Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 340: 139684, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37532201

RESUMEN

Trace minerals such as copper (Cu) and zinc (Zn) are animal nutrition supplements necessary for livestock health and breeding performance, yet they also have environmental impacts via animal excretion. Here we investigated changes in Cu and Zn speciation from the feed additive to the broiler excreta stages. The aim of this study was to assess whether different Cu and Zn feed additives induce different Cu and Zn speciation patterns, and to determine the extent to which this speciation is preserved throughout the feed-animal-excreta system. Synchrotron-based X-ray absorption spectroscopy (XAS) was used for this investigation. The principal findings were: (i) in feed, Cu and Zn speciation changed rapidly from the feed additive signature (Cu and Zn oxides or Cu and Zn sulfates) to Cu and Zn organic complexes (Cu phytate and Zn phytate). (ii) in the digestive tract, we showed that Cu and Zn phytate were major Cu and Zn species; Cu sulfide and Zn amorphous phosphate species were detected but remained minor species. (iii) in fresh excreta, Cu sulfide and Zn amorphous phosphate were major species. These results should help to: (i) enhance the design of future research studies comparing different feed additive performances; (ii) assess Cu and Zn bioavailability in the digestive tract; (iii) gain further insight into the fate of Cu and Zn in cultivated soils when poultry manure is used as fertilizer.


Asunto(s)
Ácido Fítico , Zinc , Animales , Zinc/química , Espectroscopía de Absorción de Rayos X , Pollos , Cobre/química , Fosfatos , Sulfuros
2.
Environ Sci Technol ; 56(23): 16831-16837, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36394535

RESUMEN

Nanosized zinc sulfides (nano-ZnS) have size-dependent and tunable physical and chemical properties that make them useful for a variety of technological applications. For example, structural changes, especially caused by strain, are pronounced in nano-ZnS < 5 nm in size, the size range typical of incidental nano-ZnS that form in the environment. Previous research has shown how natural organic matter impacts the physical properties of nano-ZnS but was mostly focused on their aggregation state. However, the specific organic molecules and the type of functional groups that are most important for controlling the nano-ZnS size and strain remain unclear. This study examined the size-dependent strain of nano-ZnS synthesized in the presence of serine, cysteine, glutathione, histidine, and acetate. Synchrotron total scattering pair distribution function analysis was used to determine the average crystallite size and strain. Among the different organic molecules tested, those containing a thiol group were shown to affect the particle size and size-induced strain most strongly when added during synthesis but significantly reduced the particle strain when added to as-formed nano-ZnS. The same effects are useful to understand the properties and behavior of natural nano-ZnS formed as products of microbial activity, for example, in reducing environments, or of incidental nano-ZnS formed in organic wastes.


Asunto(s)
Nanopartículas , Compuestos de Zinc , Compuestos de Zinc/análisis , Compuestos de Zinc/química , Sulfuros/química , Nanopartículas/química , Tamaño de la Partícula
3.
Sci Total Environ ; 848: 157779, 2022 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-35926606

RESUMEN

The geochemistry of copper (Cu) is generally assumed to be controlled by organic matter in soils. However, the role of clay and iron oxide minerals may be understated. Soil density fractionation, X-ray diffraction (XRD), and X-ray absorption spectroscopy (XAS) were combined to assess the long-term behavior of Cu in an agricultural soil subject to organic waste application. Two unprecedented molecular environments of natural Cu (i.e. Cu inherited from the parent rock) in soils are reported: Cu dimer in the interlayer of vermiculite and Cu structurally incorporated within hematite. Moreover, the soil naturally containing Cu-vermiculite, Cu-hematite, but also Cu-kaolinite (Cutotal = 122 mg·kg-1) was amended over 11 years with Cu-rich pig slurry in which Cu was 100 % Cu(I) sulfide. Natural Cu associated with clay and iron oxide minerals persisted in the amended soil, but the exogenous Cu(I) sulfide was unstable. The increase in Cu concentration in the amended soil to 174 mg·kg-1 was accounted for the increase of Cu sorbed to kaolinite and Cu bound to organic matter. These results are important for better understanding the natural occurrence of Cu in soils and for assessing the environmental impacts of organic waste recycling in agricultural fields.


Asunto(s)
Contaminantes del Suelo , Suelo , Silicatos de Aluminio , Animales , Arcilla , Cobre/análisis , Compuestos Férricos , Caolín , Minerales/química , Suelo/química , Contaminantes del Suelo/análisis , Sulfuros , Porcinos
4.
Environ Pollut ; 292(Pt B): 118414, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34728325

RESUMEN

Incidental zinc sulfide nanoparticles (nano-ZnS) are spread on soils through organic waste (OW) recycling. Here we performed soil incubations with synthetic nano-ZnS (3 nm crystallite size), representative of the form found in OW. We used an original set of techniques to reveal the fate of nano-ZnS in two soils with different properties. 68Zn tracing and nano-DGT were combined during soil incubation to discriminate the available natural Zn from the soil, and the available Zn from the dissolved nano-68ZnS. This combination was crucial to highlight the dissolution of nano-68ZnS as of the third day of incubation. Based on the extended X-ray absorption fine structure, we revealed faster dissolution of nano-ZnS in clayey soil (82% within 1 month) than in sandy soil (2% within 1 month). However, the nano-DGT results showed limited availability of Zn released by nano-ZnS dissolution after 1 month in the clayey soil compared with the sandy soil. These results highlighted: (i) the key role of soil properties for nano-ZnS fate, and (ii) fast dissolution of nano-ZnS in clayey soil. Finally, the higher availability of Zn in the sandy soil despite the lower nano-ZnS dissolution rate is counterintuitive. This study demonstrated that, in addition to nanoparticle dissolution, it is also essential to take the availability of released ions into account when studying the fate of nanoparticles in soil.


Asunto(s)
Nanopartículas , Contaminantes del Suelo , Isótopos , Suelo , Contaminantes del Suelo/análisis , Sulfuros , Espectroscopía de Absorción de Rayos X , Zinc/análisis , Compuestos de Zinc
5.
Environ Sci Technol ; 54(19): 12034-12041, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-32852945

RESUMEN

Recycling of organic waste (OW) as fertilizer on farmland is a widespread practice that fosters sustainable development via resource reuse. However, the advantages of OW fertilization should be weighed against the potentially negative environmental impacts due to the presence of contaminants such as zinc (Zn). Current knowledge on the parameters controlling the environmental fate of Zn following OW application on cultivated soils is scant. We addressed this shortcoming by combining soil column experiments and Zn speciation characterization in OWs and amended soils. Soil column experiments were first carried out using two contrasted soils (sandy soil and sandy clay loam) that were amended with sewage sludge or poultry manure and cropped with lettuce. The soil columns were irrigated with identical amounts of water twice a week, and the leachates collected at the column outlet were monitored and analyzed. This scheme (OW application and lettuce crop cycle) was repeated for each treatment. Lettuce yields and Zn uptake were assessed at the end of each cycle. The soil columns were dismantled and seven soil layers were sampled and analyzed at the end of the second cycle (total experiment time: 12 weeks). X-ray absorption spectroscopy analyses were then conducted to assess Zn speciation in OW and OW-amended soils. The results of this study highlighted that (i) the fate of Zn in water-soil-plant compartments was similar, regardless of the type of soil and OW, (ii) >97.6% of the Zn input from OW accumulated in the soil surface layer, (iii) Zn uptake by lettuce increased with repeated OW applications, and (iv) no radical change in Zn speciation was observed at the end of the 12-week experiment, and phosphate was found to drive Zn speciation in both OW and amended soils (i.e., amorphous Zn-phosphate and Zn sorbed on hydoxylapatite). These results suggest that Zn speciation in OW is a key determinant controlling the environmental fate of this element in OW-amended soils.


Asunto(s)
Contaminantes del Suelo , Suelo , Estiércol , Aguas del Alcantarillado , Contaminantes del Suelo/análisis , Zinc/análisis
6.
Sci Total Environ ; 669: 185-193, 2019 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-30878927

RESUMEN

In Senegal, the environmental impact of artisanal small-scale gold mining (ASGM) using mercury (Hg) is poorly documented despite its intensification over the past two decades. We report here a complete dataset including the distribution and speciation of Hg in soil, sediment, and water in pristine and ASGM impacted sites of the Gambia River ecosystem (Kedougou region - eastern Senegal). Selective extraction showed that soils surrounding ASGM activities were contaminated with elemental Hg [Hg(0)] at concentrations up to 3.9 mg kg-1. In the Gambia River, high total Hg (THg: 1.16 ±â€¯0.80 mg kg-1) and methylmercury (MeHg: 3.2 ±â€¯2.3 ng g-1) were also measured in sediment samples collected at ASGM sites. Along the stream, THg concentrations in sediment decrease with distance from the ASGM sites, while those of methylmercury increase downstream. The study of THg and MeHg partitioning between filtered surface water and suspended particles demonstrate that particulate transport is responsible for the downstream dissemination of the Hg contamination from ASGM sites. Sedimentation of fine particles enriched in Hg downstream ASGM sites likely favors MeHg production and accumulation in sediment. Although elemental Hg is weakly labile, surface soil erosion may also provide important and long-term Hg inputs to downstream aquatic ecosystems, where it can be oxidized and methylated. Finally, the dissemination of THg and MeHg downstream from the ASGM sites in the Gambia River may constitute a long-term source of contamination and can have a large scale impact on the aquatic ecosystem through biomagnification.

7.
Environ Sci Technol ; 52(22): 12987-12996, 2018 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-30339368

RESUMEN

Zinc (Zn) is a potentially toxic trace element that is present in large amounts in organic wastes (OWs) spread on agricultural lands as fertilizer. Zn speciation in OW is a crucial parameter to understand its fate in soil after spreading and to assess the risk associated with agricultural recycling of OW. Here, we investigated changes in Zn speciation from raw OWs up to digestates and/or composts for a large series of organic wastes sampled in full-scale plants. Using extended X-ray absorption fine structure, we show that nanosized Zn sulfide (nano-ZnS) is a major Zn species in raw liquid OWs and a minor species in raw solid OWs. Whatever the characteristics of the raw OW, anaerobic digestion always favors the formation of nano-ZnS (>70% of zinc in digestates). However, after 1 to 3 months of composting of OWs, nano-ZnS becomes a minor species (<10% of zinc). In composts, Zn is mostly present as amorphous Zn phosphate and Zn sorbed to ferrihydrite. These results highlight (i) the influence of OW treatment on Zn speciation and (ii) the chemical instability of nano-ZnS formed in OW in anaerobic conditions.


Asunto(s)
Compostaje , Anaerobiosis , Suelo , Sulfuros , Zinc , Compuestos de Zinc
8.
Environ Sci Technol ; 51(17): 9756-9764, 2017 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-28777564

RESUMEN

The ISO-standardized RHIZOtest is used here for the first time to decipher how plant species, soil properties, and physical-chemical properties of the nanoparticles and their transformation regulate the phytoavailability of nanoparticles. Two plants, tomato and fescue, were exposed to two soils with contrasted properties: a sandy soil poor in organic matter and a clay soil rich in organic matter, both contaminated with 1, 15, and 50 mg·kg-1 of dissolved Ce2(SO4)3, bare and citrate-coated CeO2 nanoparticles. All the results demonstrate that two antagonistic soil properties controlled Ce uptake. The clay fraction enhanced the retention of the CeO2 nanoparticles and hence reduced Ce uptake, whereas the organic matter content enhanced Ce uptake. Moreover, in the soil poor in organic matter, the organic citrate coating significantly enhanced the phytoavailability of the cerium by forming smaller aggregates thereby facilitating the transport of nanoparticles to the roots. By getting rid of the dissimilarities between the root systems of the different plants and the normalizing the surfaces exposed to nanoparticles, the RHIZOtest demonstrated that the species of plant did not drive the phytoavailability, and provided evidence for soil-plant transfers at concentrations lower than those usually cited in the literature and closer to predicted environmental concentrations.


Asunto(s)
Cerio/farmacocinética , Nanopartículas , Contaminantes del Suelo/farmacocinética , Solanum lycopersicum , Raíces de Plantas , Poaceae , Suelo
9.
Environ Sci Technol ; 51(18): 10326-10334, 2017 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-28825795

RESUMEN

Anaerobic digestion is a widely used organic waste treatment process. However, little is known on how it could alter the speciation of contaminants in organic waste. This study was focused on determining the influence of anaerobic digestion on the speciation of copper and zinc, two metals that generally occur at high concentration in organic waste. Copper and zinc speciation was investigated by X-ray absorption spectroscopy in four different raw organic wastes (predigestion) and their digested counterparts (postdigestion, i.e., digestates). The results highlighted an increase in the digestates of the proportion of amorphous or nanostructured copper sulfides as well as amorphous or nanostructured zinc sulfides and zinc phosphate as compared to raw waste. We therefore suggest that the environmental fate of these elements would be different when spreading either digestates or raw waste on cropland.


Asunto(s)
Reactores Biológicos , Cobre , Zinc , Metales , Aguas del Alcantarillado , Purificación del Agua , Espectroscopía de Absorción de Rayos X
10.
Environ Pollut ; 222: 495-503, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28063709

RESUMEN

Spreading livestock manure as fertilizer on farmlands is a widespread practice. It represents the major source of heavy metal(loid)s (HM) input in agricultural soils. Since zinc (Zn) is present at high concentrations in manure, it poses special environmental concerns related to phytotoxicity, groundwater contamination, and introduction in the food chain. Therefore, investigations on the fate and behavior of manure-borne Zn, when it enters the soil environment, are necessary to predict the environmental effects. Nevertheless, long-term field studies assessing Zn speciation in the organic waste matrix, as well as within the soil after manure application, are lacking. This study was designed to fill this gap. Using SEM-EDS and XAS analysis, we reported the following new results: (i) ZnS made up 100% of the Zn speciation in the pig slurry (the highest proportion of ZnS ever observed in organic waste); and (ii) ZnS aggregates were about 1-µm diameter (the smallest particle size ever reported in pig slurry). Moreover, the pig slurry containing ZnS was spread on the soil over an 11-year period, totaling 22 applications, and the resulting Zn speciation within the amended soil was analyzed. Surprisingly, ZnS, i.e. the only species responsible for a nearly 2-fold increase in the Zn concentration within the amended soil, was not detected in this soil. Based on SEM-EDS and XAS observations, we put forward the hypothesis that Zn in the pig slurry consisted of nano-sized ZnS crystallites that further aggregated. The low stability of ZnS nanoparticles within oxic and complex environments such as the studied soil was the key explanation for the radical change in pig slurry-borne Zn speciation after long-term amendments.


Asunto(s)
Estiércol , Metales Pesados/química , Suelo/química , Sulfuros/química , Compuestos de Zinc/química , Zinc/química , Agricultura/métodos , Animales , Nanopartículas del Metal/análisis , Nanopartículas del Metal/química , Metales Pesados/análisis , Tamaño de la Partícula , Contaminantes del Suelo/análisis , Sulfuros/análisis , Sus scrofa , Porcinos , Zinc/análisis , Compuestos de Zinc/análisis
11.
Environ Pollut ; 212: 299-306, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26854699

RESUMEN

This study aimed at determining the fate of trace elements (TE) following soil organic waste (OW) application. We used a unique combination of X-ray absorption spectroscopy analyses, to determine TE speciation, with incubation experiments for in situ monitoring of TE availability patterns over a time course with the technique of the diffusive gradients in thin films (DGT). We showed that copper (Cu) and zinc (Zn) availability were both increased in OW-amended soil, but their release was controlled by distinct mechanisms. Zn speciation in OW was found to be dominated by an inorganic species, i.e. Zn sorbed on Fe oxides. Zn desorption from Fe oxides could explain the increase in Zn availability in OW-amended soil. Cu speciation in OW was dominated by organic species. Cu release through the mineralization of organic carbon from OW was responsible for the increase in Cu availability.


Asunto(s)
Cobre/análisis , Monitoreo del Ambiente/métodos , Contaminantes del Suelo/análisis , Suelo/química , Administración de Residuos/métodos , Residuos/análisis , Zinc/análisis , Oligoelementos/análisis , Espectroscopía de Absorción de Rayos X
12.
J Hazard Mater ; 273: 17-26, 2014 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-24709478

RESUMEN

Engineered TiO2 nanoparticles (TiO2-NPs) are present in a large variety of consumer products, and are produced in largest amount. The building industry is a major sector using TiO2-NPs, especially in paints. The fate of NPs after their release in the environment is still largely unknown, and their possible transfer in plants and subsequent impacts have not been studied in detail. The foliar transfer pathway is even less understood than the root pathway. In this study, lettuces were exposed to pristine TiO2-NPs and aged paint leachate containing TiO2-NPs and microparticles (TiO2-MPs). Internalization and in situ speciation of Ti were investigated by a combination of microscopic and spectroscopic techniques. Not only TiO2-NPs pristine and from aged paints, but also TiO2-MPs were internalized in lettuce leaves, and observed in all types of tissues. No change in speciation was noticed, but an organic coating of TiO2-NPs is likely. Phytotoxicity markers were tested for plants exposed to pristine TiO2-NPs. No acute phytotoxicity was observed; variations were only observed in glutathione and phytochelatin levels but remained low as compared to typical values. These results obtained on the foliar uptake mechanisms of nano- and microparticles are important in the perspective of risk assessment of atmospheric contaminations.


Asunto(s)
Colorantes/farmacología , Lactuca/metabolismo , Nanopartículas , Pintura , Hojas de la Planta/metabolismo , Titanio/farmacología , Glutatión/metabolismo , Lactuca/efectos de los fármacos , Lactuca/crecimiento & desarrollo , Lactuca/ultraestructura , Microscopía Electrónica de Rastreo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/ultraestructura , Proteínas de Plantas/metabolismo , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo
13.
Environ Int ; 59: 53-62, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23770771

RESUMEN

Many engineered nanoparticles (ENPs) are functionalized with different types of surface coatings to suit specific applications. The functionalization affects the fate and behavior of these ENPs in aquatic environments. In this study, gold nanoparticles (GNPs) coated with either citrate or 11-mercaptoundecanoic acid (MUA) are used as examples of functionalized ENPs. A method has been developed to assess the colloidal stability of functionalized ENPs under complex hydrochemical conditions, using their aggregation rates as indicators. The spatial distributions of stream-water chemistry data from across Europe were combined with the results of in-vitro colloidal stability testing. Aggregation rates were extracted for each stream-water sample and stability maps for Europe were plotted. The tendency of the tested GNPs to be dispersed or aggregated is described for water bodies of the respective region. Natural organic matter was identified as the predominant factor controlling the stability of the GNPs tested. The properties of surface coatings also affect aggregation rates as a result of differences in their hydrochemical parameters. The developed method can be used as a template for a stability assessment, and the results of this study provide a basis for exposure modeling and precautionary decision making.


Asunto(s)
Exposición a Riesgos Ambientales , Oro/química , Nanopartículas del Metal/química , Ríos/química , Contaminantes Químicos del Agua/química , Calcio/química , Coloides , Europa (Continente) , Ácidos Grasos/química , Humanos , Concentración de Iones de Hidrógeno , Magnesio/química , Compuestos de Sulfhidrilo/química
14.
Environ Sci Technol ; 47(9): 4113-20, 2013 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-23560437

RESUMEN

Understanding the colloidal stability of functionalized engineered nanoparticles (FENPs) in aquatic environments is of paramount importance in order to assess the risk related to FENPs. In this study, gold nanoparticles (GNPs) of 68 and 43 nm diameter, coated with citrate and 11-mercaptoundecanoic acid (MUA) respectively, were used as models of FENPs. Time-resolved dynamic light scattering was employed to investigate the aggregation kinetics of two types of GNPs. The results show that without Suwannee river natural organic matter (SRNOM), MUA coating resulted in greater stability than citrate coating for GNPs. Cations have a destabilizing effect on both GNPs following the order Ca(2+) ≈ Mg(2+) >> Na(+); different anions (Cl(-) and SO4(2-)) showed no difference in effects. In the fast aggregation regime, adding SRNOM enhanced the stability of MUA-coated GNPs in both Ca(2+) and Mg(2+) solutions. However citrate-coated GNPs were only stabilized in Mg(2+) solution but enhanced aggregation occurred in high Ca(2+) concentration due to interparticle bridging. For the investigated GNPs and in the presence of SRNOM, Ca(2+) does not always act as a strong coagulant. This indicates that for the new materials emerging from the application of nanotechnology the well-described aggregation mechanisms of colloids in the environment require a detailed re-examination.


Asunto(s)
Nanopartículas del Metal , Compuestos Orgánicos/análisis , Cationes Bivalentes , Oro/química , Cinética , Luz , Dispersión de Radiación
15.
J Chromatogr A ; 1272: 116-25, 2013 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-23261297

RESUMEN

Asymmetric flow field-flow fractionation (AF(4)) in combination with on-line optical detection and mass spectrometry is one of the most promising methods for separation and quantification of nanoparticles (NPs) in complex matrices including food. However, to obtain meaningful results regarding especially the NP size distribution a number of parameters influencing the separation need to be optimized. This paper describes the development of a separation method for polyvinylpyrrolidone-stabilized silver nanoparticles (AgNPs) in aqueous suspension. Carrier liquid composition, membrane material, cross flow rate and spacer height were shown to have a significant influence on the recoveries and retention times of the nanoparticles. Focus time and focus flow rate were optimized with regard to minimum elution of AgNPs in the void volume. The developed method was successfully tested for injected masses of AgNPs from 0.2 to 5.0 µg. The on-line combination of AF(4) with detection methods including ICP-MS, light absorbance and light scattering was helpful because each detector provided different types of information about the eluting NP fraction. Differences in the time-resolved appearance of the signals obtained by the three detection methods were explained based on the physical origin of the signal. Two different approaches for conversion of retention times of AgNPs to their corresponding sizes and size distributions were tested and compared, namely size calibration with polystyrene nanoparticles (PSNPs) and calculations of size based on AF(4) theory. Fraction collection followed by transmission electron microscopy was performed to confirm the obtained size distributions and to obtain further information regarding the AgNP shape. Characteristics of the absorbance spectra were used to confirm the presence of non-spherical AgNP.


Asunto(s)
Fraccionamiento de Campo-Flujo/métodos , Nanopartículas del Metal/análisis , Plata/análisis , Luz , Nanopartículas del Metal/ultraestructura , Tamaño de la Partícula , Reología , Dispersión de Radiación , Espectrofotometría Atómica , Suspensiones , Factores de Tiempo
16.
Aquat Toxicol ; 118-119: 1-8, 2012 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-22494961

RESUMEN

The use of engineered nanoparticles (e.g. in industrial applications and consumer products) is increasing. Consequently, these particles will be released into the aquatic environment. Through aggregation/agglomeration and sedimentation, sediments are expected ultimately to be sinks for nanoparticles. Both in the water phase and in the sediments engineered nanoparticles will mix and interact with other environmental pollutants, including metals. In this study the toxicity of cadmium to two freshwater organisms, water column crustacean Daphnia magna and sediment oligochaete Lumbriculus variegatus, was investigated both in the absence and presence of titanium dioxide (TiO(2)) nanoparticles (P25 Evonic Degussa, d: 30 nm). The uptake of cadmium in sub-lethal concentrations was also studied in the absence and presence of 2 mg/L TiO(2) nanoparticles. Formation of larger nanoparticles aggregates/agglomerates was observed and sizes varied depending on media composition (358±13 nm in US EPA moderately hard synthetic freshwater and 1218±7 nm in Elendt M7). TiO(2) nanoparticles are potential carriers for cadmium and it was found that 25% and 6% of the total cadmium mass in the test system for L. variegatus and D. magna tests were associated to suspended TiO(2) particles, respectively. µXRF (micro X-ray fluorescence) analysis confirmed the uptake of TiO(2) in the gut of D. magna. For L. variegatus µXRF analysis indicated attachment of TiO(2) nanoparticles to the organism surface as well as a discrete distribution within the organisms. Though exact localisation in this organism was more difficult to assess, the uptake seems to be within the coelomic cavity. Results show that the overall body burden and toxicity of cadmium to L. variegatus was unchanged by addition of TiO(2) nanoparticles, showing that cadmium adsorption to TiO(2) nanoparticles did not affect overall bioavailability. Despite facilitated uptake of cadmium by TiO(2) nanoparticles in D. magna, resulting in increased total cadmium body burden, no change in toxicity was observed.


Asunto(s)
Cadmio/farmacocinética , Daphnia/metabolismo , Nanopartículas/toxicidad , Oligoquetos/metabolismo , Titanio/farmacocinética , Contaminantes Químicos del Agua/farmacocinética , Animales , Cadmio/toxicidad , Agua Dulce , Cinética , Tamaño de la Partícula , Espectrometría por Rayos X , Titanio/toxicidad , Pruebas de Toxicidad , Contaminantes Químicos del Agua/toxicidad
17.
Chemosphere ; 87(8): 918-24, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22349061

RESUMEN

In an effort to minimize the impact on the environment or improve the properties of choice, most engineered nanoparticles used for commercial applications are surface functionalized. The release of these functionalized engineered nanoparticles (FENPs) into the environment can be either deliberate or accidental. Scientific research to date has tended to focus on evaluating the toxicity of FENPs, with less attention being given to exposure assessments or to the study of their general behavior in natural environments. We have therefore investigated the effects of environmental parameters such as pH, NaCl concentration, and natural organic matter concentration on the aggregation kinetics of FENPs with time resolved dynamic light scattering, using functionalized gold nanoparticles (FAuNPs) as a representative of these particles. We also investigated the effects of average particle size, the type of surface capping agent, and particle concentration on FAuNP aggregation kinetics. Our results show that the physico-chemical properties of the capping agent have a greater influence on the aggregation behavior of FAuNPs than either their core composition or their particle size.


Asunto(s)
Ingeniería , Nanopartículas/química , Tamaño de la Partícula , Ácido Cítrico/química , Ácidos Grasos/química , Concentración de Iones de Hidrógeno , Cinética , Luz , Nanotecnología , Cloruro de Sodio/química , Compuestos de Sulfhidrilo/química , Propiedades de Superficie
18.
Environ Sci Technol ; 44(18): 6926-32, 2010 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-20735047

RESUMEN

It is now well-known that copper (Cu) can accumulate on the surface of soils upon which pig slurry has been applied. This is due to the high quantity of Cu in pig slurry resulting from its use as a growth promoter in animal feeds. The mobility and bioavailability of Cu from pig slurry spreading can be better predicted by determining the speciation of this element in addition to its total concentration. The aim of this study was to present a multitechnique approach to investigate Cu speciation in pig slurry. First, size fractionation and chemical characterization of each size fraction were performed to complement results obtained in raw samples. Micro X-ray fluorescence spectroscopy (µXRF) highlighted the colocalization of Cu and sulfur (S). Finally, X-ray absorption near-edge structure spectroscopy (XANES) showed that Cu speciation in raw pig slurry and size fractions could be described by Cu(2)S and that its oxidation state is Cu(I). In addition, geochemical calculation demonstrated that chalcocite (Cu(2)S) was the major Cu species present under pig slurry lagoon physical-chemical conditions. This Cu speciation in pig slurry may be the main reason for the observed Cu accumulation at the soil surface.


Asunto(s)
Cobre/aislamiento & purificación , Restauración y Remediación Ambiental/métodos , Aguas del Alcantarillado/química , Animales , Fraccionamiento Químico , Concentración de Iones de Hidrógeno , Tamaño de la Partícula , Estándares de Referencia , Sus scrofa , Espectroscopía de Absorción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA