Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Comput Struct Biotechnol J ; 19: 555-567, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33510861

RESUMEN

Lytic polysaccharide monooxygenases (LPMOs) are enzymes that bind polysaccharides followed by an (oxidative) disruption of the polysaccharide surface, thereby boosting depolymerization. The binding process between the LPMO catalytic domain and polysaccharide is key to the mechanism and establishing structure-function relationships for this binding is therefore crucial. The hyperfine coupling constants (HFCs) from EPR spectroscopy have proven useful for this purpose. Unfortunately, EPR does not provide direct structural data and therefore the experimental EPR parameters have to be supported with parameters calculated with density functional theory. Yet, calculated HFCs are extremely sensitive to the employed computational setup. Using the LPMO Ls(AA9)A catalytic domain, we here quantify the importance of several choices in the computational setup, ranging from the use of specialized basis, the underlying structures, and the employed exchange-correlation functional. We show that specialized basis sets are an absolute necessity, and also that care has to be taken in the optimization of the underlying structure: only by allowing large parts of the protein around the active site to structurally relax could we obtain results that uniformly reproduced experimental trends. We compare our results to previously published X-ray structures and experimental HFCs for Ls(AA9)A as well as to recent experimental/theoretical results for another (AA10) family of LPMOs.

2.
Sci Rep ; 10(1): 16369, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-33004835

RESUMEN

Lytic polysaccharide monooxygenase (LPMO) and copper binding protein CopC share a similar mononuclear copper site. This site is defined by an N-terminal histidine and a second internal histidine side chain in a configuration called the histidine brace. To understand better the determinants of reactivity, the biochemical and structural properties of a well-described cellulose-specific LPMO from Thermoascus aurantiacus (TaAA9A) is compared with that of CopC from Pseudomonas fluorescens (PfCopC) and with the LPMO-like protein Bim1 from Cryptococcus neoformans. PfCopC is not reduced by ascorbate but is a very strong Cu(II) chelator due to residues that interacts with the N-terminus. This first biochemical characterization of Bim1 shows that it is not redox active, but very sensitive to H2O2, which accelerates the release of Cu ions from the protein. TaAA9A oxidizes ascorbate at a rate similar to free copper but through a mechanism that produce fewer reactive oxygen species. These three biologically relevant examples emphasize the diversity in how the proteinaceous environment control reactivity of Cu with O2.


Asunto(s)
Cobre/metabolismo , Histidina/metabolismo , Modelos Moleculares , Oxigenasas/metabolismo , Escherichia coli , Peróxido de Hidrógeno/metabolismo , Espectroscopía de Resonancia Magnética/métodos , Oxidación-Reducción
3.
Nat Chem Biol ; 16(3): 345-350, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31932718

RESUMEN

Lytic polysaccharide monooxygenases (LPMOs) are copper-containing enzymes that play a key role in the oxidative degradation of various biopolymers such as cellulose and chitin. While hunting for new LPMOs, we identified a new family of proteins, defined here as X325, in various fungal lineages. The three-dimensional structure of X325 revealed an overall LPMO fold and a His brace with an additional Asp ligand to Cu(II). Although LPMO-type activity of X325 members was initially expected, we demonstrated that X325 members do not perform oxidative cleavage of polysaccharides, establishing that X325s are not LPMOs. Investigations of the biological role of X325 in the ectomycorrhizal fungus Laccaria bicolor revealed exposure of the X325 protein at the interface between fungal hyphae and tree rootlet cells. Our results provide insights into a family of copper-containing proteins, which is widespread in the fungal kingdom and is evolutionarily related to LPMOs, but has diverged to biological functions other than polysaccharide degradation.


Asunto(s)
Cobre/metabolismo , Oxigenasas de Función Mixta/química , Oxigenasas de Función Mixta/metabolismo , Sitios de Unión , Celulosa/metabolismo , Quitina/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Hongos/metabolismo , Oxigenasas de Función Mixta/ultraestructura , Oxidación-Reducción , Filogenia , Polisacáridos/metabolismo
4.
Extremophiles ; 19(2): 407-15, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25605536

RESUMEN

The enzyme 5-phosphoribosyl-1-α-diphosphate (PRPP) synthase (EC 2.7.6.1) catalyses the Mg(2+)-dependent transfer of a diphosphoryl group from ATP to the C1 hydroxyl group of ribose 5-phosphate resulting in the production of PRPP and AMP. A nucleotide sequence specifying Sulfolobus solfataricus PRPP synthase was synthesised in vitro with optimised codon usage for expression in Escherichia coli. Following expression of the gene in E. coli PRPP synthase was purified by heat treatment and ammonium sulphate precipitation and the structure of S. solfataricus PRPP synthase was determined at 2.8 Å resolution. A bent dimer oligomerisation was revealed, which seems to be an abundant feature among PRPP synthases for defining the adenine specificity of the substrate ATP. Molecular replacement was used to determine the S. solfataricus PRPP synthase structure with a monomer subunit of Methanocaldococcus jannaschii PRPP synthase as a search model. The two amino acid sequences share 35 % identity. The resulting asymmetric unit consists of three separated dimers. The protein was co-crystallised in the presence of AMP and ribose 5-phosphate, but in the electron density map of the active site only AMP and a sulphate ion were observed. Sulphate ion, reminiscent of the ammonium sulphate precipitation step of the purification, seems to bind tightly and, therefore, presumably occupies and blocks the ribose 5-phosphate binding site. The activity of S. solfataricus PRPP synthase is independent of phosphate ion.


Asunto(s)
Adenosina Trifosfato/metabolismo , Proteínas Arqueales/química , Ribosa-Fosfato Pirofosfoquinasa/química , Sulfolobus solfataricus/enzimología , Adenina/metabolismo , Secuencia de Aminoácidos , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Sitios de Unión , Datos de Secuencia Molecular , Unión Proteica , Multimerización de Proteína , Ribosa-Fosfato Pirofosfoquinasa/genética , Ribosa-Fosfato Pirofosfoquinasa/metabolismo , Especificidad por Sustrato , Sulfolobus solfataricus/genética
5.
J Mol Biol ; 404(1): 100-11, 2010 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-20851126

RESUMEN

We present here the first experimental evidence for bound substrate in the active site of a rhamnogalacturonan lyase belonging to family 4 of polysaccharide lyases, Aspergillus aculeatus rhamnogalacturonan lyase (RGL4). RGL4 is involved in the degradation of rhamnogalacturonan-I, an important pectic plant cell wall polysaccharide. Based on the previously determined wild-type structure, enzyme variants RGL4_H210A and RGL4_K150A have been produced and characterized both kinetically and structurally, showing that His210 and Lys150 are key active-site residues. Crystals of the RGL4_K150A variant soaked with a rhamnogalacturonan digest gave a clear picture of substrate bound in the -3/+3 subsites. The crystallographic and kinetic studies on RGL4, and structural and sequence comparison to other enzymes in the same and other PL families, enable us to propose a detailed reaction mechanism for the ß-elimination on [-,2)-α-l-rhamno-(1,4)-α-d-galacturonic acid-(1,-]. The mechanism differs significantly from the one established for pectate lyases, in which most often calcium ions are engaged in catalysis.


Asunto(s)
Aspergillus/enzimología , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Polisacárido Liasas/química , Polisacárido Liasas/metabolismo , Sustitución de Aminoácidos , Dominio Catalítico , Cristalografía por Rayos X , Cinética , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Proteínas Mutantes/química , Proteínas Mutantes/genética , Pectinas/química , Pectinas/metabolismo , Unión Proteica , Estructura Terciaria de Proteína
6.
Trends Plant Sci ; 10(2): 79-87, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15708345

RESUMEN

NAC proteins constitute one of the largest families of plant-specific transcription factors, and the family is present in a wide range of land plants. Here, we summarize the biological and molecular functions of the NAC family, paying particular attention to the intricate regulation of NAC protein level and localization, and to the first indications of NAC participation in transcription factor networks. The recent determination of the DNA and protein binding NAC domain structure offers insight into the molecular functions of the protein family. Research into NAC transcription factors has demonstrated the importance of this protein family in the biology of plants and the need for further studies.


Asunto(s)
Proteínas de Plantas/metabolismo , Transactivadores/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Secuencia de Consenso , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Factores de Transcripción/química , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...