RESUMEN
Seabirds are often considered sentinel species of marine ecosystems, and their blood and eggs utilized to monitor local environmental contaminations. Most seabirds breeding in the Arctic are migratory and thus are exposed to geographically distinct sources of contamination throughout the year, including per- and polyfluoroalkyl substances (PFAS). Despite the abundance and high toxicity of PFAS, little is known about whether blood concentrations at breeding sites reliably reflect local contamination or exposure in distant wintering areas. We tested this by combining movement tracking data and PFAS analysis (nine compounds) from the blood of prelaying black-legged kittiwakes (Rissa tridactyla) nesting in Arctic Norway (Svalbard). PFAS burden before egg laying varied with the latitude of the wintering area and was negatively associated with time upon return of individuals at the Arctic nesting site. Kittiwakes (n = 64) wintering farther south carried lighter burdens of shorter-chain perfluoroalkyl carboxylates (PFCAs, C9-C12) and heavier burdens of longer chain PFCAs (C13-C14) and perfluorooctanesulfonic acid compared to those wintering farther north. Thus, blood concentrations prior to egg laying still reflected the uptake during the previous wintering stage, suggesting that migratory seabirds can act as biovectors of PFAS to Arctic nesting sites.
Asunto(s)
Migración Animal , Charadriiformes , Fluorocarburos , Estaciones del Año , Animales , Regiones Árticas , Fluorocarburos/sangre , Fluorocarburos/metabolismo , Charadriiformes/metabolismo , Monitoreo del Ambiente , Comportamiento de Nidificación , Noruega , Aves/metabolismo , FemeninoRESUMEN
In seasonal environments, the fitness of animals depends upon the successful integration of life-history stages throughout their annual cycle. Failing to do so can lead to negative carry-over effects where individuals are transitioning into the next season in different states, consequently affecting their future performance. However, carry-over effects can be masked by individual quality when individuals vary in their efficiency at acquiring resources year after year (i.e. 'quality'), leading to cross-seasonal consistency in individual performance. Here we investigated the relative importance of carry-over effects and individual quality in determining cross-seasonal interactions and consequences for breeding success over the full annual cycle of a migratory seabird (black-legged kittiwake Rissa tridactyla). We monitored the reproduction and annual movement of kittiwakes over 13 years using geolocators to estimate their breeding success, distribution and winter energy expenditure. We combined this with an experimental approach (clutch removal experiment, 2 years) to manipulate the reproductive effort irrespective of individual quality. Piecewise path analyses showed that successful breeders reproduced earlier and were more likely to breed successfully again the following year. This positive interaction among consecutive breeding stages disappeared after controlling for individual quality, suggesting that quality was dominant in determining seasonal interactions. Moreover, controlling experimentally for individual quality revealed underlying carry-over effects that were otherwise masked by quality, with breeding costs paid in higher energy expenditure and delayed onset of reproduction. We highlight the need to combine an experimental approach along with long-term data while assessing apparent carry-over effects in wild animals, and their potential impact on fitness and population demography.
RESUMEN
Seasonally abundant arthropods are a crucial food source for many migratory birds that breed in the Arctic. In cold environments, the growth and emergence of arthropods are particularly tied to temperature. Thus, the phenology of arthropods is anticipated to undergo a rapid change in response to a warming climate, potentially leading to a trophic mismatch between migratory insectivorous birds and their prey. Using data from 19 sites spanning a wide temperature gradient from the Subarctic to the High Arctic, we investigated the effects of temperature on the phenology and biomass of arthropods available to shorebirds during their short breeding season at high latitudes. We hypothesized that prolonged exposure to warmer summer temperatures would generate earlier peaks in arthropod biomass, as well as higher peak and seasonal biomass. Across the temperature gradient encompassed by our study sites (>10°C in average summer temperatures), we found a 3-day shift in average peak date for every increment of 80 cumulative thawing degree-days. Interestingly, we found a linear relationship between temperature and arthropod biomass only below temperature thresholds. Higher temperatures were associated with higher peak and seasonal biomass below 106 and 177 cumulative thawing degree-days, respectively, between June 5 and July 15. Beyond these thresholds, no relationship was observed between temperature and arthropod biomass. Our results suggest that prolonged exposure to elevated temperatures can positively influence prey availability for some arctic birds. This positive effect could, in part, stem from changes in arthropod assemblages and may reduce the risk of trophic mismatch.
