction of a 1,2,3-triazole, a privileged structural motif in antiparasitic dug discovery. Results: Compounds 1b and 1c were the most interesting and were endowed with the highest in vitro activity, mainly against a resistant Plasmodium falciparum strain. They also inhibited hemozoin formation, and 1c was more effective than chloroquine against stage V gametocytes. Conclusion: The homoisoflavone core is a new, promising antimalarial scaffold that deserves further investigation.


Asunto(s)
Antimaláricos , Malaria , Humanos , Antimaláricos/química , Flavonoides/farmacología , Flavonoides/uso terapéutico , Triazoles/química , Cloroquina/química , Malaria/tratamiento farmacológico , Plasmodium falciparum
11.
Nat Commun ; 12(1): 6714, 2021 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-34795281

RESUMEN

Intermittent preventive treatment (IPT) with dihydroartemisinin-piperaquine (DP) is highly protective against malaria in children, but is not standard in malaria-endemic countries. Optimal DP dosing regimens will maximize efficacy and reduce toxicity and resistance selection. We analyze piperaquine (PPQ) concentrations (n = 4573), malaria incidence data (n = 326), and P. falciparum drug resistance markers from a trial of children randomized to IPT with DP every 12 weeks (n = 184) or every 4 weeks (n = 96) from 2 to 24 months of age (NCT02163447). We use nonlinear mixed effects modeling to establish malaria protective PPQ levels and risk factors for suboptimal protection. Compared to DP every 12 weeks, DP every 4 weeks is associated with 95% protective efficacy (95% CI: 84-99%). A PPQ level of 15.4 ng/mL reduces the malaria hazard by 95%. Malnutrition reduces PPQ exposure. In simulations, we show that DP every 4 weeks is optimal across a range of transmission intensities, and age-based dosing improves malaria protection in young or malnourished children.


Asunto(s)
Artemisininas/uso terapéutico , Malaria Falciparum/tratamiento farmacológico , Plasmodium falciparum/efectos de los fármacos , Complicaciones Parasitarias del Embarazo/tratamiento farmacológico , Quinolinas/uso terapéutico , Algoritmos , Antimaláricos/administración & dosificación , Antimaláricos/farmacocinética , Antimaláricos/uso terapéutico , Artemisininas/administración & dosificación , Artemisininas/farmacocinética , Niño , Preescolar , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Incidencia , Lactante , Malaria Falciparum/epidemiología , Malaria Falciparum/parasitología , Masculino , Modelos Biológicos , Evaluación de Resultado en la Atención de Salud/métodos , Evaluación de Resultado en la Atención de Salud/estadística & datos numéricos , Plasmodium falciparum/fisiología , Embarazo , Complicaciones Parasitarias del Embarazo/metabolismo , Quinolinas/administración & dosificación , Quinolinas/farmacocinética , Uganda/epidemiología
12.
RSC Med Chem ; 12(6): 970-981, 2021 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-34223162

RESUMEN

Effective chemotherapy is essential for controlling malaria. However, resistance of Plasmodium falciparum to existing antimalarial drugs has undermined attempts to control and eventually eradicate the disease. In this study, a series of 2-((substituted)(4-(5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidin-4-yl)piperazin-1-yl)methyl)-6-substitutedphenol derivatives were prepared using Petasis reaction with a view to evaluate their activities against P. falciparum. The development of synthesized compounds (F1-F16) was justified through the study of H1 NMR, C13 NMR, mass spectra. Compound F1 and F2 were also structurally validated by single crystal X-ray diffraction analysis. All the compounds were evaluated for their in vitro antiplasmodial assessment against the W2 strain (chloroquine-resistant) of P. falciparum IC50 values ranging from 0.74-6.4 µM. Two compounds, F4 and F16 exhibited significant activity against W2 strain of P. falciparum with 0.75 and 0.74 µM. The compounds (F3-F6 and F16) were also evaluated for in vitro cytotoxicity against two cancer cell lines, human lung (A549) and cervical (HeLa) cells, which demonstrated non-cytotoxicity with significant selectivity indices. In addition, in silico ADME profiling and physiochemical properties predicts drug-like properties with a very low toxic effect. Thus, all these results indicate that tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidine scaffolds may serve as models for the development of antimalarial agents.

13.
Bioorg Med Chem ; 39: 116159, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33895706

RESUMEN

Quinoline-isoniazid-phthalimide triads have been synthesised to assess their antiplasmodial efficacy and cytotoxicity against chloroquine-resistant W2 strain of P. falciparum and Vero cells, respectively. Most of the synthesized compounds displayed IC50 in lower nM range and appeared to be approximately five to twelve fold more active than chloroquine. Heme-binding studies were also carried out to delineate the mode of action. The promising compounds with IC50s in range of 11-30 nM and selectivity index >2800, may act as promising template for the design of new antiplasmodials.


Asunto(s)
Antimaláricos/química , Antimaláricos/farmacología , Hemo/química , Isoniazida/química , Ftalimidas/química , Plasmodium falciparum/efectos de los fármacos , Polimerizacion/efectos de los fármacos , Quinolinas/química , Animales , Antimaláricos/síntesis química , Chlorocebus aethiops , Técnicas In Vitro , Relación Estructura-Actividad , Células Vero
14.
Chem Biol Drug Des ; 96(6): 1355-1361, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32515142

RESUMEN

The present paper describes the synthesis, anti-plasmodial, and cytotoxic evaluation of 7-chloroquinoline-based conjugates with isatins/indoles/ nitroimidazoles, obtained via Cu-promoted 1,3-dipolar cycloadditions. On contemplating SAR of the synthesized series, the inclusion of indole and nitroimidazole-core improved the anti-plasmodial activities while the isatin seemed to have a lesser effect. The conjugate with a nitroimidazole-core and hexyl chain length as a spacer between the two pharmacophores was found to be most potent among the synthesized series and displayed an IC50 of 0.12 µM and a selectivity index of 1748.


Asunto(s)
Antimaláricos/química , Antimaláricos/farmacología , Indoles/química , Isatina/química , Nitroimidazoles/química , Quinolonas/química , Alquinos/química , Antimaláricos/síntesis química , Azidas/química , Reacción de Cicloadición , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Quinolonas/farmacología , Relación Estructura-Actividad
15.
ACS Med Chem Lett ; 11(2): 154-161, 2020 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-32071682

RESUMEN

A series of 25 conjugates has been synthesized to evaluate their antiplasmodial potency and cytotoxicity against the chloroquine resistant (CQR) W2 strain of P. falciparum and Vero kidney cell lines, respectively. Most of the compounds showed IC50 values in the lower nM range and proved to be many fold more active than chloroquine (CQ). The studies were extended to decipher modes of action using techniques including UV-vis absorption, NMR titrations, and mass spectrometry, and conclusions were strengthened by docking and density functional theory (DFT) simulations. The most active compound, with IC50 15 nM and selectivity index >4000, proved to be an interesting template for antimalarial drug discovery. To the best of our knowledge this is the first report of a potent naphthalimide based antiplasmodial conjugate.

16.
mBio ; 11(1)2020 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-31992618

RESUMEN

New antimalarial drugs are needed. The benzoxaborole AN13762 showed excellent activity against cultured Plasmodium falciparum, against fresh Ugandan P. falciparum isolates, and in murine malaria models. To gain mechanistic insights, we selected in vitro for P. falciparum isolates resistant to AN13762. In all of 11 independent selections with 100 to 200 nM AN13762, the 50% inhibitory concentration (IC50) increased from 18-118 nM to 180-890 nM, and whole-genome sequencing of resistant parasites demonstrated mutations in prodrug activation and resistance esterase (PfPARE). The introduction of PfPARE mutations led to a similar level of resistance, and recombinant PfPARE hydrolyzed AN13762 to the benzoxaborole AN10248, which has activity similar to that of AN13762 but for which selection of resistance was not readily achieved. Parasites further selected with micromolar concentrations of AN13762 developed higher-level resistance (IC50, 1.9 to 5.0 µM), and sequencing revealed additional mutations in any of 5 genes, 4 of which were associated with ubiquitination/sumoylation enzyme cascades; the introduction of one of these mutations, in SUMO-activating enzyme subunit 2, led to a similar level of resistance. The other gene mutated in highly resistant parasites encodes the P. falciparum cleavage and specificity factor homolog PfCPSF3, previously identified as the antimalarial target of another benzoxaborole. Parasites selected for resistance to AN13762 were cross-resistant with a close analog, AN13956, but not with standard antimalarials, AN10248, or other benzoxaboroles known to have different P. falciparum targets. Thus, AN13762 appears to have a novel mechanism of antimalarial action and multiple mechanisms of resistance, including loss of function of PfPARE preventing activation to AN10248, followed by alterations in ubiquitination/sumoylation pathways or PfCPSF3.IMPORTANCE Benzoxaboroles are under study as potential new drugs to treat malaria. One benzoxaborole, AN13762, has potent activity and promising features, but its mechanisms of action and resistance are unknown. To gain insights into these mechanisms, we cultured malaria parasites with nonlethal concentrations of AN13762 and generated parasites with varied levels of resistance. Parasites with low-level resistance had mutations in PfPARE, which processes AN13762 into an active metabolite; PfPARE mutations prevented this processing. Parasites with high-level resistance had mutations in any of a number of enzymes, mostly those involved in stress responses. Parasites selected for AN13762 resistance were not resistant to other antimalarials, suggesting novel mechanisms of action and resistance for AN13762, a valuable feature for a new class of antimalarial drugs.


Asunto(s)
Antimaláricos/farmacología , Resistencia a Medicamentos , Malaria Falciparum/parasitología , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/metabolismo , Antimaláricos/química , Cromatografía Liquida , Análisis Mutacional de ADN , Humanos , Espectrometría de Masas , Estructura Molecular , Mutación , Polimorfismo de Nucleótido Simple , Sumoilación/efectos de los fármacos , Ubiquitinación/efectos de los fármacos
17.
Future Med Chem ; 12(3): 193-205, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31802710

RESUMEN

Aim: WHO Malaria report 2017 estimated 216 million cases of malaria and 445,000 deaths worldwide, with 91% of deaths affecting the African region. Results/methodology: Microwave promoted the synthesis of cycloalkyl amine substituted isoindoline-1,3-dione-4-aminoquinolines was urbanized for evaluating their antiplasmodial activities. Compound with the optimum combination of propyl chain length and hydroxyethyl piperazine proved to be the most potent among the synthesized scaffolds against chloroquine-resistant W2 strain of Plasmodium falciparum with an IC50 value of 0.006 µM. Heme-binding along with density functional theory studies were further carried out in order to delineate the mechanism of action of the most active compound. Conclusion: The synthesized scaffold can act as a therapeutic template for further synthetic modifications toward the search for a new antimalarial agent.


Asunto(s)
Aminoquinolinas/farmacología , Antimaláricos/farmacología , Teoría Funcional de la Densidad , Isoindoles/farmacología , Malaria/tratamiento farmacológico , Plasmodium falciparum/efectos de los fármacos , Aminoquinolinas/síntesis química , Aminoquinolinas/química , Antimaláricos/síntesis química , Antimaláricos/química , Sitios de Unión/efectos de los fármacos , Diseño de Fármacos , Hemo/química , Humanos , Isoindoles/síntesis química , Isoindoles/química , Microondas , Estructura Molecular , Pruebas de Sensibilidad Parasitaria
18.
Bioorg Med Chem Lett ; 30(2): 126810, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31740250

RESUMEN

A series of 1H-1,2,3-triazole/acylhydrazide-tethered tetrahydro-ß-carboline-4-aminoquinoline conjugates was synthesized with an aim to study their anti-plasmodial structure-activity relationship. The presence of 1H-1,2,3-triazole-core along with a flexible alkyl chain length on aminoquinoline core has favourable influence on the anti-plasmodial activity against Chloroquine-resistant W2 strain of P. falciparum while the introduction of hydrazine core not only diminished the activities but also resulted in increased cytotoxicity against mammalian Vero cells.


Asunto(s)
Aminoquinolinas/síntesis química , Hidrazinas/síntesis química , Humanos , Estructura Molecular , Plasmodium falciparum/efectos de los fármacos , Relación Estructura-Actividad
19.
Bioorg Chem ; 88: 102912, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30991190

RESUMEN

Synthesis of C-5-substituted 1,3-dioxoisoindoline-4-aminoquinolines having amide group as a spacer was developed with an intent to evaluate their antiplasmodial activities. The synthesized dioxoisoindoline-aminoquinolines tethered with ß-alanine as a spacer and secondary amine as substituent displayed good anti-plasmodial activities. Compound 7j, with an optimum combination of ß-alanine and an ethyl chain length as linker along with diethylamine as the secondary amine counterpart at dioxoisoindoline proved to be most potent and non-cytotoxic with IC50 of 0.097 µM against W2 strain of P. falciparum and a selective index of >2000.


Asunto(s)
Aminoquinolinas/farmacología , Antimaláricos/farmacología , Ftalimidas/farmacología , Aminoquinolinas/síntesis química , Aminoquinolinas/toxicidad , Animales , Antimaláricos/síntesis química , Antimaláricos/toxicidad , Supervivencia Celular/efectos de los fármacos , Chlorocebus aethiops , Estructura Molecular , Pruebas de Sensibilidad Parasitaria , Ftalimidas/síntesis química , Ftalimidas/toxicidad , Plasmodium falciparum/efectos de los fármacos , Relación Estructura-Actividad , Células Vero
20.
Nat Commun ; 8: 14574, 2017 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-28262680

RESUMEN

Benzoxaboroles are effective against bacterial, fungal and protozoan pathogens. We report potent activity of the benzoxaborole AN3661 against Plasmodium falciparum laboratory-adapted strains (mean IC50 32 nM), Ugandan field isolates (mean ex vivo IC50 64 nM), and murine P. berghei and P. falciparum infections (day 4 ED90 0.34 and 0.57 mg kg-1, respectively). Multiple P. falciparum lines selected in vitro for resistance to AN3661 harboured point mutations in pfcpsf3, which encodes a homologue of mammalian cleavage and polyadenylation specificity factor subunit 3 (CPSF-73 or CPSF3). CRISPR-Cas9-mediated introduction of pfcpsf3 mutations into parental lines recapitulated AN3661 resistance. PfCPSF3 homology models placed these mutations in the active site, where AN3661 is predicted to bind. Transcripts for three trophozoite-expressed genes were lost in AN3661-treated trophozoites, which was not observed in parasites selected or engineered for AN3661 resistance. Our results identify the pre-mRNA processing factor PfCPSF3 as a promising antimalarial drug target.


Asunto(s)
Antimaláricos/farmacología , Compuestos de Boro/farmacología , Factor de Especificidad de Desdoblamiento y Poliadenilación/química , Plasmodium falciparum/efectos de los fármacos , Proteínas Protozoarias/química , ARN Mensajero/genética , Secuencia de Aminoácidos , Animales , Antimaláricos/síntesis química , Compuestos de Boro/síntesis química , Sistemas CRISPR-Cas , Dominio Catalítico , Factor de Especificidad de Desdoblamiento y Poliadenilación/antagonistas & inhibidores , Factor de Especificidad de Desdoblamiento y Poliadenilación/genética , Factor de Especificidad de Desdoblamiento y Poliadenilación/metabolismo , Resistencia a Medicamentos/genética , Eritrocitos/efectos de los fármacos , Eritrocitos/parasitología , Edición Génica/métodos , Humanos , Malaria/tratamiento farmacológico , Malaria/parasitología , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/parasitología , Ratones , Simulación del Acoplamiento Molecular , Mutación , Plasmodium berghei/efectos de los fármacos , Plasmodium berghei/genética , Plasmodium berghei/crecimiento & desarrollo , Plasmodium berghei/metabolismo , Plasmodium falciparum/genética , Plasmodium falciparum/crecimiento & desarrollo , Plasmodium falciparum/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , Proteínas Protozoarias/antagonistas & inhibidores , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , ARN Mensajero/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Trofozoítos/efectos de los fármacos , Trofozoítos/genética , Trofozoítos/crecimiento & desarrollo , Trofozoítos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA