Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Front Microbiol ; 15: 1412615, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38952451

RESUMEN

Introduction: Porcine circovirus 2 (PCV-2) is a key pathogen for the swine industry at a global level. Nine genotypes, differing in epidemiology and potentially virulence, emerged over time, with PCV-2a, -2b, and -2d being the most widespread and clinically relevant. Conversely, the distribution of minor genotypes appears geographically and temporally restricted, suggesting lower virulence and different epidemiological drivers. In 2022, PCV-2e, the most genetically and phenotypically divergent genotype, was identified in multiple rural farms in North-eastern Italy. Since rural pigs often have access to outdoor environment, the introduction from wild boars was investigated. Methods: Through a molecular and spatial approach, this study investigated the epidemiology and genetic diversity of PCV-2 in 122 wild boars across different provinces of North-eastern Italy. Results: Molecular analysis revealed a high PCV-2 frequency (81.1%, 99/122), and classified the majority of strains as PCV-2d (96.3%, 78/81), with sporadic occurrences of PCV-2a (1.2%, 1/81) and PCV-2b (2.5%, 2/81) genotypes. A viral flow directed primarily from domestic pigs to wild boars was estimated by phylogenetic and phylodynamic analyses. Discussion: These findings attested that the genotype replacement so far described only in the Italian domestic swine sector occurred also in wild boars. and suggested that the current heterogeneity of PCV-2d strains in Italian wild boars likely depends more on different introduction events from the domestic population rather than the presence of independent evolutionary pressures. While this might suggest PCV-2 circulation in wild boars having a marginal impact in the industrial sector, the sharing of PCV-2d strains across distinct wild populations, in absence of a consistent geographical pattern, suggests a complex interplay between domestic and wild pig populations, emphasizing the importance of improved biosecurity measures to mitigate the risk of pathogen transmission.

2.
Animals (Basel) ; 14(11)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38891666

RESUMEN

Infectious bursal disease virus (IBDV) is a significant burden for poultry production and market due to both direct disease and induced immunosuppression. In the present study, the expression of different cytokines in the bursa of Fabricius and thymus was evaluated during a 28-day-long experimental infection with two strains classified in the G1a (Classical) and G6 (ITA) genogroups. Although both strains significantly affected and modulated the expression of different molecules, the G6 strain seemed to induce a delayed immune response or suppress it more promptly. A recovery in the expression of several mediators was observed in the G1a-infected group at the end of the study, but not in the G6 one, further supporting a more persistent immunosuppression. This evidence fits with the higher replication level previously reported for the G6 and with the clinical outcome, as this genotype, although subclinical, has often been considered more immunosuppressive. However, unlike other studies focused on shorter time periods after infection, the patterns observed in this paper were highly variable and complex, depending on the strain, tissue, and time point, and characterized by a non-negligible within-group variability. Besides confirming the strain/genogroup effect on immune system modulation, the present study suggests the usefulness of longer monitoring activities after experimental infection to better understand the complex patterns and interactions with the host response.

3.
Animals (Basel) ; 14(12)2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38929405

RESUMEN

Avian metapneumovirus (aMPV) has been identified as an important cause of respiratory and reproductive disease, leading to significant productive losses worldwide. Different subtypes have been found to circulate in different regions, with aMPV-A and B posing a significant burden especially in the Old World, and aMPV-C in North America, albeit with limited exceptions of marginal economic relevance. Recently, both aMPV-A and aMPV-B have been reported in the U.S.; however, the route of introduction has not been investigated. In the present study, the potential importation pathways have been studied through phylogenetic and phylodynamic analyses based on a broad collection of partial attachment (G) protein sequences collected worldwide. aMPV-B circulating in the U.S. seems the descendant of Eastern Asian strains, which, in turn, are related to European ones. A likely introduction pathway mediated by wild bird migration through the Beringian crucible, where the East Asian and Pacific American flight paths intersect, appears likely and was previously reported for avian influenza. aMPV-A, on the other hand, showed a Mexican origin, involving strains related to Asian ones. Given the low likelihood of trade or illegal importation, the role of wild birds appears probable also in this case, since the region is covered by different flight paths directed in a North-South direction through America. Since the information on the role of wild birds in aMPV epidemiology is still scarce and scattered, considering the significant practical implications for the poultry industry demonstrated by recent U.S. outbreaks, further surveys on wild birds are encouraged.

4.
Viruses ; 16(5)2024 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-38793677

RESUMEN

Avian reovirus (ARV) infection can cause significant losses to the poultry industry. Disease control has traditionally been attempted mainly through vaccination. However, the increase in clinical outbreaks in the last decades demonstrated the poor effectiveness of current vaccination approaches. The present study reconstructs the evolution and molecular epidemiology of different ARV genotypes using a phylodynamic approach, benefiting from a collection of more than one thousand sigma C (σC) sequences sampled over time at a worldwide level. ARVs' origin was estimated to occur several centuries ago, largely predating the first clinical reports. The origins of all genotypes were inferred at least one century ago, and their emergence and rise reflect the intensification of the poultry industry. The introduction of vaccinations had only limited and transitory effects on viral circulation and further expansion was observed, particularly after the 1990s, likely because of the limited immunity and the suboptimal and patchy vaccination application. In parallel, strong selective pressures acted with different strengths and directionalities among genotypes, leading to the emergence of new variants. While preventing the spread of new variants with different phenotypic features would be pivotal, a phylogeographic analysis revealed an intricate network of viral migrations occurring even over long distances and reflecting well-established socio-economic relationships.


Asunto(s)
Genotipo , Orthoreovirus Aviar , Filogenia , Filogeografía , Enfermedades de las Aves de Corral , Infecciones por Reoviridae , Orthoreovirus Aviar/genética , Orthoreovirus Aviar/clasificación , Animales , Infecciones por Reoviridae/veterinaria , Infecciones por Reoviridae/virología , Infecciones por Reoviridae/epidemiología , Enfermedades de las Aves de Corral/virología , Enfermedades de las Aves de Corral/epidemiología , Evolución Molecular , Epidemiología Molecular , Aves de Corral/virología , Variación Genética
5.
Viruses ; 16(3)2024 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-38543846

RESUMEN

The GI-19 lineage of infectious bronchitis virus (IBV) has emerged as one of the most impactful, particularly in the "Old World". Originating in China several decades ago, it has consistently spread and evolved, often forming independent clades in various areas and countries, each with distinct production systems and control strategies. This study leverages this scenario to explore how different environments may influence virus evolution. Through the analysis of the complete S1 sequence, four datasets were identified, comprising strains of monophyletic clades circulating in different continents or countries (e.g., Asia vs. Europe and China vs. Thailand), indicative of single introduction events and independent evolution. The population dynamics and evolutionary rate variation over time, as well as the presence and intensity of selective pressures, were estimated and compared across these datasets. Since the lineage origin (approximately in the mid-20th century), a more persistent and stable viral population was estimated in Asia and China, while in Europe and Thailand, a sharp increase following the introduction (i.e., 2005 and 2007, respectively) of GI-19 was observed, succeeded by a rapid decline. Although a greater number of sites on the S1 subunit were under diversifying selection in the Asian and Chinese datasets, more focused and stronger pressures were evident in both the European (positions 2, 52, 54, 222, and 379 and Thai (i.e., positions 10, 12, 32, 56, 62, 64, 65, 78, 95, 96, 119, 128, 140, 182, 292, 304, 320, and 323) strains, likely reflecting a more intense and uniform application of vaccines in these regions. This evidence, along with the analysis of control strategies implemented in different areas, suggests a strong link between effective, systematic vaccine implementation and infection control. However, while the overall evolutionary rate was estimated at approximately 10-3 to 10-4, a significant inverse correlation was found between viral population size and the rate of viral evolution over time. Therefore, despite the stronger selective pressure imposed by vaccination, effectively constraining the former through adequate control strategies can efficiently prevent viral evolution and the emergence of vaccine-escaping variants.


Asunto(s)
Infecciones por Coronavirus , Virus de la Bronquitis Infecciosa , Enfermedades de las Aves de Corral , Vacunas , Animales , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/prevención & control , Virus de la Bronquitis Infecciosa/genética , Filogenia , Tailandia/epidemiología
6.
Avian Pathol ; 53(1): 56-67, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37823857

RESUMEN

RESEARCH HIGHLIGHTS: Different field IBDVs were found to circulate in the Near and Middle East.Multiple atypical genotypes (A3B1, A4B1, A6B1) were found to circulate extensively.Traditional very virulent IBDVs (A3B2) were a minority of the detected strains.Viral exchanges can be hypothesized between the region and different continents.


Asunto(s)
Infecciones por Birnaviridae , Virus de la Enfermedad Infecciosa de la Bolsa , Enfermedades de las Aves de Corral , Animales , Pollos/genética , Virus de la Enfermedad Infecciosa de la Bolsa/genética , Epidemiología Molecular , Océano Índico , Infecciones por Birnaviridae/epidemiología , Infecciones por Birnaviridae/veterinaria , Filogenia , Medio Oriente/epidemiología , Proteínas Estructurales Virales/genética
7.
Animals (Basel) ; 13(24)2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38136888

RESUMEN

Fowl adenoviruses (FAdVs, species FAdV-A/-E) are responsible for several clinical syndromes reported with increasing frequency in poultry farms in the last decades. In the present study, a phylodynamic analysis was performed on a group of FAdV-D Hexon sequences with adequate available metadata. The obtained results demonstrated the long-term circulation of this species, at least several decades before the first identification of the disease. After a period of progressive increase, the viral population showed a high-level circulation from approximately the 1960s to the beginning of the new millennium, mirroring the expansion of intensive poultry production and animal trade. At the same time, strain migration occurred mainly from Europe to other continents, although other among-continent connections were estimated. Thereafter, the viral population declined progressively, likely due to the improved control measures, potentially including the development and application of FAdV vaccines. An increase in the viral evolutionary rate featured this phase. A role of vaccine-induced immunity in shaping viral evolution could thus be hypothesized. Accordingly, several sites of the Hexon, especially those targeted by the host response were proven under a significant pervasive or episodic diversifying selection. The present study results demonstrate the role of intensive poultry production and market globalization in the rise of FAdV. The applied control strategies, on the other hand, were effective in limiting viral circulation and shaping its evolution.

8.
Viruses ; 15(12)2023 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-38140629

RESUMEN

Infectious bursal disease (IBD) is an immunosuppressive disease causing significant damage to the poultry industry worldwide. Its etiological agent is infectious bursal disease virus (IBDV), a highly resistant RNA virus whose genetic variability considerably affects disease manifestation, diagnosis and control, primarily pursued by vaccination. In Egypt, very virulent strains (genotype A3B2), responsible for typical IBD signs and lesions and high mortality, have historically prevailed. The present molecular survey, however, suggests that a major epidemiological shift might be occurring in the country. Out of twenty-four samples collected in twelve governorates in 2022-2023, seven tested positive for IBDV. Two of them were A3B2 strains related to other very virulent Egyptian isolates, whereas the remaining five were novel variant IBDVs (A2dB1b), reported for the first time outside of Eastern and Southern Asia. This emerging genotype spawned a large-scale epidemic in China during the 2010s, characterized by subclinical IBD with severe bursal atrophy and immunosuppression. Its spread to Egypt is even more alarming considering that, contrary to circulating IBDVs, the protection conferred by available commercial vaccines appears suboptimal. These findings are therefore crucial for guiding monitoring and control efforts and helping to track the spread of novel variant IBDVs, possibly limiting their impact.


Asunto(s)
Infecciones por Birnaviridae , Virus de la Enfermedad Infecciosa de la Bolsa , Enfermedades de las Aves de Corral , Animales , Egipto/epidemiología , Pollos , Aves de Corral , Infecciones por Birnaviridae/epidemiología , Infecciones por Birnaviridae/veterinaria , Genotipo , Filogenia
9.
Viruses ; 15(12)2023 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-38140663

RESUMEN

Stranded animals offer valuable information on marine mammal physiology and pathology; however, the decomposition state of the carcasses and lack of a rigorous cold chain for sample preservation can sometimes discourage diagnostic analyses based on nucleic acid detection. The present paper aims at evaluating the reliability of FTA® card tissue imprints as an alternative matrix to frozen tissues for virological analyses based on biomolecular methods. Given the contribution of Cetacean morbillivirus (CeMV) to strandings and the increase of herpesvirus detection in cetaceans, these two pathogens were selected as representative of RNA and DNA viruses. Dolphin morbillivirus (DMV) and herpesvirus presence was investigated in parallel on tissue imprints on FTA® cards and frozen tissues collected during necropsy of dolphins stranded in Italy. Samples were analysed by nested RT-PCR for DMV and nested-PCR for herpesvirus. Only one animal was positive for herpesvirus, hampering further considerations on this virus. DMV was detected in all animals, both in FTA® card imprints and tissue samples, with differences possibly related to the decomposition condition category of the carcasses. Tissue sampling on FTA® cards seems a promising alternative to frozen tissues for biomolecular analyses, especially when ensuring adequate storage and shipment conditions for frozen tissues is difficult.


Asunto(s)
Infecciones por Morbillivirus , Morbillivirus , Animales , Infecciones por Morbillivirus/diagnóstico , Infecciones por Morbillivirus/veterinaria , Reproducibilidad de los Resultados , Morbillivirus/genética , Reacción en Cadena de la Polimerasa , ARN , Cetáceos
10.
Animals (Basel) ; 13(11)2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37889739

RESUMEN

In future decades, the demand for poultry meat and eggs is predicted to considerably increase in pace with human population growth. Although this expansion clearly represents a remarkable opportunity for the sector, it conceals a multitude of challenges. Pollution and land erosion, competition for limited resources between animal and human nutrition, animal welfare concerns, limitations on the use of growth promoters and antimicrobial agents, and increasing risks and effects of animal infectious diseases and zoonoses are several topics that have received attention from authorities and the public. The increase in poultry production must be achieved mainly through optimization and increased efficiency. The increasing ability to generate large amounts of data ("big data") is pervasive in both modern society and the farming industry. Information accessibility-coupled with the availability of tools and computational power to store, share, integrate, and analyze data with automatic and flexible algorithms-offers an unprecedented opportunity to develop tools to maximize farm profitability, reduce socio-environmental impacts, and increase animal and human health and welfare. A detailed description of all topics and applications of big data analysis in poultry farming would be infeasible. Therefore, the present work briefly reviews the application of sensor technologies, such as optical, acoustic, and wearable sensors, as well as infrared thermal imaging and optical flow, to poultry farming. The principles and benefits of advanced statistical techniques, such as machine learning and deep learning, and their use in developing effective and reliable classification and prediction models to benefit the farming system, are also discussed. Finally, recent progress in pathogen genome sequencing and analysis is discussed, highlighting practical applications in epidemiological tracking, and reconstruction of microorganisms' population dynamics, evolution, and spread. The benefits of the objective evaluation of the effectiveness of applied control strategies are also considered. Although human-artificial intelligence collaborations in the livestock sector can be frightening because they require farmers and employees in the sector to adapt to new roles, challenges, and competencies-and because several unknowns, limitations, and open-ended questions are inevitable-their overall benefits appear to be far greater than their drawbacks. As more farms and companies connect to technology, artificial intelligence (AI) and sensing technologies will begin to play a greater role in identifying patterns and solutions to pressing problems in modern animal farming, thus providing remarkable production-based and commercial advantages. Moreover, the combination of diverse sources and types of data will also become fundamental for the development of predictive models able to anticipate, rather than merely detect, disease occurrence. The increasing availability of sensors, infrastructures, and tools for big data collection, storage, sharing, and analysis-together with the use of open standards and integration with pathogen molecular epidemiology-have the potential to address the major challenge of producing higher-quality, more healthful food on a larger scale in a more sustainable manner, thereby protecting ecosystems, preserving natural resources, and improving animal and human welfare and health.

11.
Front Microbiol ; 14: 1234393, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37583516

RESUMEN

Introduction: Porcine circovirus 3 (PCV-3) was firstly reported in 2017. Although evidence of its pathogenic role has been provided, its clinical relevance seems lower than Porcine circovirus 2 (PCV-2), as well as its evolutionary rate. Different studies have reported a high PCV-3 prevalence in wild boars, sometimes higher than the one observed in commercial pigs. Nevertheless, to date, few studies have objectively investigated the relationships between these populations when inhabiting the same area. Moreover, the role of small-scale, backyard pig production in PCV-3 epidemiology is still obscure. Methods: The present study investigated PCV-3 occurrence in 216 samples collected from the same area of Northern Italy from commercial and rural pigs, and wild boars. PCV-3 presence was tested by qPCR and complete genome or ORF2 sequences were obtained when possible and analysed using a combination of statistical, phylogenetic and phylodynamic approaches. Results: A higher infection risk in wild boars and rural pigs compared to the commercial ones was demonstrated. The phylodynamic analysis confirmed a larger viral population size in wild and rural populations and estimated a preferential viral flow from these populations to commercial pigs. A significant flow from wild to rural animals was also proven. The analysis of the Italian sequences and the comparison with a broader international reference dataset highlighted the circulation of a highly divergent clade in Italian rural pigs and wild boars only. Discussion: Overall, the present study results demonstrate the role of non-commercial pig populations in PCV-3 maintenance, epidemiology and evolution, which could represent a threat to intensive farming.

12.
Prev Vet Med ; 216: 105943, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37216841

RESUMEN

Porcine circovirus type 2 (PCV-2) is among the most burdensome viruses of the swine industry globally. Several genotypes have been periodically emerging, but just three of them (PCV-2a, PCV-2b, and PCV-2d) seem to circulate worldwide and be associated with the disease. Conversely, the spatial-temporal distribution of minor genotypes appears limited and their clinical relevance is still unclear. Recently PCV-2e was incidentally detected for the first time in Europe in a breeding farm in Northeastern Italy, while no connection could be established with countries where this genotype had been previously detected. To investigate circulating genotypes in the neglected rural context and provide a comparison with the most explored industrial context, a molecular survey was performed on samples collected in rural (n = 72) and industrial farms (n = 110) located in the same geographic area. Phylogenetic analysis surprisingly evidenced PCV-2e circulation only in pigs reared in backyard farms (n = 5), while major genotypes (PCV-2a, -2b, -2d) circulate in both rearing contexts. However, the close genetic similarity between the herein detected PCV-2e strains and the previously reported one testify that, although unusual, such rural-to-industrial strains exchange affected also PCV-2e. The greater genetic and phenotypic diversity of PCV-2e genotype compared to other ones might threaten the protection granted by current vaccines. The present study suggests the rural context as an ecological niche for the circulation of PCV-2e, and even of other minor genotypes. PCV-2e detection in pigs with outdoor access further stresses the epidemiological role of backyard farms as interfaces for pathogen introduction, potentially ascribable to the different rearing approaches, lower managerial and biosecurity capabilities, and easier contacts with wildlife.


Asunto(s)
Infecciones por Circoviridae , Circovirus , Enfermedades de los Porcinos , Porcinos , Animales , Enfermedades de los Porcinos/epidemiología , Infecciones por Circoviridae/epidemiología , Infecciones por Circoviridae/veterinaria , Granjas , Filogenia , Circovirus/genética , Italia/epidemiología , Genotipo
13.
Animals (Basel) ; 13(7)2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-37048452

RESUMEN

Peste des petits ruminants (PPR) is a burdensome viral disease primarily affecting small ruminants, which is currently targeted for eradication by 2030 through the implementation of a Global Control and Eradication Strategy (PPR GCES). The PPR GCES, launched in 2015, has strongly encouraged countries to participate in Regional PPR Roadmaps, designated according to the Food and Agricultural Organization of the United Nations (FAO) and World Organisation for Animal Health (WOAH) regions and epidemiological considerations, with each targeted by dedicated meetings and activities. Following the conclusion of the first phase of the PPR Global Eradication Program (PPR GEP) (2017-2021), the present work focuses on the disease situation and status of the eradication campaign in the fourteen countries of the PPR GCES Middle Eastern Roadmap as well as Egypt. PPR is endemic to or suspected to be present in most of the region, except for Bahrain, which, as of 2021, is preparing to apply for official recognition as being free of PPR. Some substantial shortcomings are observed in surveillance and disease reporting, as well as in the implemented control strategies, most notably vaccination. Since many of these limitations are shared by many of the investigated countries, the international cooperation and harmonization of control efforts appears crucial to making PPR eradication attainable in the Middle East.

14.
Vaccines (Basel) ; 11(3)2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36992292

RESUMEN

Newcastle disease virus (NDV) and avian metapneumovirus (aMPV) are among the most impactful pathogens affecting the turkey industry. Since turkeys are routinely immunized against both diseases, the hatchery administration of the combined respective live vaccines would offer remarkable practical advantages. However, the compatibility of NDV and aMPV vaccines has not yet been experimentally demonstrated in this species. To address this issue, an aMPV subtype B live vaccine was administered to day-old poults either alone or in combination with one of two different ND vaccines. The birds were then challenged with a virulent aMPV subtype B strain, clinical signs were recorded and aMPV and NDV vaccine replication and humoral immune response were assessed. All results supported the absence of any interference hampering protection against aMPV, with no significant differences in terms of clinical scoring. In addition, the mean aMPV vaccine viral titers and antibody titers measured in the dual vaccinated groups were comparable or even higher than in the group vaccinated solely against aMPV. Lastly, based on the NDV viral and antibody titers, the combined aMPV and NDV vaccination does not seem to interfere with protection against NDV, although further studies involving an actual ND challenge will be necessary to fully demonstrate this hypothesis.

15.
Avian Pathol ; 52(1): 25-35, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36178148

RESUMEN

Infectious bursal disease virus (IBDV) is a highly contagious birnavirus causing a burdensome immunosuppressive disease in chickens. IBDV features a remarkable antigenic, pathogenic and genetic heterogeneity, with significant implications on disease manifestation, control measures and diagnostic approaches. The recent proposals of comprehensive phylogenetic classification systems offered the ideal platform for large-scale molecular surveys, which are crucial to gather epidemiological data and inform control efforts. In this study, the IBDV scenario was investigated in most of Western Europe by considering the results of diagnostic activities performed internationally throughout 2021. In total, 470 bursal samples from nine different countries were analysed by RT-PCR targeting the VP2. When a field virus was identified, the VP1 was also characterized. Most of the 132 detected field viruses were highly homologous reassortants featuring a very virulent-like VP2 and a classical-like VP1 (genotype A3B1). Despite emerging recently, these reassortants were already signalled in several countries in North-Western Europe and associated with subclinical infections. Here, we report their further spread in the region, where they currently represent the dominant field threat. Two other IBDV types were found, one in Italy, where all the identified viruses clustered in a clade of the A3B1 genotype previously reported only in Russia and the Middle East, and the other in Portugal, where the recently characterized A9B1 genotype was confirmed to circulate. The obtained data suggest the recent occurrence of a major shift in the Western European epidemiological landscape of IBDV, stressing the importance of steady monitoring and sharing of information among different countries and laboratories.RESEARCH HIGHLIGHTS The IBDV scenario in Western Europe seems to have radically changed in recent years.IBDV reassortants were found to be the dominant field type in the region.Local circulation of two other IBDV types was detected in Italy and Portugal.


Asunto(s)
Infecciones por Birnaviridae , Virus de la Enfermedad Infecciosa de la Bolsa , Enfermedades de las Aves de Corral , Animales , Pollos , Filogenia , Infecciones por Birnaviridae/epidemiología , Infecciones por Birnaviridae/veterinaria , Europa (Continente)/epidemiología , Proteínas Estructurales Virales/genética
16.
Vet Ital ; 58(1): 41-45, 2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36398673

RESUMEN

Infectious bronchitis virus (IBV) is among the most impactful poultry pathogens, whose control, based on biosecurity and routine vaccination, is hampered by the existence of countless genetic variants sharing poor cross­protection. A retrospective study was conducted on IBV positive samples collected in Italian broiler farms from 2012 to 2019. In 2015, the adopted vaccination protocol shifted from a Mass and 793B­based vaccines to the administration of Mass and QX vaccines, allowing to study how changes in vaccination strategies may affect IBV epidemiology, control and diagnosis in the field. The most frequently detected lineages were QX (70.3%), 793B (15.8%) and Mass (11.9%). The relative frequencies of QX and 793B detections remained stable throughout the study, while Mass detections significantly increased after the vaccination change. Rather than to an actual growth of Mass population size, this finding may be attributable to different vaccine interactions, with Mass strains being more frequently concealed by 793B vaccines than by QX ones. Based on the obtained results, the two vaccination protocols appear to be similarly effective in fighting IB outbreaks, which in the last decade have been caused primarily by QX field strains in Italy. These results indicate that vaccination strategies may significantly affect IBV epidemiology and diagnosis, and should therefore be considered when choosing and interpreting diagnostic assays and planning control measures.


Asunto(s)
Infecciones por Coronavirus , Virus de la Bronquitis Infecciosa , Enfermedades de las Aves de Corral , Animales , Virus de la Bronquitis Infecciosa/genética , Estudios Retrospectivos , Enfermedades de las Aves de Corral/diagnóstico , Enfermedades de las Aves de Corral/epidemiología , Enfermedades de las Aves de Corral/prevención & control , Pollos , Infecciones por Coronavirus/diagnóstico , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/prevención & control , Infecciones por Coronavirus/veterinaria , Genotipo , Vacunación/veterinaria , Italia/epidemiología
17.
Front Vet Sci ; 9: 978901, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36172614

RESUMEN

Infectious bursal disease virus (IBDV) is among the most relevant and widespread immunosuppressive agents, which can severely damage poultry farming by causing direct losses, predisposing the host to secondary diseases and reducing the efficacy of vaccination protocols against other infections. IBDV has thus been the object of intense control activities, largely based on routine vaccination. However, the need for protecting animals from the infection in the first period of the production cycle, when the bursa susceptibility is higher, clashes with the blanketing effect of maternally derived antibodies. To overcome this issue, other strategies have been developed besides live attenuated vaccines, including vector vaccines and immune complex (icx) ones. The present study aims to investigate, in field conditions, the efficacy of these approaches in preventing IBDV infection in laying chickens vaccinated with either live attenuated, vector or immune complex (icx) vaccines. For this purpose, a multicentric study involving 481 farms located in 11 European countries was organized and IBDV infection diagnosis and strain characterization was performed at 6 weeks of age using a molecular approach. Vaccine strains were commonly detected in flocks vaccinated with live or icx vaccines. However, a significantly higher number of field strains (characterized as very virulent IBDVs) was detected in flocks vaccinated with vector vaccines, suggesting their lower capability of preventing bursal colonization. Different from vector vaccines, live and icx ones have a marked bursal tropism. It can thus be speculated that vaccine virus replication in these sites could limit vvIBDV replication by direct competition or because of a more effective activation of innate immunity. Although such different behavior doesn't necessarily affect clinical protection, further studies should be performed to evaluate if vvIBDV replication could still be associated with subclinical losses and/or for viral circulation in a "vaccinated environment" could drive viral evolution and favor the emergence of vaccine-escape variants.

18.
Vet Res Commun ; 46(4): 1291-1295, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35916969

RESUMEN

Members of the family Parvoviridae are well recognized infectious agents of companion, livestock and wild animals as well, whose relevance on production, health, welfare and conservation is often high. Nevertheless, the knowledge of their epidemiology in wild populations is scarce or fragmentary. In this study, the presence and features of two parvoviruses, Carnivore protoparvovirus 1 and Amdoparvovirus, were evaluated in the red fox population resident in the Dolomites area, Northern Italy, and compared with the scenario of other countries and Italian regions. Six out of 117 spleen samples (5.13%: 95CI: 1.91-10.83%) tested positive to Carnivore protoparvovirus 1 and were molecularly characterized as Canine parvovirus (CPV). Infection frequency was comparable with that observed in wild carnivore populations present in Southern Italian regions, although in that case, Feline parvovirus (FPV) was predominant. No evidence of infection-related clinical signs was reported and viral loads were invariably low, suggesting the subclinical nature of the infection, the persistent carrier status or the detection of traces of viral DNA. No samples tested positive to Amdoparvovirus genus-specific PCR. The present study provides the first evidence of CPV circulation in the Northern Italy fox population. Unfortunately, the inevitable convenience nature of the sampling prevents definitive conclusions. Therefore, a more coordinated and standardized approach should be applied, at least in neighbouring geographic areas, to study these viral infections and their relevance in wildlife.


Asunto(s)
Infecciones por Parvoviridae , Parvovirus , Animales , Gatos , Perros , Animales Salvajes/virología , Enfermedades de los Gatos/virología , Enfermedades de los Perros/virología , Zorros/virología , Infecciones por Parvoviridae/epidemiología , Infecciones por Parvoviridae/veterinaria , Parvovirus/genética , Parvovirus Canino/genética
19.
Animals (Basel) ; 12(16)2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-36009619

RESUMEN

Peste des petits ruminants (PPR) is a highly contagious infectious disease of small ruminants caused by peste des petits ruminants virus (PPRV). PPR poses a significant threat to sheep and goat systems in over 65 endemic countries across Africa, the Middle East and Asia. It is also responsible for devastating outbreaks in susceptible wildlife, threatening biodiversity. For these reasons, PPR is the target of the Global Eradication Programme (PPR GEP), launched in 2016, which is aimed at eradicating the disease by 2030. The end of the first five-year phase of the PPR GEP (2017-2021) provides an ideal opportunity to assess the status of the stepwise control and eradication process. This review analyses 13 countries belonging to Eastern Europe, Transcaucasia, and Central and East Asia. Substantial heterogeneity is apparent in terms of PPR presence and control strategies implemented by different countries. Within this region, one country is officially recognised as PPR-free, seven countries have never reported PPR, and two have had no outbreaks in the last five years. Therefore, there is real potential for countries in this region to move forward in a coordinated manner to secure official PPR freedom status and thus reap the trade and socioeconomic benefits of PPR eradication.

20.
Virus Res ; 319: 198877, 2022 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-35872282

RESUMEN

The control of infectious bronchitis (IB) is largely based on routine vaccine administration, often using live-attenuated vaccines. However, their capability to replicate and be transmitted among animals and farms implies significant risks. The detection of strains genetically related to vaccines complicates the diagnostic process and understanding of the viral molecular epidemiology. Moreover, reversion to virulence and associated clinical outbreaks can occur although the underlying mechanism are often unknown. In the present study, three vaccine vials, based on IBV GI-23 lineage (also known as Variant2) were deep sequenced through Next Generation Sequencing (NGS) to investigate the presence and features of viral subpopulations. To elucidate the consequences in the field and identify potential markers suitable for a DIVA strategy, the S1 sequences of strains originating from farms in different countries were sequenced and classified based on the knowledge of their vaccination history and similarity with the applied vaccine. Although all considered vaccine batches shared the same consensus sequence, different subpopulations were identified suggesting independent and poorly constrained evolutionary processes. When compared with strains sampled from farms, the vaccine consensus sequences and the respective subpopulations clustered with vaccine strains and no genetic features were consistently shared with field strains. Therefore, if vaccine-induced outbreaks occur, they are more likely to originate from in vivo evolution rather than selection of already present subpopulations. Although some amino acid residues were most commonly detected in field or vaccine strains, no consistent marker could be identified. The occurrence of subpopulations within IBV GI-23-based vaccines and variability featuring different production batches was demonstrated. Being such a phenomenon apparently driven by random genetic drift rather than directional selection, the differentiation between field and vaccine-derived strains appears extremely challenging based on sequence analysis alone. The knowledge of farm management and vaccination history should thus be considered for a proper epidemiological investigation.


Asunto(s)
Infecciones por Coronavirus , Virus de la Bronquitis Infecciosa , Enfermedades de las Aves de Corral , Vacunas Virales , Animales , Pollos , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/prevención & control , Infecciones por Coronavirus/veterinaria , Virus de la Bronquitis Infecciosa/genética , Vacunas Atenuadas/genética , Vacunas Virales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...