Asunto(s)
Artrópodos , Biomasa , Estaciones del Año , Temperatura , Animales , Regiones Árticas , Artrópodos/fisiología , Cambio Climático , Cadena Alimentaria , Charadriiformes/fisiología , Migración AnimalRESUMEN
Indirect interactions are widespread among prey species that share a common predator, but the underlying mechanisms driving these interactions are often unclear, and our ability to predict their outcome is limited. Changes in behavioural traits that impact predator space use could be a key proximal mechanism mediating indirect interactions, but there is little empirical evidence of the causes and consequences of such behavioural-numerical response in multispecies systems. Here, we investigate the complex ecological relationships between seven prey species sharing a common predator. We used a path analysis approach on a comprehensive 9-year data set simultaneously tracking predator space use, prey densities and prey mortality rate on key species of a simplified Arctic food web. We show that high availability of a clumped and spatially predictable prey (goose eggs) leads to a twofold reduction in predator (arctic fox) home range size, which increases local predator density and strongly decreases nest survival of an incidental prey (American golden plover). On the contrary, a scattered cyclic prey with potentially lower spatial predictability (lemming) had a weaker effect on fox space use and an overall positive impact on the survival of incidental prey. These contrasting effects underline the importance of studying behavioural responses of predators in multiprey systems and to explicitly integrate behavioural-numerical responses in multispecies predator-prey models.
Asunto(s)
Fenómenos de Retorno al Lugar Habitual , Conducta Predatoria , Animales , Conducta Predatoria/fisiología , Cadena Alimentaria , Gansos/fisiología , Zorros/fisiologíaRESUMEN
Atomically thin platinum diselenide (PtSe2) films are promising for applications in the fields of electronics, spintronics, and photodetectors owing to their tunable electronic structure and high carrier mobility. Using terahertz (THz) spectroscopy techniques, we investigated the layer-dependent semiconducting-to-metallic phase transition and associated intrinsic carrier dynamics in large-scale PtSe2 films grown by molecular beam epitaxy. The uniformity of large-scale PtSe2 films was characterized by spatially and frequency-resolved THz-based sheet conductivity mapping. Furthermore, we use an optical-pump-THz-probe technique to study the transport dynamics of photoexcited carriers and explore light-induced intergrain carrier transport in PtSe2 films. We demonstrate large-scale THz-based mapping of the electrical properties of transition metal dichalcogenide films and show that the two noncontact THz-based approaches provide insight in the spatial and temporal properties of PtSe2 films.
RESUMEN
The growth of transition-metal dichalcogenides (TMDCs) has been performed so far using most established thin-film growth techniques (e.g., vapor phase transport, chemical vapor deposition, molecular beam epitaxy, etc.). However, because there exists no self-limiting mechanism for the growth of TMDCs, none of these techniques allows precise control of the number of TMDC layers over large substrate areas. Here, we explore the ion implantation of the parent TMDC atoms into a chemically neutral substrate for the synthesis of TMDC films. The idea is that once all of the ion-implanted species have reacted together, the synthesis reaction stops, thereby effectively stopping growth. In other words, even if there is no self-limiting mechanism, growth stops when the nutrients are exhausted. We have co-implanted Mo and S ions into c-oriented sapphire substrates using various doses corresponding to 1- to 5-layer atom counts. We find that the subsurface region of the sapphire substrates is amorphized by the ion implantation process, at least for implanted doses of 2-layer atom counts and over. For all doses, we have observed the formation of MoS2 material inside the sapphire after postimplantation annealing between 800 and 850 °C. We report that the order of implantation (i.e., whether S or Mo is implanted first) is an important parameter. More precisely, samples for which S is implanted first tend to yield thin crystals with a large lateral extension (more than 200 nm for 5-layer doses) and mainly located at the interface between the amorphized and crystalline sapphire. When Mo is first implanted, the MoS2 crystals still predominantly appear at the amorphous-crystalline interface (which is much rougher), but they are much thicker, suggesting a different nucleation mechanism.
RESUMEN
Global climate change is causing abiotic shifts such as higher air and ocean temperatures, and disappearing sea ice in Arctic ecosystems. These changes influence Arctic-breeding seabird foraging ecology by altering prey availability and selection, affecting individual body condition, reproductive success, and exposure to contaminants such as mercury (Hg). The cumulative effects of alterations to foraging ecology and Hg exposure may interactively alter the secretion of key reproductive hormones such as prolactin (PRL), important for parental attachment to eggs and offspring and overall reproductive success. However, more research is needed to investigate the relationships between these potential links. Using data collected from 106 incubating female common eiders (Somateria mollissima) at six Arctic and sub-Arctic colonies, we examined whether the relationship between individual foraging ecology (assessed using δ13C, δ15N) and total Hg (THg) exposure predicted PRL levels. We found a significant, complex interaction between δ13C, δ15N and THg on PRL, suggesting that individuals cumulatively foraging at lower trophic levels, in phytoplankton-dominant environments, and with the highest THg levels had the most constant significant relationship PRL levels. Cumulatively, these three interactive variables resulted in lowered PRL. Overall, results demonstrate the potential downstream and cumulative implications of environmentally induced changes in foraging ecology, in combination with THg exposure, on hormones known to influence reproductive success in seabirds. These findings are notable in the context of continuing environmental and food web changes in Arctic systems, which may make seabird populations more susceptible to ongoing stressors.
Asunto(s)
Ecosistema , Mercurio , Humanos , Animales , Femenino , Responsabilidad Parental , Patos , Cadena Alimentaria , Organismos Acuáticos , Regiones Árticas , Hormonas , Monitoreo del Ambiente/métodosRESUMEN
Background: Studying the anti-predatory behavior of mammals represents an important challenge, especially for fossorial small mammals that hide in burrows. In the Arctic, such behaviors are critical to the survival of lemmings considering that predation risks are high every summer. Because detailed information about how lemmings use burrows as hideouts is still lacking, we developed a 1.59 g photosensitive collar to record any event of a small mammal moving between a dark area (e.g., burrow) and a bright area (e.g., outside the burrow). Tests of how collars affected lemming behavior were conducted in captivity in Cambridge Bay, Nunavut, Canada, in November 2019 and field tests were conducted on Bylot Island, Nunavut, Canada, in August 2021. Results: The device was made of two chemical batteries and a printed circuit board (PCB) equipped with a photosensor and a real-time clock that recorded amplitude transient thresholds of light (lux) continuously. In accordance with ethical use of such devices, we verified that no abnormal loss of body mass was observed in captive or free-ranging lemmings, and no difference in recapture rates were observed between those with and without a collar, though we could not test this for periods longer than 108 h. Measurements of light intensities revealed consistent patterns with high lux levels at mid-day and lowest during the night. Lemmings showed clearly defined behavioral patterns alternating between periods outside and inside burrows. Despite 24-h daylight in the middle of the summer, August nighttime (i.e., 11 PM to 4 AM) lux levels were insufficient for amplitude transient thresholds to be reached. Conclusion: By taking advantage of the long periods of daylight in the Arctic, such technology is very promising as it sets new bases for passive recording of behavioral parameters and builds on the prospect of further miniaturization of batteries and PCBs.
RESUMEN
Neonicotinoids are insecticides widely used as seed treatments that appear to have multiple negative effects on birds at a diversity of biological scales. Adult birds exposed to a low dose of imidacloprid, one of the most commonly used neonicotinoids, presented reduced fat stores, delayed migration and potentially altered orientation. However, little is known on the effect of imidacloprid on birds growth rate despite studies that have documented disruptive effects of low imidacloprid doses on thyroid gland communication. We performed a [Formula: see text] factorial design experiment in Zebra finches, in which nestling birds were exposed to a very low dose (0.205 mg kg body [Formula: see text]) of imidacloprid combined with food restriction during posthatch development. During the early developmental period, imidacloprid exposure resulted in an improvement of body condition index in treated nestlings relative to controls. Imidacloprid also led to compensatory growth in food restricted nestlings. This early life neonicotinoid exposure also carried over to adult age, with exposed birds showing higher lean mass and basal metabolic rate than controls at ages of 90-800 days. This study presents the first evidence that very low-dose neonicotinoid exposure during early life can permanently alter adult phenotype in birds.
Asunto(s)
Neonicotinoides/farmacología , Animales , Neonicotinoides/metabolismo , Pájaros Cantores/crecimiento & desarrollo , Pájaros Cantores/metabolismoRESUMEN
Overabundant species can have major impacts on their habitat and induce trophic cascades within ecosystems. In North America, the overabundant greater snow goose (Anser caerulescens atlanticus) has been successfully controlled through special spring hunting regulations since 1999. Hunting is a source of mortality but also of disturbance, which affects the behavior and nutrient storage dynamics of staging snow geese. In 2020, the lockdown imposed by the COVID19 pandemic reduced hunting activity during their migratory stopover in Québec by at least 31%. This provided a unique opportunity to assess the effects of a sudden reduction in hunting disturbance on geese. We used long-term data on body mass combined with movement data from GPS-tracked birds in 2019 and 2020 to assess the effects of the 2020 lockdown on the spring body condition and behavior of greater snow geese. Body condition was higher in 2020 than in all years since the inception of spring hunting in 1999, except for 2019. However, in 2020 geese reached maximal body condition earlier during the staging period than in any other year and reduced by half time spent feeding in highly profitable but risky agricultural habitat in late spring compared to 2019. Although our study was not designed to evaluate the effects of the lockdown, the associated reduction in disturbance in 2020 supports the hypothesis that hunting-related disturbance negatively affects foraging efficiency and body condition in geese. Since spring body condition is related to subsequent breeding success, the lockdown could increase productivity in this overabundant population.
RESUMEN
Models incorporating seasonality are necessary to fully assess the impact of global warming on Arctic communities. Seasonal migrations are a key component of Arctic food webs that still elude current theories predicting a single community equilibrium. We develop a multi-season model of predator-prey dynamics using a hybrid dynamical systems framework applied to a simplified tundra food web (lemming-fox-goose-owl). Hybrid systems models can accommodate multiple equilibria, which is a basic requirement for modelling food webs whose topology changes with season. We demonstrate that our model can generate multi-annual cycling in lemming dynamics, solely from a combined effect of seasonality and state-dependent behaviour. We compare our multi-season model to a static model of the predator-prey community dynamics and study the interactions between species. Interestingly, including seasonality reveals indirect interactions between migrants and residents not captured by the static model. Further, we find that the direction and magnitude of interactions between two species are not necessarily accurate using only summer time-series. Our study demonstrates the need for the development of multi-season models and provides the tools to analyse them. Integrating seasonality in food web modelling is a vital step to improve predictions about the impacts of climate change on ecosystem functioning. This article is part of the theme issue 'The changing Arctic Ocean: consequences for biological communities, biogeochemical processes and ecosystem functioning'.
Asunto(s)
Migración Animal , Cadena Alimentaria , Modelos Biológicos , Tundra , Animales , Regiones Árticas , Arvicolinae , Biomasa , Zorros , Gansos , Calentamiento Global , Nunavut , Estaciones del Año , EstrigiformesRESUMEN
We report compact, scalable, high-performance, waveguide integrated graphene-based photodetectors (GPDs) for telecom and datacom applications, not affected by dark current. To exploit the photothermoelectric (PTE) effect, our devices rely on a graphene/polymer/graphene stack with static top split gates. The polymeric dielectric, poly(vinyl alcohol) (PVA), allows us to preserve graphene quality and to generate a controllable p-n junction. Both graphene layers are fabricated using aligned single-crystal graphene arrays grown by chemical vapor deposition. The use of PVA yields a low charge inhomogeneity â¼8 × 1010 cm-2 at the charge neutrality point, and a large Seebeck coefficient â¼140 µV K-1, enhancing the PTE effect. Our devices are the fastest GPDs operating with zero dark current, showing a flat frequency response up to 67 GHz without roll-off. This performance is achieved on a passive, low-cost, photonic platform, and does not rely on nanoscale plasmonic structures. This, combined with scalability and ease of integration, makes our GPDs a promising building block for next-generation optical communication devices.
RESUMEN
Predator-prey interactions in natural ecosystems generate complex food webs that have a simple universal body-size architecture where predators are systematically larger than their prey. Food-web theory shows that the highest predator-prey body-mass ratios found in natural food webs may be especially important because they create weak interactions with slow dynamics that stabilize communities against perturbations and maintain ecosystem functioning. Identifying these vital interactions in real communities typically requires arduous identification of interactions in complex food webs. Here, we overcome this obstacle by developing predator-trait models to predict average body-mass ratios based on a database comprising 290 food webs from freshwater, marine and terrestrial ecosystems across all continents. We analysed how species traits constrain body-size architecture by changing the slope of the predator-prey body-mass scaling. Across ecosystems, we found high body-mass ratios for predator groups with specific trait combinations including (1) small vertebrates and (2) large swimming or flying predators. Including the metabolic and movement types of predators increased the accuracy of predicting which species are engaged in high body-mass ratio interactions. We demonstrate that species traits explain striking patterns in the body-size architecture of natural food webs that underpin the stability and functioning of ecosystems, paving the way for community-level management of the most complex natural ecosystems.
Asunto(s)
Ecosistema , Cadena Alimentaria , Animales , Tamaño Corporal , Conducta Predatoria , VertebradosRESUMEN
To invest in energetically demanding life history stages, individuals require a substantial amount of resources. Physiological traits, particularly those related to energetics, can be useful for examining variation in life history decisions and trade-offs because they result from individual responses to environmental variation. Leptin is a protein hormone found in mammals that is proportional to the amount of endogenous fat stores within an individual. Recently, researchers have confirmed that a mammalian leptin analogue (MLA), based on the mammalian sequence of leptin, is present with associated receptors and proteins in avian species, with an inhibitory effect on foraging and body mass gain at high circulating levels. While MLA has been both quantified and manipulated in avian species, little is currently known regarding whether plasma MLA in wild-living species and individuals is associated with key reproductive decisions. We quantified plasma MLA in wild, Arctic-nesting female common eiders (Somateria mollissima) at arrival on the breeding grounds and followed them to determine subsequent breeding propensity, and reproductive phenology, investment, and success. Common eiders are capital-income breeding birds that require the accumulation of substantial fat stores to initiate laying and successfully complete incubation. We found that females with lower plasma MLA initiated breeding earlier and in a shorter period of time. However, we found no links between plasma MLA levels and breeding propensity, clutch size, or reproductive success. Although little is still known about plasma MLA, based on these results and its role in influencing foraging behaviors and condition gain, plasma MLA appears to be closely linked to reproductive timing and is therefore likely to underlie trade-offs surrounding life history decisions.
RESUMEN
Indirect impacts of climate change, mediated by new species interactions (including pathogens or parasites) will likely be key drivers of biodiversity reorganization. In addition, direct effects of extreme weather events remain understudied. Simultaneous investigation of the significance of ectoparasites on host populations and extreme weather events is lacking, especially in the Arctic. Here we document the consequences of recent black fly outbreaks and extreme precipitation events on the reproductive output of an arctic top predator, the peregrine falcon (Falco peregrinus tundrius) nesting at the northern range limit of ornithophilic black flies in Nunavut, Canada. Overall, black fly outbreaks and heavy rain reduced annual nestling survival by up to 30% and 50% respectively. High mortality caused by ectoparasites followed record-breaking spring snow precipitation, which likely increased stream discharge and nutrient runoff, two key parameters involved in growth and survival of black fly larvae. Using the RCP4.5 intermediate climate scenario run under the Canadian Global Climate Model, we anticipate a northward expansion of black fly distribution in Arctic regions. Our case study demonstrates that, in the context of climate change, extreme weather events can have substantial direct and indirect effects on reproductive output of an arctic top-predator population.
Asunto(s)
Enfermedades de las Aves/parasitología , Infestaciones Ectoparasitarias , Falconiformes/parasitología , Modelos Biológicos , Reproducción , Simuliidae , Animales , Regiones Árticas , Canadá , Cambio Climático , Femenino , Masculino , Estaciones del AñoRESUMEN
For migratory species, acquisition and allocation of energy after arrival on the breeding grounds largely determine reproductive decisions. Few studies have investigated underlying physiological mechanisms driving variation in breeding phenology so far. We linked physiological state to individual timing of breeding in pre-laying arctic-nesting female peregrine falcons (Falco peregrinus tundrius). We captured females from two populations 2-20 days before egg-laying to assess plasma concentration of ß-hydroxybutyric acid (BUTY) and triglyceride (TRIG), two metabolites known to reflect short-term changes in fasting and fattening rate, respectively. We also assessed baseline corticosterone (CORTb), a hormone that mediates energy allocation, and the scaled mass index (SMI) as an indicator of somatic body reserves. Plasma BUTY was slightly higher during the pre-recruiting period compared to the period of rapid follicular growth, indicating a reduction in catabolism of lipid reserves before investment in follicle development. Conversely, TRIG levels increased in pre-recruiting females, and best-predicted individual variation in pre-laying interval and lay date. A marked increase in CORTb occurred concomitantly with the onset of rapid follicle growth. SMI was highly variable possibly reflecting variation in food availability or individuals at different stages. Results suggest that (1) lower rates of pre-laying fattening and/or lower mobilization rate of lipoproteins to ovarian follicles delayed laying, and (2) an elevation in pre-laying CORTb may result from, or be required to compensate for, the energetic costs of egg production. Results of this study illustrate how variation in the allocation of energy before laying can influence individual fitness-related reproductive decisions.
Asunto(s)
Cruzamiento , Rapaces , Animales , Regiones Árticas , Corticosterona , ReproducciónRESUMEN
The influence of variation in individual state on key reproductive decisions impacting fitness is well appreciated in evolutionary ecology. Rowe et al. (1994) developed a condition-dependent individual optimization model predicting that three key factors impact the ability of migratory female birds to individually optimize breeding phenology to maximize fitness in seasonal environments: arrival condition, arrival date, and ability to gain in condition on the breeding grounds. While empirical studies have confirmed that greater arrival body mass and earlier arrival dates result in earlier laying, no study has assessed whether individual variation in energetic management of condition gain effects this key fitness-related decision. Using an 8-year data set from over 350 prebreeding female Arctic common eiders (Somateria mollissima), we tested this component of the model by examining whether individual variation in two physiological traits influencing energetic management (plasma triglycerides: physiological fattening rate; baseline corticosterone: energetic demand) predicted individual variation in breeding phenology after controlling for arrival date and body mass. As predicted by the optimization model, individuals with higher fattening rates and lower energetic demand had the earliest breeding phenology (shortest delays between arrival and laying; earliest laying dates). Our results are the first to empirically determine that individual flexibility in prebreeding energetic management influences key fitness-related reproductive decisions, suggesting that individuals have the capacity to optimally manage reproductive investment.
Asunto(s)
Anseriformes , Aptitud Genética , Reproducción , Animales , Regiones Árticas , Corticosterona , FemeninoRESUMEN
Understanding the mechanisms responsible for stability and persistence of ecosystems is one of the greatest challenges in ecology. Robert May showed that, contrary to intuition, complex randomly built ecosystems are less likely to be stable than simpler ones. Few attempts have been tried to test May's prediction empirically, and we still ignore what is the actual complexity-stability relationship in natural ecosystems. Here we perform a stability analysis of 116 quantitative food webs sampled worldwide. We find that classic descriptors of complexity (species richness, connectance and interaction strength) are not associated with stability in empirical food webs. Further analysis reveals that a correlation between the effects of predators on prey and those of prey on predators, combined with a high frequency of weak interactions, stabilize food web dynamics relative to the random expectation. We conclude that empirical food webs have several non-random properties contributing to the absence of a complexity-stability relationship.
RESUMEN
The remarkable properties of graphene, such as broadband optical absorption, high carrier mobility, and short photogenerated carrier lifetime, are particularly attractive for high-frequency optoelectronic devices operating at 1.55 µm telecom wavelength. Moreover, the possibility to transfer graphene on a silicon substrate using a complementary metal-oxide-semiconductor-compatible process opens the ability to integrate electronics and optics on a single cost-effective chip. Here, we report an optoelectronic mixer based on chemical vapor-deposited graphene transferred on an oxidized silicon substrate. Our device consists in a coplanar waveguide that integrates a graphene channel, passivated with an atomic layer-deposited Al2O3 film. With this new structure, 30 GHz optoelectronic mixing in commercially available graphene is demonstrated for the first time. In particular, using a 30 GHz intensity-modulated optical signal and a 29.9 GHz electrical signal, we show frequency downconversion to 100 MHz. These results open promising perspectives in the domain of optoelectronics for radar and radio-communication systems.
RESUMEN
Integrative biologists have long appreciated that the effective acquisition and management of energy prior to breeding should strongly influence fitness-related reproductive decisions (timing of breeding and reproductive investment). However, because of the difficulty in capturing pre-breeding individuals, and the tendency towards abandonment of reproduction after capture, we know little about the underlying mechanisms of these life-history decisions. Over 10 years, we captured free-living, arctic-breeding common eiders (Somateria mollissima) up to 3 weeks before investment in reproduction. We examined and characterized physiological parameters predicted to influence energetic management by sampling baseline plasma glucocorticoids (i.e., corticosterone), very-low-density lipoprotein (VLDL), and vitellogenin (VTG) for their respective roles in mediating energetic balance, rate of condition gain (physiological fattening rate) and reproductive investment. Baseline corticosterone increased significantly from arrival to the initiation of reproductive investment (period of rapid follicular growth; RFG), and showed a positive relationship with body mass, indicating that this hormone may stimulate foraging behaviour to facilitate both fat deposition and investment in egg production. In support of this, we found that VLDL increased throughout the pre-breeding period, peaking as predicted during RFG. Female eiders exhibited unprecedentedly high levels of VTG well before their theoretical RFG period, a potential strategy for pre-emptively depositing available protein stores into follicles while females are simultaneously fattening. This study provides some of the first data examining the temporal dynamics and interaction of the energetic mechanisms thought to be at the heart of individual variation in reproductive decisions and success in many vertebrate species.