Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Immunother Cancer ; 12(4)2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38631707

RESUMEN

BACKGROUND: The individual HLA-I genotype is associated with cancer, autoimmune diseases and infections. This study elucidates the role of germline homozygosity or allelic imbalance of HLA-I loci in esophago-gastric adenocarcinoma (EGA) and determines the resulting repertoires of potentially immunogenic peptides. METHODS: HLA genotypes and sequences of either (1) 10 relevant tumor-associated antigens (TAAs) or (2) patient-specific mutation-associated neoantigens (MANAs) were used to predict good-affinity binders using an in silico approach for MHC-binding (www.iedb.org). Imbalanced or lost expression of HLA-I-A/B/C alleles was analyzed by transcriptome sequencing. FluoroSpot assays and TCR sequencing were used to determine peptide-specific T-cell responses. RESULTS: We show that germline homozygosity of HLA-I genes is significantly enriched in EGA patients (n=80) compared with an HLA-matched reference cohort (n=7605). Whereas the overall mutational burden is similar, the repertoire of potentially immunogenic peptides derived from TAAs and MANAs was lower in homozygous patients. Promiscuity of peptides binding to different HLA-I molecules was low for most TAAs and MANAs and in silico modeling of the homozygous to a heterozygous HLA genotype revealed normalized peptide repertoires. Transcriptome sequencing showed imbalanced expression of HLA-I alleles in 75% of heterozygous patients. Out of these, 33% showed complete loss of heterozygosity, whereas 66% had altered expression of only one or two HLA-I molecules. In a FluoroSpot assay, we determined that peptide-specific T-cell responses against NY-ESO-1 are derived from multiple peptides, which often exclusively bind only one HLA-I allele. CONCLUSION: The high frequency of germline homozygosity in EGA patients suggests reduced cancer immunosurveillance leading to an increased cancer risk. Therapeutic targeting of allelic imbalance of HLA-I molecules should be considered in EGA.


Asunto(s)
Adenocarcinoma , Péptidos , Humanos , Péptidos/metabolismo , Linfocitos T , Antígenos HLA , Antígenos de Neoplasias , Desequilibrio Alélico , Adenocarcinoma/metabolismo , Células Germinativas/metabolismo
2.
Environ Int ; 184: 108481, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38330748

RESUMEN

Combustion-derived particulate matter (PM) is a major source of air pollution. Efforts to reduce diesel engine emission include the application of biodiesel. However, while urban PM exposure has been linked to adverse brain effects, little is known about the direct effects of PM from regular fossil diesel (PMDEP) and biodiesel (PMBIO) on neuronal function. Furthermore, it is unknown to what extent the PM-induced effects in the lung (e.g., inflammation) affect the brain. This in vitro study investigates direct and indirect toxicity of PMDEP and PMBIO on the lung and brain and compared it with effects of clean carbon particles (CP). PM were generated using a common rail diesel engine. CP was sampled from a spark generator. First, effects of 48 h exposure to PM and CP (1.2-3.9 µg/cm2) were assessed in an in vitro lung model (air-liquid interface co-culture of Calu-3 and THP1 cells) by measuring cell viability, cytotoxicity, barrier function, inflammation, and oxidative and cell stress. None of the exposures caused clear adverse effects and only minor changes in gene expression were observed. Next, the basal medium was collected for subsequent simulated inhalation exposure of rat primary cortical cells. Neuronal activity, recorded using microelectrode arrays (MEA), was increased after acute (0.5 h) simulated inhalation exposure. In contrast, direct exposure to PMDEP and PMBIO (1-100 µg/mL; 1.2-119 µg/cm2) reduced neuronal activity after 24 h with lowest observed effect levels of respectively 10 µg/mL and 30 µg/mL, indicating higher neurotoxic potency of PMDEP, whereas neuronal activity remained unaffected following CP exposure. These findings indicate that combustion-derived PM potently inhibit neuronal function following direct exposure, while the lung serves as a protective barrier. Furthermore, PMDEP exhibit a higher direct neurotoxic potency than PMBIO, and the data suggest that the neurotoxic effects is caused by adsorbed chemicals rather than the pure carbon core.


Asunto(s)
Contaminantes Atmosféricos , Ratas , Animales , Contaminantes Atmosféricos/toxicidad , Contaminantes Atmosféricos/análisis , Emisiones de Vehículos/toxicidad , Emisiones de Vehículos/análisis , Biocombustibles , Exposición por Inhalación/efectos adversos , Material Particulado/toxicidad , Material Particulado/análisis , Carbono , Inflamación
3.
BMC Cancer ; 23(1): 1160, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38017389

RESUMEN

BACKGROUND: Composition of the intestinal microbiota has been correlated to therapeutic efficacy of immune checkpoint inhibitors (ICI) in various cancer entities including melanoma. Prediction of the outcome of such therapy, however, is still unavailable. This prospective, non-interventional study was conducted in order to achieve an integrated assessment of the connection between a specific intestinal microbiota profile and antitumor immune response to immune checkpoint inhibitor therapy (anti-PD-1 and/or anti-CTLA-4) in melanoma patients. METHODS: We assessed blood and stool samples of 29 cutaneous melanoma patients who received immune checkpoint inhibitor therapy. For functional and phenotypical immune analysis, 12-color flow cytometry and FluoroSpot assays were conducted. Gut microbiome was analyzed with shotgun metagenomics sequencing. To combine clinical, microbiome and immune variables, we applied the Random Forest algorithm. RESULTS: A total of 29 patients was analyzed in this study, among whom 51.7% (n = 15) reached a durable clinical benefit. The Immune receptor TIGIT is significantly upregulated in T cells (p = 0.0139) and CD56high NK cells (p = 0.0037) of responders. Several bacterial taxa were associated with response (e.g. Ruminococcus torques) or failure (e.g. Barnesiella intestinihominis) to immune therapy. A combination of two microbiome features (Barnesiella intestinihominis and the Enterobacteriaceae family) and one immune feature (TIGIT+ CD56high NK cells) was able to predict response to ICI already at baseline (AUC = 0.85; 95% CI: 0.841-0.853). CONCLUSIONS: Our results reconfirm a link between intestinal microbiota and response to ICI therapy in melanoma patients and furthermore point to TIGIT as a promising target for future immunotherapies.


Asunto(s)
Microbioma Gastrointestinal , Melanoma , Neoplasias Cutáneas , Humanos , Melanoma/tratamiento farmacológico , Neoplasias Cutáneas/tratamiento farmacológico , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Estudios Prospectivos , Células Asesinas Naturales , Receptores Inmunológicos
4.
Front Med (Lausanne) ; 9: 721639, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36582292

RESUMEN

Introduction: Recent advances hold promise of making personalized medicine a step closer to implementation in clinical settings. However, traditional sample preparation methods are not robust and reproducible. In this study, the TissueGrinder, a novel mechanical semi-automated benchtop device, which can isolate cells from tissue in a very fast and enzyme-free way is tested for cell isolation from surgically resected tumor tissues. Methods: Thirty-three surgically resected tumor tissues from various but mainly pancreatic, liver or colorectal origins were processed by both novel TissueGrinder and explant method. An optimized processing program for tumors from pancreatic, liver or colorectal cancer was developed. The viability and morphological characteristics of the isolated cells were evaluated microscopically. Expression of pancreatic cancer markers was evaluated in cells isolated from pancreatic tumors. Finally, the effect of mechanical stress on the cells was evaluated by assessing apoptosis markers via western blotting. Results: TissueGinder was more efficient in isolating cells from tumor tissue with a success rate of 75% when compared to explant method 45% in terms of cell outgrowth six weeks after processing. Cells isolated with TissueGinder had a higher abundance and were more heterogeneous in composition as compared to explant method. Mechanical processing of the cells with TissueGrinder does not lead to apoptosis but causes slight stress to the cells. Discussion: Our results show that TissueGrinder can process solid tumor tissues more rapidly and efficiently and with higher success rate compared to the conventionally used explant method. The results of the study suggest that the TissueGrinder might be a suitable method for obtaining cells, which is important for its application in individualized therapy. Due to the great variance in different tumor entities and the associated individual tissue characteristics, a further development of the dissociation protocol for other types of tumors and normal tissue will be targeted.

5.
Nanotechnology ; 33(43)2022 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-35835080

RESUMEN

Ceramic materials with high surface area, large and open porosity are considered excellent supports for enzyme immobilization owing to their stability and reusability. The present study reports the electrospinning of aluminum silicate nanofiber supports from sol-gel precursors, the impact of different fabrication parameters on the microstructure of the nanofibers and their performance in enzyme immobilization. A change in nanofiber diameter and pore size of the aluminum silicate nanofibers was observed upon varying specific processing parameters, such as the sol-composition (precursor and polymer concentration), the electrospinning parameters and the subsequent heat treatment (calcination temperature). The enzyme, alcohol dehydrogenase (ADH), was immobilized on the aluminum silicate nanofibers by physical adsorption and covalent bonding. Activity retention of 17% and 42% was obtained after 12 d of storage and repeated reaction cycles for physically adsorbed and covalently bonded ADH, respectively. Overall, the immobilization of ADH on aluminum silicate nanofibers resulted in high enzyme loading and activity retention. However, as compared to covalent immobilization, a marked decrease in the enzyme activity during storage for physically adsorbed enzymes was observed, which was ascribed to leakage of the enzymes from the nanofibers. Such fibers can improve enzyme stability and promote a higher residual activity of the immobilized enzyme as compared to the free enzyme. The results shown in this study thus suggest that aluminum silicate nanofibers, with their high surface area, are promising support materials for the immobilization of enzymes.


Asunto(s)
Nanofibras , Alcohol Deshidrogenasa/química , Aluminio , Silicatos de Aluminio , Enzimas Inmovilizadas/química , Nanofibras/química
6.
Clin Cancer Res ; 28(8): 1712-1723, 2022 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-35191474

RESUMEN

PURPOSE: An increased risk to develop cancer is one of the most challenging negative side effects of long-term immunosuppression in organ transplant recipients and impaired cancer immunosurveillance is assumed as underlying mechanism. This study aims to elucidate transplant-related changes in the tumor immune microenvironment (TME) of cancer. EXPERIMENTAL DESIGN: Data from 123 organ transplant recipients (kidney, heart, lung, and liver) were compared with historic data from non-immunosuppressed patients. Digital image analysis of whole-section slides was used to assess abundance and spatial distribution of T cells and tertiary lymphoid structures (TLS) in the TME of 117 tumor samples. Expression of programmed cell death 1 ligand 1 (PD-L1) and human-leucocyte-antigen class I (HLA-I) was assessed on tissue microarrays. RESULTS: We found a remarkably reduced immune infiltrate in the center tumor (CT) regions as well as the invasive margins (IM) of post-transplant cancers. These differences were more pronounced in the IM than in the CT and larger for CD8+ T cells than for CD3+ T cells. The Immune-score integrating results from CT and IM was also lower in transplant recipients. Density of TLS was lower in cancer samples of transplant recipients. The fraction of samples with PD-L1 expression was higher in controls whereas decreased expression of HLA-I was more common in transplant recipients. CONCLUSIONS: Our study demonstrates the impact of immunosuppression on the TME and supports impaired cancer immunosurveillance as important cause of post-transplant cancer. Modern immunosuppressive protocols and cancer therapies should consider the distinct immune microenvironment of post-transplant malignancies.


Asunto(s)
Neoplasias , Estructuras Linfoides Terciarias , Antígeno B7-H1 , Antígenos de Histocompatibilidad Clase I , Humanos , Linfocitos Infiltrantes de Tumor , Monitorización Inmunológica , Neoplasias/etiología , Neoplasias/metabolismo , Microambiente Tumoral
7.
J Immunother Cancer ; 10(12)2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36600602

RESUMEN

BACKGROUND: Specific immune response is a hallmark of cancer immunotherapy and shared tumor-associated antigens (TAAs) are important targets. Recent advances using combined cellular therapy against multiple TAAs renewed the interest in this class of antigens. Our study aims to determine the role of TAAs in esophago-gastric adenocarcinoma (EGA). METHODS: RNA expression was assessed by NanoString in tumor samples of 41 treatment-naïve EGA patients. Endogenous T cell and antibody responses against the 10 most relevant TAAs were determined by FluoroSpot and protein-bound bead assays. Digital image analysis was used to evaluate the correlation of TAAs and T-cell abundance. T-cell receptor sequencing, in vitro expansion with autologous CD40-activated B cells (CD40Bs) and in vitro cytotoxicity assays were applied to determine specific expansion, clonality and cytotoxic activity of expanded T cells. RESULTS: 68.3% of patients expressed ≥5 TAAs simultaneously with coregulated clusters, which were similar to data from The Cancer Genome Atlas (n=505). Endogenous cellular or humoral responses against ≥1 TAA were detectable in 75.0% and 53.7% of patients, respectively. We found a correlation of T-cell abundance and the expression of TAAs and genes related to antigen presentation. TAA-specific T-cell responses were polyclonal, could be induced or enhanced using autologous CD40Bs and were cytotoxic in vitro. Despite the frequent expression of TAAs co-occurrence with immune responses was rare. CONCLUSIONS: We identified the most relevant TAAs in EGA for monitoring of clinical trials and as therapeutic targets. Antigen-escape rather than missing immune response should be considered as mechanism underlying immunotherapy resistance of EGA.


Asunto(s)
Adenocarcinoma , Linfocitos B , Neoplasias Esofágicas , Neoplasias Gástricas , Humanos , Adenocarcinoma/inmunología , Antígenos de Neoplasias , Antígenos CD40 , Inmunidad , Neoplasias Gástricas/inmunología , Linfocitos T , Neoplasias Esofágicas/inmunología , Linfocitos B/inmunología
8.
Leukemia ; 36(3): 760-771, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34584203

RESUMEN

While classical Hodgkin lymphoma (HL) is highly susceptible to anti-programmed death protein 1 (PD1) antibodies, the exact modes of action remain controversial. To elucidate the circulating lymphocyte phenotype and systemic effects during anti-PD1 1st-line HL treatment we applied multicolor flow cytometry, FluoroSpot and NanoString to sequential samples of 81 HL patients from the NIVAHL trial (NCT03004833) compared to healthy controls. HL patients showed a decreased CD4 T-cell fraction, a higher percentage of effector-memory T cells and higher expression of activation markers at baseline. Strikingly, and in contrast to solid cancers, expression for 10 out of 16 analyzed co-inhibitory molecules on T cells (e.g., PD1, LAG3, Tim3) was higher in HL. Overall, we observed a sustained decrease of the exhausted T-cell phenotype during anti-PD1 treatment. FluoroSpot of 42.3% of patients revealed T-cell responses against ≥1 of five analyzed tumor-associated antigens. Importantly, these responses were more frequently observed in samples from patients with early excellent response to anti-PD1 therapy. In summary, an initially exhausted lymphocyte phenotype rapidly reverted during anti-PD1 1st-line treatment. The frequently observed IFN-y responses against shared tumor-associated antigens indicate T-cell-mediated cytotoxicity and could represent an important resource for immune monitoring and cellular therapy of HL.


Asunto(s)
Enfermedad de Hodgkin/tratamiento farmacológico , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Nivolumab/uso terapéutico , Linfocitos T/efectos de los fármacos , Antígenos de Neoplasias/inmunología , Femenino , Enfermedad de Hodgkin/inmunología , Humanos , Inmunidad/efectos de los fármacos , Masculino , Linfocitos T/inmunología
9.
J Infect ; 84(2): 237-247, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34921845

RESUMEN

OBJECTIVE: Recent data imply that strengthening host immunity by checkpoint inhibition improves outcome in invasive fungal infections (IFI), particularly in candidiasis. METHODS: To assess T-cell exhaustion in this context, we compared peripheral blood mononuclear cells (PBMCs) and serum samples of patients with invasive Candida albicans infection (IC, n = 21) to PBMCs or tumor-infiltrating lymphocytes (TILs) from cancer patients (n = 14) and PBMCs of healthy controls (n = 20). Type and differentiation of lymphocytes and expression of 29 immune-regulatory molecules were analyzed by flow cytometry. C. albicans specific responses were assessed by FluoroSpot (n = 8) and antibody measurement (n = 14). RESULTS: Fractions and phenotypes of lymphocyte subsets in PBMCs of IC patients were similar compared to PBMCs of controls, while they were different in TILs. PBMCs of patients with IC showed increased expression of immune-checkpoint molecules. The pattern of upregulated molecules was similar to TILs, but not present in PBMCs of control cancer patients. Fractions of T-cells expressing PD-1 and TIGIT were higher in IC patients that died. FluoroSpot analysis showed a Candida-specific IFN-y or IL-2 response in 5/8 patients, enhanced by addition of nivolumab in vitro. CONCLUSIONS: Together with preclinical data and preliminary evidence of clinical efficacy in mucormycosis, our results support clinical evaluation of immune-checkpoint inhibition in IFI treatment. TRIAL REGISTRATION: NCT04533087; retrospectively registered on August 31, 2020.


Asunto(s)
Candidiasis Invasiva , Receptor de Muerte Celular Programada 1 , Linfocitos T CD8-positivos , Candidiasis Invasiva/tratamiento farmacológico , Humanos , Recuento de Linfocitos , Linfocitos Infiltrantes de Tumor/metabolismo , Receptor de Muerte Celular Programada 1/genética , Receptor de Muerte Celular Programada 1/metabolismo , Linfocitos T
10.
NPJ Precis Oncol ; 5(1): 52, 2021 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-34135436

RESUMEN

The immune response against cancer is orchestrated by various parameters and site-dependent specificities have been poorly investigated. In our analyses of ten different cancer types, we describe elevated infiltration by regulatory T cells as the most common feature, while other lymphocyte subsets and also expression of immune-regulatory molecules on tumor-infiltrating lymphocytes showed site-specific variation. Multiparametric analyses of these data identified similarities of renal and liver or lung with head and neck cancer. Co-expression of immune-inhibitory ligands on tumor cells was most frequent in colorectal, lung and ovarian cancer. Genes related to antigen presentation were frequently dysregulated in liver and lung cancer. Expression of co-inhibitory molecules on tumor-infiltrating T cells accumulated in advanced stages while T-cell abundance was related to enhanced expression of genes related to antigen presentation. Our results promote evaluation of cancer-specific or even personalized immunotherapeutic combinations to overcome primary or secondary resistance as major limitation of immune-checkpoint inhibition.

11.
Cancer Immunol Res ; 9(9): 1098-1108, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34155067

RESUMEN

The role of B cells in antitumor immunity and their impact on emerging immunotherapies is increasingly gaining attention. B-cell effector functions include not only secretion of antibodies, but also presentation of antigens to T cells. A physiologic B-cell subset with immunostimulatory properties was described in humans, defined by a high expression of CD86 and downregulation of CD21. We used multicolor flow cytometry and IHC to elucidate abundance and spatial distribution of these antigen-presenting B cells (BAPC) in blood (peripheral blood mononuclear cells, PBMC) and tumor samples of 237 patients with cancer. Antigen-specific T-cell responses to cancer testis antigens were determined using tetramer staining and sorted BAPCs in FluoroSpot assays for selected patients. We found that BAPCs were increased in the tumor microenvironment of 9 of 10 analyzed cancer types with site-specific variation. BAPCs were not increased in renal cell carcinoma, whereas we found a systemic increase with elevated fractions in tumor-infiltrating lymphocytes (TIL) and PBMCs of patients with colorectal cancer and gastroesophageal adenocarcinoma. BAPCs were localized in lymphoid follicles of tertiary lymphoid structures (TLS) and were enriched in tumors with increased numbers of TLSs. BAPCs isolated from tumor-draining lymph nodes of patients with cancer showed increased percentages of tumor antigen-specific B cells and induced responses of autologous T cells in vitro. Our results highlight the relevance of BAPCs as professional antigen-presenting cells in tumor immunity and provide a mechanistic rationale for the observed correlation of B-cell abundance and response to immune checkpoint inhibition.


Asunto(s)
Adenocarcinoma/inmunología , Células Presentadoras de Antígenos/inmunología , Linfocitos B/inmunología , Antígeno B7-2/inmunología , Neoplasias Colorrectales/inmunología , Estructuras Linfoides Terciarias/inmunología , Adenocarcinoma/patología , Adulto , Anciano , Anciano de 80 o más Años , Antígenos de Neoplasias/inmunología , Neoplasias Colorrectales/patología , Femenino , Humanos , Inmunoterapia/métodos , Linfocitos Infiltrantes de Tumor/inmunología , Masculino , Persona de Mediana Edad , Microambiente Tumoral , Adulto Joven
12.
Front Immunol ; 10: 2447, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31681324

RESUMEN

C-C motif chemokine ligand 2 (CCL2) is a chemoattractant for leukocytes including monocytes, T cells, and natural killer cells and it plays an important role in maintaining the integrity and function of the brain. However, there is accumulating evidence that many neurological diseases are attributable to a dysregulation of CCL2 expression. Acquired immune deficiency syndrome (AIDS) encephalopathy is a severe and frequent complication in individuals infected with the human immunodeficiency virus (HIV) or the simian immunodeficiency virus (SIV). The HIV and SIV Nef protein, a progression factor in AIDS pathology, can be transferred by microvesicles including exosomes and tunneling nanotubes (TNT) within the host even to uninfected cells, and Nef can induce CCL2 expression. This review focuses on findings which collectively add new insights on how Nef-induced CCL2 expression contributes to neurotropism and neurovirulence of HIV and SIV and elucidates why adjuvant targeting of CCL2 could be a therapeutic option for HIV-infected persons.


Asunto(s)
Quimiocina CCL2/genética , Infecciones por VIH/genética , Infecciones por VIH/virología , VIH-1/fisiología , Síndrome de Inmunodeficiencia Adquirida del Simio/genética , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Virus de la Inmunodeficiencia de los Simios/fisiología , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/metabolismo , Animales , Astrocitos/metabolismo , Barrera Hematoencefálica , Progresión de la Enfermedad , Regulación de la Expresión Génica , Infecciones por VIH/complicaciones , Interacciones Huésped-Patógeno , Humanos , Neuronas/metabolismo , Síndrome de Inmunodeficiencia Adquirida del Simio/complicaciones
13.
Colloids Surf B Biointerfaces ; 175: 136-142, 2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30529819

RESUMEN

Alcohol dehydrogenase from Saccharomyces cerevisiae was immobilized on different inorganic support materials, i.e. powders of Al2O3, SiC, TiO2 and YSZ-8, by covalent bonding and physical adsorption. The raw powders were characterized by scanning electron microscopy, BET surface area, particle size distribution and ζ-potential measurements. Enzyme activity retention, storage stability and recyclability were evaluated on the basis of the measured support material properties. Preliminary experiments showed that the buffer selection was a critical factor. The properties of both the enzyme and the powders varied considerably between the buffers used; namely Tris-HCl (100 mM, pH 7) and MES (40 mM, pH 6.5) buffers. The enzyme activity was higher and more stable in the MES buffer, whereas the commonly used Tris buffer was problematic due to apparent incompatibility with formaldehyde. In MES, the order of decreasing activity of covalently bonded enzyme was on SiC > YSZ-8 > Al2O3 > TiO2. The lower performance of TiO2 was ascribed to the negative ζ-potential of the material, which impeded an efficient immobilization. Particle agglomeration, caused by low colloidal stability of the particles in MES buffer, hampered the storage stability of the immobilized systems. The results from this study show the advantages and limitations of using nanoparticles as immobilization supports, and highlight which properties of nanoparticles must be considered to ensure an efficient immobilization.


Asunto(s)
Alcohol Deshidrogenasa/química , Enzimas Inmovilizadas/química , Compuestos Inorgánicos/química , Proteínas de Saccharomyces cerevisiae/química , Adsorción , Alcohol Deshidrogenasa/metabolismo , Alcohol Deshidrogenasa/ultraestructura , Óxido de Aluminio/química , Tampones (Química) , Estabilidad de Enzimas , Enzimas Inmovilizadas/metabolismo , Concentración de Iones de Hidrógeno , Cinética , Microscopía Electrónica de Rastreo , Nanopartículas/química , Polvos , Proteínas de Saccharomyces cerevisiae/metabolismo , Propiedades de Superficie , Titanio/química
14.
Int J Sports Med ; 38(11): 857-863, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28783845

RESUMEN

Increased serotonin (5-HT) levels have been shown to influence natural killer cell (NK cell) function. Acute exercise mobilizes and activates NK cells and further increases serum 5-HT concentrations in a dose-dependent manner. The aim of this study was to investigate the impact of different serum 5-HT concentrations on NK cell migratory potential and cytotoxicity. The human NK cell line KHYG-1 was assigned to 4 conditions, including 3 physiological concentrations of 5-HT (100, 130 or 170 µg/l 5-HT) and one control condition. NK cells were analyzed regarding cytotoxicity, migratory potential and expression of adhesion molecules. No treatment effect on NK cell cytotoxicity and expression of integrin subunits was detected. Migratory potential was increased in a dose dependent manner, indicating the highest protease activity in cells that were incubated with 170 µg/l 5-HT (170 µg/l vs. control, p<0.001, 170 µg/l vs. 100 µg/l, p<0.001; 170 µg/l vs. 130 µg/l, p=0.003; 130 µg/l vs. control, p<0.001, 130 µg/l vs. 100 µg/l, p<0.001). These results suggest that elevated 5-HT serum levels play a mediating role in NK cell function. As exercise has been shown to be involved in NK cell mobilization and redistribution, the influence of 5-HT should be investigated in ex vivo and in vivo experiments.


Asunto(s)
Movimiento Celular , Células Asesinas Naturales/citología , Serotonina/farmacología , Línea Celular , Ejercicio Físico , Humanos , Integrinas/metabolismo , Células Asesinas Naturales/efectos de los fármacos
15.
J Colloid Interface Sci ; 506: 620-632, 2017 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-28763766

RESUMEN

The influence of nanoparticle morphology and filler content on the mechanical and electrical properties of carbon nanoparticle modified epoxy is investigated regarding small volumes. Three types of particles, representing spherical, tubular and layered morphologies are used. A clear size effect of increasing true failure strength with decreasing volume is found for neat and carbon black modified epoxy. Carbon nanotube (CNT) modified epoxy exhibits high potential for strength increase, but dispersion and purity are critical. In few layer graphene modified epoxy, particles are larger than statistically distributed defects and initiate cracks, counteracting any size effect. Different toughness increasing mechanisms on the nano- and micro-scale depending on particle morphology are discussed based on scanning electron microscopy images. Electrical percolation thresholds in the small volume fibres are significantly higher compared to bulk volume, with CNT being found to be the most suitable morphology to form electrical conductive paths. Good correlation between electrical resistance change and stress strain behaviour under tensile loads is observed. The results show the possibility to detect internal damage in small volumes by measuring electrical resistance and therefore indicate to the high potential for using CNT modified polymers in fibre reinforced plastics as a multifunctional, self-monitoring material with improved mechanical properties.

16.
Exerc Immunol Rev ; 23: 66-81, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28230531

RESUMEN

With their ability to recognize and eliminate virus-infected and neoplastic cells, natural killer cells (NK-cells) represent an important part of the innate immune system. NK-cells have attracted the attention of exercise scientists for more than thirty years ago. To date, it is widely accepted that NK-cell counts in the peripheral blood are strongly influenced by acute exercise. Additionally, many studies reported effects of both, acute and chronic exercise on NK-cell cytotoxicity. However, these findings are contradictory. The inconsistence in findings may be argued with different exercise paradigms (type, duration, intensity). Moreover, strongly varying methods were used to detect NK-cell cytotoxicity. This review gives an overview of studies, investigating the impact of acute and chronic exercise on NK-cell cytotoxicity in young and old healthy adults, as well as on specific populations, such as cancer patients. Furthermore, different methodological approaches to assess NK-cell cytotoxicity are critically discussed to state on inconsistent study results and to give perspectives for further research in this field.


Asunto(s)
Citotoxicidad Inmunológica , Ejercicio Físico , Células Asesinas Naturales/inmunología , Ensayos Clínicos Controlados como Asunto , Humanos , Ensayos Clínicos Controlados no Aleatorios como Asunto , Ensayos Clínicos Controlados Aleatorios como Asunto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA