Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Neuroimage ; 225: 117480, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33099009

RESUMEN

The brain can be modelled as a network with nodes and edges derived from a range of imaging modalities: the nodes correspond to spatially distinct regions and the edges to the interactions between them. Whole-brain connectivity studies typically seek to determine how network properties change with a given categorical phenotype such as age-group, disease condition or mental state. To do so reliably, it is necessary to determine the features of the connectivity structure that are common across a group of brain scans. Given the complex interdependencies inherent in network data, this is not a straightforward task. Some studies construct a group-representative network (GRN), ignoring individual differences, while other studies analyse networks for each individual independently, ignoring information that is shared across individuals. We propose a Bayesian framework based on exponential random graph models (ERGM) extended to multiple networks to characterise the distribution of an entire population of networks. Using resting-state fMRI data from the Cam-CAN project, a study on healthy ageing, we demonstrate how our method can be used to characterise and compare the brain's functional connectivity structure across a group of young individuals and a group of old individuals.


Asunto(s)
Teorema de Bayes , Encéfalo/fisiología , Modelos Neurológicos , Red Nerviosa/fisiología , Mapeo Encefálico/métodos , Humanos , Individualidad , Imagen por Resonancia Magnética , Modelos Estadísticos , Vías Nerviosas
2.
Neuroimage ; 157: 635-647, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28578129

RESUMEN

Several methods have been developed to measure dynamic functional connectivity (dFC) in fMRI data. These methods are often based on a sliding-window analysis, which aims to capture how the brain's functional organization varies over the course of a scan. The aim of many studies is to compare dFC across groups, such as younger versus older people. However, spurious group differences in measured dFC may be caused by other sources of heterogeneity between people. For example, the shape of the haemodynamic response function (HRF) and levels of measurement noise have been found to vary with age. We use a generic simulation framework for fMRI data to investigate the effect of such heterogeneity on estimates of dFC. Our findings show that, despite no differences in true dFC, individual differences in measured dFC can result from other (non-dynamic) features of the data, such as differences in neural autocorrelation, HRF shape, connectivity strength and measurement noise. We also find that common dFC methods such as k-means and multilayer modularity approaches can detect spurious group differences in dynamic connectivity due to inappropriate setting of their hyperparameters. fMRI studies therefore need to consider alternative sources of heterogeneity across individuals before concluding differences in dFC.


Asunto(s)
Conectoma/normas , Interpretación Estadística de Datos , Procesamiento de Imagen Asistido por Computador/normas , Imagen por Resonancia Magnética/normas , Acoplamiento Neurovascular/fisiología , Simulación por Computador , Conectoma/métodos , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...